Что такое boost в машине
О буст контроллере. Как работает и что дает его установка
Сравнивая обычный мотор и турбированный, явное преимущество остается за турбонаддувом. Неоспоримым плюсом которого является мощность. Для увеличения производительности движка необходимо сделать так, чтобы давление наддува увеличилось. Это возможно, задействовав специальное устройство, называемого буст контроллером. Производители предлагают несколько разновидностей таких элементов, имеющих одну цель. Позволяют получить необходимое давление наддува, также вернуть все обратно.
Его задачей выступает управление впускным коллектором с защитным клапаном. Также устройство удерживает поршень. Что не допускает стравливание остатков воздуха. Таким образом увеличивается мощность, крутящего момента на высоких оборотах мотора.
В чем особенность буст контроллера
Сначала нужно ознакомиться с модификациями устройств. Они представлены:
Большей популярности и востребованности среди потребителей пользуются экземпляры в электронном исполнении. Им характерен довольно замысловатая последовательность в плане управления. Они способны контролировать периодичность вращений, совершаемых валом. Также учитывать нагрузку двигателя внутреннего сгорания. На основе этого, они подталкивают турбинный компрессор к созданию высокого давления за короткое время.
Несмотря на то, что мощность увеличивается, показатель будет незначительным. Чего не скажешь о тяжести на узлы движка, которая моментально возрастает. Можно сказать, что установка буст контроллера целесообразна для автомобилей, участвующих в соревнованиях. Поэтому не рекомендуется ставить его на штатный мотор. Ему просто не под силу такая нагрузка. Единственное, если доработать контракцию и заменить все прокладки.
Ежедневная эксплуатация буст контроллера сведена к бездействию. Что обусловлено давлением воздуха, который выдает турбина. Он ниже срабатываемого порога обычного клапана.
В чем суть его работы
Принцип действия буст контроллера заключается в увеличении вращений турбины. Делает это он вместе с пневматическим клапаном, установленным в шланг впуска. Подробней обо всем. Достигнув требуемых параметров турбинных оборотов, водитель также может в любой момент все вернуть обратно. Благодаря зажиму данного клапана, излишек воздуха из коллектора не выходит. Именно за счет этой способности буст контроллера, в разы увеличивается крутящий момент двигателя. В результате машина становится динамичной.
Устройства электронного типа отличаются высокой производительностью. Способны учитывать стиль вождения любого автолюбителя.
Есть ли смысл ставить буст контроллер
Хотя приборы увеличивают мощность движка, ожидаемые показатели в сравнении с форсированными агрегатами минимальны. На самом деле прибавление дополнительной мощности движку будет частичной. Только нагрузка на его детали может достигнуть критической отметки. Следовательно, установка подобных элементов выгодна любителям и участникам спортивных соревнований.
Предпочтительны электронные контроллеры, однако они стоят дороговато. Оптимальным вариантом в плане стоимости и технической части, будет монтаж прибора с электроникой на одну турбину. Вторую лучше оснастить механическим аналогом.
Если хочется поставить буст контроллер обычному автовладельцу, стоит учитывать, что придется затрачиваться еще на различные приспособления, нужно будет дорабатывать двигатель. Возникает вопрос: зачем тогда приобретать данный инструмент и тратить еще на переделку? Если можно выполнить полноценную расточку мотора. Получается, что такая деталь не актуальна для многих обычных водителей.
Зачем нужен датчик буста в автомобиле
Датчик буста — это одна из ключевых деталей в турбированном двигателе. От его корректной работы зависят рабочие характеристики всего автомобиля.
Что это за устройство
Для начала стоит понять, что собой представляет датчик буста. Этот элемент входит в систему турбонаддува. Его роль заключается в увеличении заряда топлива в цилиндрах двигателя внутреннего сгорания. Сегодня популярностью пользуется турбонаддув, поэтому конструкция дополнительно оснащается турбокомпрессором. Механический компрессор, который использовали ранее, уходит в прошлое.
Применение датчика
Система турбонаддува увеличивает мощность мотора. Это в дальнейшем имеет отрицательные последствия: повышается рабочее давление внутри цилиндров. Чтобы не допустить перегрева, в конструкции был продуман датчик наддува турбины. Он следит за отклонениями давления, передавая сигналы промежуточному охладителю в случае необходимости. Его значения позволяют электронному блоку управления оценивать состояния автомобиля на текущий момент.
Без всех деталей системы, наддув турбины невозможен. Поэтому, если из строя выйдет датчик буста, его необходимо в срочном порядке заменить. Сегодня такие устройства предлагают многие производители автозапчастей. Например, Bosch, Vemo, Metzger, Febi Bilstein, Hella.
Конструкция и особенности работы
Производство считывающего устройства осуществляется по 2 технологиям: толстопленочной и механической. Второй вариант считается более прогрессивным и доступным, поэтому большинство моделей изготавливается механическим способом.
Главным элементом в конструкции служит чип, а еще диафрагма с 4 тензорезисторами. Когда на диафрагму оказывается давление, она начинает сгибаться, передавая сигналы чипу. Вследствие механической растяжки все 4 тензорезистора меняют направление работы, создавая сопротивление. Электронный блок управления двигателем анализирует величину возникшего напряжения и оценивает давление. При увеличении напряжения повышается и рабочий показатель давления.
Работает датчик давления турбины в автоматическом режиме. Он передает показатели с помощью сигналов, которые могут быть и звуковыми, и визуальными. Сейчас выпускаются устройства с разными режимами яркости, либо с несколькими цветными показателями, которые обеспечивают быстрое и удобное считывание данных даже при плохом освещении.
Если показатель длительное время выходит из установленных рамок, то система турбонаддува, скорее всего, неисправна. Если же отклонения носят временный характер, наличие неисправности исключается.
Виды датчиков буста
Потребителям доступны 2 типа датчиков турбонаддува: электромеханический и байсный. Первый вариант производится чаще всего, так как считается универсальным и более современным.
Независимо от модели, устройство для управления турбиной подключается напрямую к регулятору давления. Чаще всего сразу в комплекте дополнительно идет подставка с возможностью изменения угла.
Подбирая датчик турбонаддува, следует учитывать марку, год выпуска, модель автомобиля, объем и тип двигателя (дизельный, бензиновый). Устройства отличаются формой, размерами, рабочим диапазоном давления.
Подключение датчика буста
Установку нового датчика буста желательно выполнять в сервисных центрах, которые имеют весь необходимый запас инструментов и требуемое оборудование для диагностики.
Если же человек уверен в своих силах и имеет основные знания, он может подключить датчик буста дома.
Для настройки механизма потребуются:
Подключение устройства в машине производится в такой последовательности:
При выполнении этих действий следует обратить внимание, что чем туже затягивается датчик системы турбонаддува, тем выше будет создаваемое давление. После завершения всех работ в обязательном порядке необходимо проверить правильность подключения, прежде чем садиться за руль. Для этого достаточно запустить мотор и попереключать различные режимы. Если все действия были выполнены правильно, то скрипов, скрежетов не будет.
Заключение
Датчик турбонаддува будет полезен для автомобиля в любом случае. Он позволит следить за величиной давления, и не даст показателям отклоняться от допустимых значений. Главное, это своевременно производить проверку и замену устройства при обнаружении неисправности, чтобы не допустить выхода из строя всей системы.
Видео по теме
Как работает буст система в Dota 2
Доброго времени суток, дорогие читатели. До сих пор не многие игроки знают о том, что такое буст система в Dota 2, как она работает и как она влияет на быстрое получение рейтинга в игре.
Что такое буст – система в Dota 2
Итак, для тех, кто еще не слышал данный термин, рассказываем. Данный термин означает систему, которая позволяет игрокам, играющих с фейковых аккаунтов, быстрее добраться до своего реального рейтинга. Т.е., данная система позволит вам получать не стандартные +25, как получают простые работяги, а более 340 очков рейтинга за победу. Таким образом, всего за 10 игр вы сможете апнуть 3.5 тысячи ММР. Интересно, как это сделать? Читайте нашу статью до конца.
Итак, сложность заключается в том, что «подсесть» на буст-систему очень сложно. Это не по силам даже многим бустерам, а ведь они на порядок лучше играют, тем более при выполнении заказа. Дело в том, что вы должны не просто лучше играть, вы должны в салат разваливать противников, причем несколько игр подряд.
Уровни буст-системы
Опять-таки, буст система имеет несколько уровней. На данный момент известно 5 ее уровней. Эти уровни влияют на то, сколько очков рейтинга вы будете получать за победу. Ниже мы приведем вам цифры этих уровней, а потом все подробно расскажем на примерах. И да, чтобы подсесть на буст-систему, у вас должен быть не просто нулевой аккаунт, у вас там должны быть игры, сыгранные на лоу-рейтинге, примерно с их скиллом (К/Д/А и другие характеристики).
Итак, что же это значит. Возьмем, например, всем известного Dendi, бывшего игрока Na`Vi. Как известно, большинство бустеров обладают 5-7К ММР. Допустим, игрок с 5К заводит новый аккаунт. Калибровка пройдена и допустим, ему не повезло и он откалибровался на 1К. Т.к. скилл его на 5К, то соответственно, выигрывать он там будет любой матч в соло, даже против руинеров и фидеров. Аналогичным образом всякие Мираклы, с 11К ММР, бустят свои фейки до максимального ранга за пару дней.
Однако подниматься по +25 – невероятно долго. Представьте, чтобы с 1000 ММР вернуть 5000 ММР, нужно выиграть минимум 160 матчей, при этом, не факт, что игра вам всегда будет подсчитывать эти 25. Может быть и 20, и 10, и 15. И это не говоря уже о возможных поражениях.
Но если вы подсядете на буст-систему, то свои 5000 ММР вы сможете вернуть игр за 10-15.
Как получить буст-систему в Dota 2
Итак, как вы уже наверное поняли, мало играть хорошо, вы должны играть великолепно и разгромно. При этом, чтобы сесть на буст-систему, вы должны знать несколько особенностей.
Помните, что на количество очков очень влияет стрик. Конечно, шанс на проигрыш у вас будет, при этом с системы вы не слетите. И да, вы потеряете максимум очков 10 ММР. Но с этим нужно быть аккуратнее, т.к. разгромное поражение даже в одной игре может вас сбросить с буст-системы. На обычные проигрыши, обычно дается 2-3 шанса. Обычно буст-система пропадает после 3 поражения, считая, что вы достигли своего максимума.
Именно поэтому вы должны играть на керри-героях, т.к. только они могут в соло заканчивать игры. Кроме того, можно играть и в команде с кем-то. Не стесняйтесь брать имбалансных героев в текущем патче, не стесняйтесь брать имбалансные связки. У каждого из вас есть сильные герои. Абузьте их по максимуму, тогда вы точно сумеете присесть на буст-систему.
Вот так, дорогие читатели, и набиваются 11-12К ММР, вот так про-игроки обладают 3-4 фейками, с огромными рангами. Вот именно поэтому, в прежние времена, различные Badman’ы не попадали в про-команды, хоть и возглавляли таблицу рейтинга. Им просто удалось вовремя подсесть на буст-систему.
На этом мы заканчиваем нашу статью. Всем удачи и успехов, в поисках буст-системы. Мы же прощаемся с вами, до новых встреч.
Как работает автоматическое повышение частот у процессоров Intel и AMD
Содержание
Содержание
За производительность компьютера отвечают не только ядра и потоки. В современных чипах производители управляют частотой и вычислительной мощностью при помощи технологий Intel Turbo Boost и AMD Precision Boost. Но у каждой из них есть свои нюансы и особенности. Чтобы разобраться, как они работают, нужно понять, что такое частота, почему она тактовая, и как это влияет на мощность процессора.
Почему частота «тактовая»?
Если говорить просто, частота — это повторяющиеся действия. Частота указывает только быстроту объекта, но не его производительность. Например, двигатель внутреннего сгорания вращает маховик со скоростью 2000 оборотов в минуту. При этом он может выдавать разную полезную мощность.
С помощью тактов обозначают производительность — количество выполненной полезной работы за одно движение. Чтобы разобраться в значении тактов и частоты, можно обратиться к математике. Например, перед нами находятся два колеса, у одного из них радиус 10 дюймов, у другого — 20 дюймов, поэтому, несмотря на одинаковую частоту вращения, колеса будут иметь разную скорость. В этом случае обороты можно принять за такты, а километраж, который колесо проезжает за один оборот — тактовой частотой или производительностью. Отсюда следует, что просто частота — это не качественное, а количественное обозначение. А частота с указанием такта — это уже показатель производительности. Именно тактовая частота указывает на производительность процессоров.
Регулируемая частота
Процессоры — это микросхемы, которые включают миллиарды транзисторов. Высокая плотность компоновки позволяет уместить в одном квадратном сантиметре электрическую схему размером с футбольное поле. Такая конструктивная особенность ставит жесткие условия для работы электроники.
Так, для эффективной работы процессору приходится динамически управлять тактовой частотой. Это полезно для производительности или, наоборот, для снижения нагрева и потребления, поскольку система балансирует на идеальном соотношении мощности и эффективности.
Фирменные технологии, включая Intel Turbo Boost и AMD Precision Boost, лишь частично отвечают за работу алгоритмов управления частотой, их основная цель — повышение частоты сверх базового значения (разгон). Однако динамическая частота берет начало далеко за пределами процессорных технологий — отправной точкой в формировании частоты процессора является тактовый генератор.
Тактовый генератор
Это микросхема, которая синхронизирует работу компьютерных комплектующих. Другими словами, это точные часы, которые независимо и равномерно отбивают такт за тактом. Основываясь на времени между тактами, остальная электроника понимает, когда и как нужно работать.
В современных системах частота тактового генератора зафиксирована на отметке 100 МГц, хотя и может варьироваться в пределах нескольких процентов, чтобы избежать интерференции собственного излучения с высокочастотным излучением других компонентов.
Множитель
Процессор управляет частотой ядер с помощью множителя. Чтобы получить необходимую частоту ядер, система умножает постоянное значение частоты генератора на необходимое значение множителя. В таком случае динамическая частота касается только процессора, тогда как остальные компоненты подчиняются собственным правилам формирования частоты.
До появления новых процессоров, множитель оставался постоянной величиной, потому что его блокировали на заводе аппаратно. Пользователи довольствовались ручной регулировкой частоты через шину: чем выше частота тактового генератора, тем выше частота ядер. В прошлом комплектующие не требовали предельно стабильной частоты BCLK, а в современных платформах ей уделяют особое внимание.
Например, разгоняя систему через шину, мы не только поднимаем частоту процессора, но и увеличиваем частоту оперативной памяти, графического ядра и даже накопителей. К перепадам частоты чувствителен контроллер твердотельного накопителя: он может сыпать ошибками даже при колебаниях шины на 2-3 МГц от заводского значения. Чтобы избежать этого, производители сделали множитель динамическим.
Как работает автоматическая регулировка частоты
Высокая тактовая частота просто необходима для вычислительной мощности ядер. Однако, лишние мегагерцы не только повышают производительность чипа, но также влияют на энергопотребление, нагрев, стабильность и даже безопасность системы. С появлением мощных процессоров появилась необходимость управлять частотой так, чтобы компьютер работал сбалансированно. Есть нагрузка — есть частота, нет нагрузки — процессор отдыхает и не греет воздух в корпусе.
Сначала динамическая частота использовалась для экономии энергии, позже процессоры научились автоматически разгоняться. Производители процессоров догадались, насколько выгодно выпускать чипы, разогнанные с завода. Поэтому тонкое управление частотой и другими параметрами теперь берут на себя фирменные технологии, такие как Intel Turbo Boost и AMD Precision Boost.
Intel Turbo Boost
История фирменной технологии начинается с процессоров i7 серии 9xx. Это семейство Bloomfield, в модельном ряду которого появились чипы с поддержкой технологии Hyper Threading и, конечно, Intel Turbo Boost.
Первая версия позволяла разгонять процессор всего на 200-300 МГц выше базовой частоты. Это было физическим ограничением: кремний того времени тяжело переваривал разгон, и без существенного повышения температуры и напряжения было сложно взять рекордные цифры в полной нагрузке на все ядра.
Но вместе с развитием полупроводников и техпроцессов процессоры приобрели врожденную способность к хорошему разгону. Теперь поднять частоту на 1 ГГц от базовой не составляет труда даже автоматике, особенно после того, как в Intel доработали фирменную технологию и представили несколько дополнительных алгоритмов. Вторая версия Intel Turbo Boost появилась в процессорах еще в 2010 году и по сей день работает даже в самых совершенных и актуальных чипах семейства Rocket Lake.
Как это работает
С помощью технологии Turbo Boost 2.0 процессор управляет тактовой частотой так, чтобы ядра оставались производительными во всех нагрузках без перегрева и выхода за рамки заводского теплопакета. Правда, есть несколько нюансов. Рассмотрим работу Turbo Boost на процессорах Coffee Lake.
Например, TDP процессора составляет 95 ватт, но при этом система буста позволяет процессору в течение некоторого времени работать с большим энергопотреблением. Эти параметры настраиваются автоматически, а материнские платы на базе Z-чипсетов даже позволяют регулировать их вручную:
Настройки, выделенные красным блоком на скриншоте, относятся к технологии Turbo Boost. Это основные параметры, которые влияют на работу автоматического разгона и задают максимумы для разгона процессора. Параметр «Long Duration Package Power Limit» инженеры Intel называют PL1 — это заводской уровень энергопотребления (TDP), который является опорным для работы Turbo Boost. Для Core i7 9700K значение PL1 составляет 95 ватт.
Для работы буста производитель предусмотрел второе значение — Short Duration Package Power Limit или PL2. Этот параметр влияет на абсолютный предел энергопотребления процессора в нагрузке и бусте на все ядра. Стандартная формула для подсчета этого параметра следующая: PL2 = PL1*1.25
В таком случае «вторая скорость» восьмиядерного 9700K может достигать 120 ватт. По замыслу инженеров, именно столько энергии потребляет процессор в заводском разгоне, чтобы оставаться в безопасных значениях по напряжению и нагреву. Правда, чтобы защитить процессор, режим PL2 может работать только ограниченный промежуток времени, после чего откатывается к потреблению по правилам PL1. Это время обозначается как «Package Power Time Window» или «Tau».
Основываясь на этих лимитах, процессоры Intel регулируют частоту. Например, если теплопакет процессора остается в рамках PL1, то частота будет достигать максимума. Если же процессор нагружен так, что его энергопотребление превышает режим PL1 и достигает PL2, то повышенная частота продержится на высоких значениях только заявленное время Tau, а затем вернется на безопасные значения. Intel неохотно раскрывает подробные параметры, однако энтузиасты смогли раздобыть немного интересной информации о семействе Coffee Lake:
Частота процессора в режиме Turbo Boost подчиняется опорной частоте (тактовый генератор) и значению множителя, а также зависит от параметров энергопотребления процессора. Стоит сказать, что настоящие значения PL2 и Tau не всегда соответствуют тем, которые можно рассчитать или найти в открытых источниках. Например, тот же Core i7 9700K может с лихвой перевалить за 140 ватт и работать, если позволяют система охлаждения и подсистема питания.
А можно еще быстрее?
Новые процессоры Intel поддерживают не только Turbo Boost 2.0, но и несколько «надстроек». Это Turbo Boost Max 3.0, Intel Velocity Boost и Intel Adaptive Boost, которые не заменяют основной алгоритм повышения частоты, а расширяют его функционал.
Intel Turbo Boost Max 3.0 — дополнение к основному бусту. Технология сочетает аппаратные алгоритмы Turbo Boost 2.0 и программные, которые определяют самые быстрые ядра процессора и делегируют им однопоточные задачи. В результате частота удачных ядер может подниматься на 15% выше пределов по Turbo Boost. Кроме хорошего охлаждения и питания, для работы технологии необходим соответствующий процессор, а также Windows 10 последней версии.
Intel Velocity Boost — надстройка над заводским разгоном, а также над Turbo Boost 3.0. Алгоритм следит за температурой и позволяет работать всем ядрам процессора с более высокой частотой, если температура не превышает условного значения. Например, для процессоров Comet Lake это значение соответствует 70 °C. Таким образом, десятиядерный процессор может достигать 4.9 ГГц по всем ядрам, тогда как стандартный буст разгонит процессор всего до 4.8 ГГц.
Intel Adaptive Boost — новая технология, она еще не изучена вдоль и поперек, как остальные, но некоторые подробности уже известны. Первыми поддержку получили процессоры Core i9 11900K и Core i9 11900KF семейства Rocket Lake. Принцип работы нового алгоритма заключается в отслеживании температуры ядер и лимитов энергопотребления. Если все данные сходятся в допустимых пределах, то технология разгоняет ядра еще сильнее, чем обычный Turbo Boost и Velocity Boost, позволяя всем потокам одновременно достигать 5.1 ГГц, вместо 4.7 ГГц в стандартном бусте.
Поддержка технологий регулировки частоты зависит от модели процессора, а также его поколения. Например, Velocity Boost, как и новейший Adaptive Boost, поддерживается только топовыми Core i9, тогда как Turbo Boost 2.0 можно встретить даже в моделях Intel Core i3.
AMD Precision Boost
У красного лагеря свое понимание заводского разгона, которое несколько отличается от конкурентов. Например, AMD не привязывает частоту к целым значениям от шины и может регулировать ее вплоть до 25 МГц, тогда как буст Intel всегда кратен 100 МГц. Отсюда и название Precision Boost — «точный разгон». В то же время, принцип регулировки завязан на лимиты потребления, температуры и частоты почти так же, как и Core.
Двое из ларца
В жизни процессоров AMD было несколько технологий настройки частоты. Прошлые поколения использовали алгоритмы Turbo Core, а с появлением ядер Zen и процессоров Ryzen инженеры придумали технологию Precision Boost, которая позже превратилась в версию 2.0. Принцип работы обеих версий турбобуста идентичен. Разгон ядер подчиняется трем ограничениям: температура, мощность и частота. Если представить их в виде равнобедренного треугольника, как это делают инженеры AMD, то получится так:
Синий треугольник обозначает максимумы для каждого из трех пределов процессора. Сиреневый треугольник показывает, каким образом параметры влияют друг на друга при достижении одного из лимитов. Если проще, то, как только процессор упрется в энергопотребление, частота перестанет повышаться и зафиксируется в пределах 25 МГц от лимита частоты (отмечено черным цветом).
Если же процессор быстрее достигнет максимальной температуры, а не лимита потребления, то частота также остановится на определенном, но не максимальном значении. В то же время, если процессор эффективно охлаждается и не ограничен по питанию, то лимит частоты будет пройден, а максимальная тактовая частота процессора достигнет заводского предела — вершины синего треугольника.
Так работает Precision Boost обеих версий. Единственный минус первой версии PB — жесткое снижение частоты при загрузке более двух ядер. Обратимся к наглядному графику:
Сиреневым цветом обозначена работа Precision Boost первой версии, которая работает следующим образом: когда система нагружает одно или два ядра, алгоритм разгона поднимает частоту на максимум, заложенный в процессор с завода.
В случае, если система нагрузит больше двух потоков, буст резко снизит частоту. Получается, что в таком режиме процессор остается производительным только в однопоточных заданиях, а при одновременной нагрузке хотя бы трех ядер резко теряет вычислительную мощность.
Вторая версия алгоритма Precision Boost 2 меняет подход к управлению частотой в зависимости от нагрузки. Во-первых, новая технология позволяет процессорам работать с более высокими частотами. Во-вторых, при нагрузке на все ядра система не сбрасывает частоту резко, а делает это плавно, от ядра к ядру. На графике это обозначено оранжевой линией.
Впрочем, автоматическая регулировка частоты не ограничена физическими лимитами процессора. AMD заявляет, что алгоритмы Precision Boost 2 стали хитрее, поэтому максимальная частота ядер достигается не только в пределах температуры, напряжения и энергопотребления, но также зависит от задач. Например, в приложениях с невысокой нагрузкой на процессор, ядра будут работать на повышенных частотах, даже если это нагрузка сразу на все потоки. В то же время процессор будет немного снижать частоту в рендеринге и других трудоемких заданиях.
Заводской Boost лучше ручного разгона
Производителям удалось сделать то, к чему пользователи стремились в течение многих лет: современные процессоры работают намного эффективнее предшественников благодаря автоматической частоте. Если раньше энтузиасты настраивали частоту ядер через аппаратные модификации материнских плат и процессоров, то сегодня для настройки достаточно нажать кнопку «Включить» на системном блоке. Остальное за нас сделает автоматика.
Порой она работает эффективнее, чем ручная настройка. Когда мануальный разгон заставляет все ядра работать с одинаковой частотой, турбобуст позволяет разгонять отдельные ядра выше, чем это возможно в ручном режиме. Поэтому однопоточная производительность актуальных чипов показывает неплохие цифры, которых не всегда можно добиться настройками в BIOS.
Более того, заводские алгоритмы повышения частоты следят за состоянием процессора и подсистемы питания, они не позволят электронике работать на пределе стабильности и безопасности. Неопытный пользователь вряд ли обеспечит системе такой уровень качества, настраивая частоту и напряжение на ядрах самостоятельно.
Огромный плюс заводского буста — высокая тактовая частота даже на процессорах с заблокированным разгоном. Поэтому даже бюджетный шестиядерный процессор все еще эффективен в играх и там, где важен показатель IPC — однопоточной производительности.