Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ВраСктория

ВраСктория (ΠΎΡ‚ позднСлатинского trajectories – относящийся ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ) – это линия, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°). ВраСктория двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямой (Ρ‚Π΅Π»ΠΎ пСрСмСщаСтся Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ) ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямолинСйным ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ.

ВраСктория прямолинСйного двиТСния Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – это прямая линия. НапримСр, ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ траСктория двиТСния автомобиля ΠΏΠΎ Ρ€ΠΎΠ²Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³Π΅ Π±Π΅Π· ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ΠΎΠ² являСтся прямолинСйной.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π» ΠΏΠΎ окруТности, эллипсу, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅ ΠΈΠ»ΠΈ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π΅. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ двиТСния – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° колСсС двиТущСгося автомобиля ΠΈΠ»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ автомобиля Π² ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ слоТным. НапримСр, траСктория двиТСния Ρ‚Π΅Π»Π° Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡƒΡ‚ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямолинСйной, Π·Π°Ρ‚Π΅ΠΌ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ. НапримСр, Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡƒΡ‚ΠΈ двиТСтся ΠΏΠΎ прямой Π΄ΠΎΡ€ΠΎΠ³Π΅, Π° Π·Π°Ρ‚Π΅ΠΌ Π΄ΠΎΡ€ΠΎΠ³Π° Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Β«ΠΏΠ΅Ρ‚Π»ΡΡ‚ΡŒΒ» ΠΈ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

ΠŸΡƒΡ‚ΡŒ – это Π΄Π»ΠΈΠ½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. ΠŸΡƒΡ‚ΡŒ являСтся скалярной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΈ Π² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ систСмС Π΅Π΄ΠΈΠ½ΠΈΡ† БИ измСряСтся Π² ΠΌΠ΅Ρ‚Ρ€Π°Ρ… (ΠΌ). Расчёт ΠΏΡƒΡ‚ΠΈ выполняСтся Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡Π°Ρ… ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅. НСкоторыС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ рассмотрСны Π΄Π°Π»Π΅Π΅ Π² этом ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅.

Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния

Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния (ΠΈΠ»ΠΈ просто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅) – это Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ (рис. 1.1). ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ – Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° вСкторная. Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТСния ΠΊ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ соСдиняСт Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТСния) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ ΠΈΠ»ΠΈ Π±Ρ‹Ρ‚ΡŒ мСньшС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ. Но Π½ΠΈΠΊΠΎΠ³Π΄Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ большС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΡƒΡ‚ΡŒ совпадаСт с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ (см. Ρ€Π°Π·Π΄Π΅Π»Ρ‹ ВраСктория ΠΈ ΠŸΡƒΡ‚ΡŒ), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ссли ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π‘ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ пСрСмСщаСтся ΠΏΠΎ прямой Π΄ΠΎΡ€ΠΎΠ³Π΅. ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния мСньшС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ (рис. 1.1).

Рис. 1.1. Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния ΠΈ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Π•Ρ‰Ρ‘ ΠΏΡ€ΠΈΠΌΠ΅Ρ€. Если Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΏΡ€ΠΎΠ΅Π΄Π΅Ρ‚ ΠΏΠΎ ΠΊΡ€ΡƒΠ³Ρƒ ΠΎΠ΄ΠΈΠ½ Ρ€Π°Π·, Ρ‚ΠΎ получится, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π°Ρ‡Π°Π»Π° двиТСния совпадёт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π° двиТСния ΠΈ Ρ‚ΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π΄Π»ΠΈΠ½Π΅ окруТности. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡƒΡ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ – это Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… понятия.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ΡΡ гСомСтричСски ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈΠ»ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, см. рис. 1.2).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.2. Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ.

На рис 1.2 ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΡ€Π°Π²ΠΈΠ»Π° слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² S1 ΠΈ S2:

Π°) Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°
Π±) Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Ρ‡Π΅Ρ€Π΅Π· разности ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Π° ΠΈ Π½Π°Ρ‡Π°Π»Π°. НапримСр, Ссли ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡΡ‚ΠΈΠ»Π°ΡΡŒ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π’, Ρ‚ΠΎ ΠΏΡ€ΠΈ этом Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния(рис. 1.3).

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ось ОΠ₯ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСниялСТал с этой осью Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости. ΠžΠΏΡƒΡΡ‚ΠΈΠΌ пСрпСндикуляры ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ (ΠΈΠ· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния) Π΄ΠΎ пСрСсСчСния с осью ОΠ₯. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ Π½Π° ось Π₯. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ соотвСтствСнно Аx ΠΈ Π’x. Π”Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АxΠ’x Π½Π° оси ОΠ₯ – это ΠΈ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ось ОΠ₯, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.3. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π° разности ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π° ΠΈ Π½Π°Ρ‡Π°Π»Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Аналогично ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° оси OY ΠΈ OZ:

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния считаСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Ссли Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ (ΠΊΠ°ΠΊ Π½Π° рис 1.3). Если Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ (ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹), Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° (рис. 1.4).

Если Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ оси, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ самого Π’Π΅ΠΊΡ‚ΠΎΡ€Π°. Если Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния пСрпСндикулярСн оси, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ (рис. 1.4).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.4. ΠœΠΎΠ΄ΡƒΠ»ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния.

Π Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ значСниями ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ называСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ этой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. Π’ΠΎ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ρ€Π°Π²Π½Π° измСнСнию ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. НапримСр, для случая, ΠΊΠΎΠ³Π΄Π° Ρ‚Π΅Π»ΠΎ пСрСмСщаСтся пСрпСндикулярно оси Π₯ (рис. 1.4) получаСтся, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Π₯ Ρ‚Π΅Π»ΠΎ НЕ ΠŸΠ•Π Π•ΠœΠ•Π©ΠΠ•Π’Π‘Π―. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° ΠΏΠΎ оси Π₯ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ двиТСния Ρ‚Π΅Π»Π° Π½Π° плоскости. ΠΠ°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° – Ρ‚ΠΎΡ‡ΠΊΠ° А с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ…0 ΠΈ Ρƒ0, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ А(Ρ…0, Ρƒ0). ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° – Ρ‚ΠΎΡ‡ΠΊΠ° Π’ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ… ΠΈ Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π’(Ρ…, Ρƒ). Найдём ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π°.

Из Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ опустим пСрпСндикуляры Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ОΠ₯ ΠΈ OY (рис. 1.5).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.5. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π° плоскости.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° осях ОΠ₯ ΠΈ OY:

На рис. 1.5 Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ АВБ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ. Из этого слСдуСт, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°

ΠžΡ‚ΠΊΡƒΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΏΡƒΡ‚ΠΈ Ρ‚Π΅Π»Π° ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π’:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Ну ΠΈ напослСдок ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽ Π²Π°ΠΌ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° вашС усмотрСниС. Для этого Π²Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΊΠ°ΠΊΠΈΠ΅-Π»ΠΈΠ±ΠΎ Ρ†ΠΈΡ„Ρ€Ρ‹ Π² поля ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ РАББЧИВАВЬ. Π’Π°Ρˆ Π±Ρ€Π°ΡƒΠ·Π΅Ρ€ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ сцСнариСв (скриптов) JavaScript ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ сцСнариСв Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΎ Π² настройках вашСго Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π°, ΠΈΠ½Π°Ρ‡Π΅ расчСт Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½. Π’ вСщСствСнных числах цСлая ΠΈ дробная части Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Ρ€Π°Π·Π΄Π΅Π»ΡΡ‚ΡŒΡΡ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10.5.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ВраСктория

ВраСктория (ΠΎΡ‚ позднСлатинского trajectories – относящийся ΠΊ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΡŽ) – это линия, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ°). ВраСктория двиТСния ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямой (Ρ‚Π΅Π»ΠΎ пСрСмСщаСтся Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ) ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямолинСйным ΠΈ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½Ρ‹ΠΌ.

ВраСктория прямолинСйного двиТСния Π² Π΄Π°Π½Π½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – это прямая линия. НапримСр, ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ траСктория двиТСния автомобиля ΠΏΠΎ Ρ€ΠΎΠ²Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³Π΅ Π±Π΅Π· ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚ΠΎΠ² являСтся прямолинСйной.

ΠšΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ – это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π» ΠΏΠΎ окруТности, эллипсу, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅ ΠΈΠ»ΠΈ Π³ΠΈΠΏΠ΅Ρ€Π±ΠΎΠ»Π΅. ΠŸΡ€ΠΈΠΌΠ΅Ρ€ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ двиТСния – Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° колСсС двиТущСгося автомобиля ΠΈΠ»ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ автомобиля Π² ΠΏΠΎΠ²ΠΎΡ€ΠΎΡ‚Π΅.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ слоТным. НапримСр, траСктория двиТСния Ρ‚Π΅Π»Π° Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡƒΡ‚ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ прямолинСйной, Π·Π°Ρ‚Π΅ΠΌ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ. НапримСр, Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΏΡƒΡ‚ΠΈ двиТСтся ΠΏΠΎ прямой Π΄ΠΎΡ€ΠΎΠ³Π΅, Π° Π·Π°Ρ‚Π΅ΠΌ Π΄ΠΎΡ€ΠΎΠ³Π° Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Β«ΠΏΠ΅Ρ‚Π»ΡΡ‚ΡŒΒ» ΠΈ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅.

ΠŸΡƒΡ‚ΡŒ – это Π΄Π»ΠΈΠ½Π° Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ. ΠŸΡƒΡ‚ΡŒ являСтся скалярной Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ ΠΈ Π² ΠΌΠ΅ΠΆΠ΄ΡƒΠ½Π°Ρ€ΠΎΠ΄Π½ΠΎΠΉ систСмС Π΅Π΄ΠΈΠ½ΠΈΡ† БИ измСряСтся Π² ΠΌΠ΅Ρ‚Ρ€Π°Ρ… (ΠΌ). Расчёт ΠΏΡƒΡ‚ΠΈ выполняСтся Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡Π°Ρ… ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅. НСкоторыС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π±ΡƒΠ΄ΡƒΡ‚ рассмотрСны Π΄Π°Π»Π΅Π΅ Π² этом ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ΅.

Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния

Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния (ΠΈΠ»ΠΈ просто ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅) – это Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ прямой, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с Π΅Π³ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ (рис. 1.1). ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ – Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° вСкторная. Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТСния ΠΊ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ соСдиняСт Π½Π°Ρ‡Π°Π»ΡŒΠ½ΡƒΡŽ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΠΈ двиТСния) ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ ΠΈΠ»ΠΈ Π±Ρ‹Ρ‚ΡŒ мСньшС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ. Но Π½ΠΈΠΊΠΎΠ³Π΄Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ большС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Ρ€Π°Π²Π΅Π½ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡƒ ΠΏΡƒΡ‚ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΏΡƒΡ‚ΡŒ совпадаСт с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ (см. Ρ€Π°Π·Π΄Π΅Π»Ρ‹ ВраСктория ΠΈ ΠŸΡƒΡ‚ΡŒ), Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Ссли ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π‘ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ пСрСмСщаСтся ΠΏΠΎ прямой Π΄ΠΎΡ€ΠΎΠ³Π΅. ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния мСньшС ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡƒΡ‚ΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° двиТСтся ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ (рис. 1.1).

Рис. 1.1. Π’Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния ΠΈ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Π•Ρ‰Ρ‘ ΠΏΡ€ΠΈΠΌΠ΅Ρ€. Если Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΏΡ€ΠΎΠ΅Π΄Π΅Ρ‚ ΠΏΠΎ ΠΊΡ€ΡƒΠ³Ρƒ ΠΎΠ΄ΠΈΠ½ Ρ€Π°Π·, Ρ‚ΠΎ получится, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Π½Π°Ρ‡Π°Π»Π° двиТСния совпадёт с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΊΠΎΠ½Ρ†Π° двиТСния ΠΈ Ρ‚ΠΎΠ³Π΄Π° Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, Π° ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΡƒΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π΅Π½ Π΄Π»ΠΈΠ½Π΅ окруТности. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡƒΡ‚ΡŒ ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ – это Π΄Π²Π° Ρ€Π°Π·Π½Ρ‹Ρ… понятия.

ΠŸΡ€Π°Π²ΠΈΠ»ΠΎ слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ²

Π’Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ ΡΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽΡ‚ΡΡ гСомСтричСски ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² (ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈΠ»ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°, см. рис. 1.2).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.2. Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΉ.

На рис 1.2 ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΡ€Π°Π²ΠΈΠ»Π° слоТСния Π²Π΅ΠΊΡ‚ΠΎΡ€ΠΎΠ² S1 ΠΈ S2:

Π°) Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°
Π±) Π‘Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Ρ‹ Ρ‡Π΅Ρ€Π΅Π· разности ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Π° ΠΈ Π½Π°Ρ‡Π°Π»Π°. НапримСр, Ссли ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡΡ‚ΠΈΠ»Π°ΡΡŒ ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π’, Ρ‚ΠΎ ΠΏΡ€ΠΈ этом Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния(см.рис. 1.3).

Π’Ρ‹Π±Π΅Ρ€Π΅ΠΌ ось ОΠ₯ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСниялСТал с этой осью Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости. ΠžΠΏΡƒΡΡ‚ΠΈΠΌ пСрпСндикуляры ΠΈΠ· Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ (ΠΈΠ· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния) Π΄ΠΎ пСрСсСчСния с осью ОΠ₯. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ Π½Π° ось Π₯. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ соотвСтствСнно Аx ΠΈ Π’x. Π”Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АxΠ’x Π½Π° оси ОΠ₯ – это ΠΈ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ось ОΠ₯, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.3. ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния.

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ось ОΠ₯ Ρ€Π°Π²Π½Π° разности ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†Π° ΠΈ Π½Π°Ρ‡Π°Π»Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ

Аналогично ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ ΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° оси OY ΠΈ OZ:

Π—Π΄Π΅ΡΡŒ x0, y0, z0 β€” Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ); x, y, z β€” ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, ΠΈΠ»ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ полоТСния Ρ‚Π΅Π»Π° (ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ).

ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния считаСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Ссли Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ (ΠΊΠ°ΠΊ Π½Π° рис 1.3). Если Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ (ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹), Ρ‚ΠΎ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° (рис. 1.4).

Если Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ оси, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ самого Π’Π΅ΠΊΡ‚ΠΎΡ€Π°. Если Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния пСрпСндикулярСн оси, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ (рис. 1.4).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.4. ΠœΠΎΠ΄ΡƒΠ»ΠΈ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния.

Π Π°Π·Π½ΠΎΡΡ‚ΡŒ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΈ Π½Π°Ρ‡Π°Π»ΡŒΠ½Ρ‹ΠΌ значСниями ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ называСтся ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ этой Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹. Π’ΠΎ Π΅ΡΡ‚ΡŒ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ρ€Π°Π²Π½Π° измСнСнию ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹. НапримСр, для случая, ΠΊΠΎΠ³Π΄Π° Ρ‚Π΅Π»ΠΎ пСрСмСщаСтся пСрпСндикулярно оси Π₯ (рис. 1.4) получаСтся, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси Π₯ Ρ‚Π΅Π»ΠΎ НЕ ΠŸΠ•Π Π•ΠœΠ•Π©ΠΠ•Π’Π‘Π―. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° ΠΏΠΎ оси Π₯ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ.

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ двиТСния Ρ‚Π΅Π»Π° Π½Π° плоскости. ΠΠ°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° – Ρ‚ΠΎΡ‡ΠΊΠ° А с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ…0 ΠΈ Ρƒ0, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ А(Ρ…0, Ρƒ0). ΠšΠΎΠ½Π΅Ρ‡Π½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° – Ρ‚ΠΎΡ‡ΠΊΠ° Π’ с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ Ρ… ΠΈ Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π’(Ρ…, Ρƒ). Найдём ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния Ρ‚Π΅Π»Π°.

Из Ρ‚ΠΎΡ‡Π΅ΠΊ А ΠΈ Π’ опустим пСрпСндикуляры Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ОΠ₯ ΠΈ OY (рис. 1.5).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Рис. 1.5. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π° плоскости.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° осях ОΠ₯ ΠΈ OY:

На рис. 1.5 Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ АВБ – ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ. Из этого слСдуСт, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ

По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°

ΠžΡ‚ΠΊΡƒΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΏΡƒΡ‚ΠΈ Ρ‚Π΅Π»Π° ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π’:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Ну ΠΈ напослСдок ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽ Π²Π°ΠΌ Π·Π°ΠΊΡ€Π΅ΠΏΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ знания ΠΈ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² Π½Π° вашС усмотрСниС. Для этого Π²Π²Π΅Π΄ΠΈΡ‚Π΅ ΠΊΠ°ΠΊΠΈΠ΅-Π»ΠΈΠ±ΠΎ Ρ†ΠΈΡ„Ρ€Ρ‹ Π² поля ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π½Π°ΠΆΠΌΠΈΡ‚Π΅ ΠΊΠ½ΠΎΠΏΠΊΡƒ РАББЧИВАВЬ. Π’Π°Ρˆ Π±Ρ€Π°ΡƒΠ·Π΅Ρ€ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠΈΠ²Π°Ρ‚ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ сцСнариСв (скриптов) JavaScript ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ сцСнариСв Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Ρ€Π΅ΡˆΠ΅Π½ΠΎ Π² настройках вашСго Π±Ρ€Π°ΡƒΠ·Π΅Ρ€Π°, ΠΈΠ½Π°Ρ‡Π΅ расчСт Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½. Π’ вСщСствСнных числах цСлая ΠΈ дробная части Π΄ΠΎΠ»ΠΆΠ½Ρ‹ Ρ€Π°Π·Π΄Π΅Π»ΡΡ‚ΡŒΡΡ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, 10.5.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ описаниС двиТСния

ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ для 8 класса Β«ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ описаниС двиТСния». Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π°, двиТущСгося Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ ΠΈ прямолинСйно. Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ описаниС двиТСния

БистСма отсчёта ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² пространствС Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π’ случаС ΠΊΠΎΠ³Π΄Π° Ρ‚Π΅Π»ΠΎ двиТСтся, Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ Π·Π°Π΄Π°Ρ‡Π° вычислСния Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

ΠŸΠ ΠžΠ•ΠšΠ¦Π˜Π˜ ΠŸΠ•Π Π•ΠœΠ•Π©Π•ΠΠ˜Π― НА ΠšΠžΠžΠ Π”Π˜ΠΠΠ’ΠΠ«Π• ОБИ

Если извСстСн Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Ρ‚Π΅Π»Π°, Ρ‚ΠΎ ΠΏΡ€ΠΈ расчСтах, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π½Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, ΠΊΠ°ΠΊ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ, Π° Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° оси ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚. Если ΠΎΠΏΡƒΡΡ‚ΠΈΡ‚ΡŒ пСрпСндикуляры ΠΈΠ· Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния s Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось X, Ρ‚ΠΎ получится ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ sx, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠ΅ΠΉ пСрСмСщСния. ΠŸΡ€ΠΈ этом проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Π½Π° ось считаСтся ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, Ссли ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния оказываСтся большС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»Π°. Π’ ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС проСкция считаСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ.

Если Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΈ ось ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ρ‚ΠΎ Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° Ρ€Π°Π²Π½Π° Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° эту ось.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΌΠ΅Ρ‚ΡŒ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси. Если (Ρ…0; Ρƒ0) ΠΈ (Ρ…; Ρƒ) β€” ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π°Ρ‡Π°Π»Π° ΠΈ ΠΊΠΎΠ½Ρ†Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π°, Ρ‚ΠΎ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° оси абсцисс ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹ соотвСтствСнно

Зная ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Π΅Π³ΠΎ Π΄Π»ΠΈΠ½Ρƒ (ΠΌΠΎΠ΄ΡƒΠ»ΡŒ) ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠžΠŸΠ Π•Π”Π•Π›Π•ΠΠ˜Π• ΠšΠžΠžΠ Π”Π˜ΠΠΠ’ Π”Π’Π˜Π–Π£Π©Π•Π“ΠžΠ‘Π― ВЕЛА И Π•Π“Πž ΠŸΠ•Π Π•ΠœΠ•Π©Π•ΠΠ˜Π―

Если Ρ‚Π΅Π»ΠΎ двиТСтся прямолинСйно, Ρ‚ΠΎ траСктория Π΅Π³ΠΎ двиТСния совпадаСт с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ΠΌ. ΠŸΡ€ΠΈ этом ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ ΠΏΡƒΡ‚ΡŒ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ модуля Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

А ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² Π±ΠΎΠ»Π΅Π΅ слоТном случаС? На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ двиТСния самолёта. Π‘Π½Π°Ρ‡Π°Π»Π° ΠΎΠ½ Π½Π°Π±ΠΈΡ€Π°Π» высоту, двигаясь ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π’, Π·Π°Ρ‚Π΅ΠΌ двигался Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Ρ‚ΠΎΠΉ ΠΆΠ΅ высотС (Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Π‘) ΠΈ, Π½Π°ΠΊΠΎΠ½Π΅Ρ†, призСмлился Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ D. На ΠΊΠ°ΠΊΠΎΠΉ высотС ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠ» ΠΏΠΎΠ»Ρ‘Ρ‚? ВысотС ΠΏΠΎΠ»Ρ‘Ρ‚Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΏΠΎ оси OY, Π·Π½Π°Ρ‡ΠΈΡ‚, Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ Π’ самолёт Π½Π°Π±Ρ€Π°Π» высоту 3 ΠΊΠΌ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΠΌ Π½Π° вопрос: ΠΊΠ°ΠΊΠΎΠΉ ΠΏΡƒΡ‚ΡŒ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π» самолёт Π½Π° этой высотС? ΠŸΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡ пСрСмСщСния s2x = 80 β€” 20 = 60 ΠΊΠΌ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ всё это врСмя самолёт двигался ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси ОΠ₯, Π΄Π»ΠΈΠ½Π° Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Ρ€Π°Π²Π½Π° Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ Π½Π° эту ось. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния самолёта ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Π’ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π‘ Ρ€Π°Π²Π΅Π½ 60 ΠΊΠΌ. Π­Ρ‚ΠΎΠΌΡƒ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ€Π°Π²Π΅Π½ ΠΈ ΠΏΡƒΡ‚ΡŒ самолёта ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ Π’ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ Π‘.

И Π½Π°ΠΊΠΎΠ½Π΅Ρ†, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π΄Π°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ»Ρ‘Ρ‚Π° самолёта. Для этого Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния самолёта ΠΈΠ· Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² Ρ‚ΠΎΡ‡ΠΊΡƒ D: | s | = sx = 100 β€” 0 = 100 ΠΊΠΌ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ пСрСмСщСния ΠΈ Π΅Π³ΠΎ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΉ ΠΌΡ‹ описали слоТноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ самолёта.

ΠŸΠ•Π Π•ΠœΠ•Π©Π•ΠΠ˜Π• И БКОРОБВЬ ПРИ Π ΠΠ’ΠΠžΠœΠ•Π ΠΠžΠœ ΠŸΠ Π―ΠœΠžΠ›Π˜ΠΠ•Π™ΠΠžΠœ Π”Π’Π˜Π–Π•ΠΠ˜Π˜

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ ΠΏΡƒΡ‚ΡŒ Ρ€Π°Π²Π΅Π½ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ модуля Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ прямолинСйного двиТСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΊΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ это ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ. ΠŸΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ скорости ΠΈ пСрСмСщСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π² ΠΎΠ΄Π½Ρƒ сторону. Зная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π·Π° любой ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ο… являСтся Π²Π΅ΠΊΡ‚ΠΎΡ€Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ, Π΅Ρ‘ Ρ‚ΠΎΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΠ·ΠΎΠ±Ρ€Π°Π·ΠΈΡ‚ΡŒ графичСски. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Π΅Ρ‘ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось Ο…x. Если Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния Ρ‚Π΅Π»Π°, Ρ‚ΠΎ для расчёта пСрСмСщСния Ρ‚Π΅Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Π£Π ΠΠ’ΠΠ•ΠΠ˜Π• Π”Π’Π˜Π–Π•ΠΠ˜Π―

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ двиТСния.

Но ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ (3) sx = Ο…xt. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ,
Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ссли извСстны Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΈ проСкция скорости двиТСния Π½Π° ось X.

Π Π°Π½Π΅Π΅ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΌΡ‹ использовали Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ s = Ο…t Π±Π΅Π· стрСлочСк. ΠŸΠΎΡ‡Π΅ΠΌΡƒ? Π‘ΠΈΠΌΠ²ΠΎΠ»ΠΎΠΌ s здСсь обозначался ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ, Π° символом ΠΈ β€” ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости. Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ извСстно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ прямолинСйном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡƒΡ‚ΡŒ Ρ€Π°Π²Π΅Π½ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ пСрСмСщСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Ссли нас Π½Π΅ интСрСсуСт Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π°, Π° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π°ΠΉΡ‚ΠΈ Π΅Π³ΠΎ ΠΏΡƒΡ‚ΡŒ, Ρ‚ΠΎ эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ‚ Π½Π°ΠΌ Π½Π°ΠΉΡ‚ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅.

Π’Ρ‹ смотрСли ΠšΠΎΠ½ΡΠΏΠ΅ΠΊΡ‚ ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠ΅ для 8 класса Β«ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΈ описаниС двиТСния».

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ВраСктория. ΠŸΡƒΡ‚ΡŒ. ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

1. ΠœΠ΅Ρ…Π°Π½ΠΈΡ‡Π΅ΡΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ полоТСния Ρ‚Π΅Π»Π° Π² пространствС ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π» с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π‘ΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²ΠΈΠ΄Ρ‹ мСханичСского двиТСния. Если всС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° двиТутся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ ΠΈ любая прямая, провСдённая Π² Ρ‚Π΅Π»Π΅, ΠΏΡ€ΠΈ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ остаётся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ самой сСбС, Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ называСтся ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ (рис. 1).

Π’ΠΎΡ‡ΠΊΠΈ Π²Ρ€Π°Ρ‰Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ колСса ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ окруТности ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси этого колСса. КолСсо ΠΊΠ°ΠΊ Ρ†Π΅Π»ΠΎΠ΅ ΠΈ всС Π΅Π³ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠ°ΡŽΡ‚ Π²Ρ€Π°Ρ‰Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ (рис. 2).

Если Ρ‚Π΅Π»ΠΎ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΡˆΠ°Ρ€ΠΈΠΊ, ΠΏΠΎΠ΄Π²Π΅ΡˆΠ΅Π½Π½Ρ‹ΠΉ Π½Π° Π½ΠΈΡ‚ΠΈ, отклоняСтся ΠΎΡ‚ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ полоТСния Ρ‚ΠΎ Π² ΠΎΠ΄Π½Ρƒ, Ρ‚ΠΎ Π² Π΄Ρ€ΡƒΠ³ΡƒΡŽ сторону, Ρ‚ΠΎ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ являСтся ΠΊΠΎΠ»Π΅Π±Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ (рис. 3).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

2. Π’ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ понятия мСханичСского двиТСния входят слова Β«ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π»Β». Они ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠΎΠΈΡ‚ΡŒΡΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ΄Π½ΠΈΡ… Ρ‚Π΅Π» ΠΈ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΈΡ… Ρ‚Π΅Π». Π’Π°ΠΊ, пассаТир, сидящий Π² автобусС, двиТущСмся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π·Π΄Π°Π½ΠΈΠΉ, Ρ‚ΠΎΠΆΠ΅ двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π½ΠΈΡ…, Π½ΠΎ покоится ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ автобуса. ΠŸΠ»ΠΎΡ‚, ΠΏΠ»Ρ‹Π²ΡƒΡ‰ΠΈΠΉ ΠΏΠΎ Ρ‚Π΅Ρ‡Π΅Π½ΠΈΡŽ Ρ€Π΅ΠΊΠΈ, Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ΅Π½ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²ΠΎΠ΄Ρ‹, Π½ΠΎ двиТСтся ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π±Π΅Ρ€Π΅Π³Π° (рис. 4). Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, говоря ΠΎ мСханичСском Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π°, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ Ρ‚Π΅Π»ΠΎ, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π΄Π°Π½Π½ΠΎΠ΅ Ρ‚Π΅Π»ΠΎ двиТСтся ΠΈΠ»ΠΈ покоится. Π’Π°ΠΊΠΎΠ΅ Ρ‚Π΅Π»ΠΎ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π΅Π»ΠΎΠΌ отсчёта. Π’ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ с двиТущимся автобусом Π² качСствС Ρ‚Π΅Π»Π° отсчёта ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²Ρ‹Π±Ρ€Π°Π½ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ Π΄ΠΎΠΌ, ΠΈΠ»ΠΈ Π΄Π΅Ρ€Π΅Π²ΠΎ, ΠΈΠ»ΠΈ столб ΠΎΠΊΠΎΠ»ΠΎ автобусной остановки.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Для опрСдСлСния полоТСния Ρ‚Π΅Π»Π° Π² пространствС вводят систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ с Ρ‚Π΅Π»ΠΎΠΌ отсчёта. ΠŸΡ€ΠΈ рассмотрСнии двиТСния Ρ‚Π΅Π»Π° вдоль прямой Π»ΠΈΠ½ΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΎΠ΄Π½ΠΎΠΌΠ΅Ρ€Π½ΡƒΡŽ систСму ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, Ρ‚.Π΅. с Ρ‚Π΅Π»ΠΎΠΌ отсчёта ΡΠ²ΡΠ·Ρ‹Π²Π°ΡŽΡ‚ ΠΎΠ΄Π½Ρƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΡƒΡŽ ось, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ось ОΠ₯ (рис. 5).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Если Ρ‚Π΅Π»ΠΎ двиТСтся ΠΏΠΎ ΠΊΡ€ΠΈΠ²ΠΎΠ»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚ΠΎ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠΆΠ΅ Π΄Π²ΡƒΡ…ΠΌΠ΅Ρ€Π½ΠΎΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‚ Π΄Π²Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ X ΠΈ Y (рис. 6). Π’Π°ΠΊΠΈΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ являСтся, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ мяча ΠΎΡ‚ ΡƒΠ΄Π°Ρ€Π° футболиста ΠΈΠ»ΠΈ стрСлы, Π²Ρ‹ΠΏΡƒΡ‰Π΅Π½Π½ΠΎΠΉ ΠΈΠ· Π»ΡƒΠΊΠ°.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

Если рассматриваСтся Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² пространствС, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ лСтящСго самолёта, Ρ‚ΠΎ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, связанная с Ρ‚Π΅Π»ΠΎΠΌ отсчёта, Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΎΡΡ‚ΠΎΡΡ‚ΡŒ ΠΈΠ· Ρ‚Ρ€Ρ‘Ρ… Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярных ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй (OX, OY ΠΈ OZ) (рис. 7).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π° Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² пространствС, Ρ‚.Π΅. Π΅Π³ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌ ΠΏΡ€ΠΈΠ±ΠΎΡ€ (часы), ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ позволяСт ΠΈΠ·ΠΌΠ΅Ρ€ΡΡ‚ΡŒ врСмя ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊΠΎΠΌΡƒ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ соотвСтствуСт Ρ‚Π° ΠΈΠ»ΠΈ иная ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, для опрСдСлСния полоТСния Ρ‚Π΅Π»Π° Π² пространствС ΠΈ измСнСния этого полоТСния с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ Ρ‚Π΅Π»ΠΎ отсчёта, связанная с Π½ΠΈΠΌ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ способ измСрСния Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‚.Π΅. часы, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ всС вмСстС ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой систСму отсчёта (рис. 7).

3. Π˜Π·ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° β€” это Π·Π½Π°Ρ‡ΠΈΡ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ измСняСтся Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅, Ρ‚.Π΅. ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°, с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Если извСстно, ΠΊΠ°ΠΊ измСняСтся ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ) Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Основная Π·Π°Π΄Π°Ρ‡Π° ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ состоит Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ полоТСния (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹) Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π§Ρ‚ΠΎΠ±Ρ‹ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ, ΠΊΠ°ΠΊ измСняСтся ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π½ΡƒΠΆΠ½ΠΎ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ связь ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰ΠΈΠΌΠΈ это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Ρ‚.Π΅. Π½Π°ΠΉΡ‚ΠΈ матСматичСскоС описаниС двиТСния ΠΈΠ»ΠΈ, ΠΈΠ½Ρ‹ΠΌΠΈ словами, Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π°.

Π Π°Π·Π΄Π΅Π» ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ, ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‰ΠΈΠΉ способы описания двиТСния Ρ‚Π΅Π», Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠΉ.

4. Π›ΡŽΠ±ΠΎΠ΅ двиТущССся Ρ‚Π΅Π»ΠΎ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹, ΠΈ Π΅Π³ΠΎ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ части Π·Π°Π½ΠΈΠΌΠ°ΡŽΡ‚ Ρ€Π°Π·Π½Ρ‹Π΅ полоТСния Π² пространствС. Π’ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ вопрос, ΠΊΠ°ΠΊ Π² Ρ‚Π°ΠΊΠΎΠΌ случаС ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² пространствС. Π’ Π΄Π΅Π»ΠΎΠΌ рядС случаСв Π½Π΅Ρ‚ нСобходимости ΡƒΠΊΠ°Π·Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° ΠΈ для ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ двиТСния.

Π’Π°ΠΊ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΏΡ€ΠΈ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ всС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° двиТутся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ, Ρ‚ΠΎ Π½Π΅Ρ‚ нСобходимости ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π°.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ‚Π΅Π»Π° Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΠΈ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ‚Π°ΠΊΠΈΡ… Π·Π°Π΄Π°Ρ‡, ΠΊΠΎΠ³Π΄Π° Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ Ρ‚Π΅Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ. НапримСр, Ссли нас интСрСсуСт, с ΠΊΠ°ΠΊΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΏΠ»ΠΎΠ²Π΅Ρ† ΠΏΡ€ΠΎΠΏΠ»Ρ‹Π²Π°Π΅Ρ‚ свою Π΄ΠΈΡΡ‚Π°Π½Ρ†ΠΈΡŽ, Ρ‚ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠ»ΠΎΠ²Ρ†Π° Π½Π΅Ρ‚ нСобходимости. Если ΠΆΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π½Π° мяч Π²Ρ‹Ρ‚Π°Π»ΠΊΠΈΠ²Π°ΡŽΡ‰ΡƒΡŽ силу, Ρ‚ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΏΠ»ΠΎΠ²Ρ†Π° ΡƒΠΆΠ΅ нСльзя. Если ΠΌΡ‹ Ρ…ΠΎΡ‚ΠΈΠΌ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ врСмя двиТСния космичСского корабля ΠΎΡ‚ Π—Π΅ΠΌΠ»ΠΈ Π΄ΠΎ космичСской станции, Ρ‚ΠΎ ΠΊΠΎΡ€Π°Π±Π»ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π΅Π΄ΠΈΠ½Ρ‹ΠΌ Ρ†Π΅Π»Ρ‹ΠΌ ΠΈ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Если ΠΆΠ΅ рассчитываСтся Ρ€Π΅ΠΆΠΈΠΌ стыковки корабля со станциСй, Ρ‚ΠΎ, прСдставив ΠΊΠΎΡ€Π°Π±Π»ΡŒ Π² Π²ΠΈΠ΄Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ, Ρ€Π΅ΡˆΠΈΡ‚ΡŒ эту Π·Π°Π΄Π°Ρ‡Ρƒ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ряда Π·Π°Π΄Π°Ρ‡, связанных с Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Ρ‚Π΅Π», вводят понятиС ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ.

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚Π΅Π»ΠΎ, Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€Π΅Π½Π΅Π±Ρ€Π΅Ρ‡ΡŒ Π² условиях Π΄Π°Π½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ.

Π’ ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ… ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΠ»ΠΎΠ²Ρ†Π° ΠΏΡ€ΠΈ расчётС скорости Π΅Π³ΠΎ двиТСния, космичСский ΠΊΠΎΡ€Π°Π±Π»ΡŒ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π΅Π³ΠΎ двиТСния.

ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Π°Ρ Ρ‚ΠΎΡ‡ΠΊΠ° β€” это модСль Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ², Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Π΅Π». Бчитая Ρ‚Π΅Π»ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ, ΠΌΡ‹ отвлСкаСмся ΠΎΡ‚ нСсущСствСнных для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², Π² частности, ΠΎΡ‚ Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ² Ρ‚Π΅Π»Π°.

5. ΠŸΡ€ΠΈ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ Ρ‚Π΅Π»ΠΎ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ пространства, соСдинив ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ линию. Π­Ρ‚Π° линия, вдоль ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ двиТСтся Ρ‚Π΅Π»ΠΎ, называСтся Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ. ВраСктория ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ ΠΈΠ»ΠΈ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ. Π’ΠΈΠ΄ΠΈΠΌΡƒΡŽ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΡŽ ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ Ρ‚Ρ€Π°ΠΌΠ²Π°ΠΉ ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΠΎ Ρ€Π΅Π»ΡŒΡΠ°ΠΌ, Π»Ρ‹ΠΆΠ½ΠΈΠΊ, скользя ΠΏΠΎ Π»Ρ‹ΠΆΠ½Π΅, ΠΌΠ΅Π», ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΈΡˆΡƒΡ‚ Π½Π° доскС. ВраСктория лСтящСго самолёта Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠ°, Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΠΎΠΉ являСтся траСктория ΠΏΠΎΠ»Π·ΡƒΡ‰Π΅Π³ΠΎ насСкомого.

ВраСктория двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°: Π΅Ρ‘ Ρ„ΠΎΡ€ΠΌΠ° зависит ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° систСмы отсчёта. Π’Π°ΠΊ, Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΎΠ±ΠΎΠ΄Π° колСса вСлосипСда, двиТущСгося ΠΏΠΎ прямой Π΄ΠΎΡ€ΠΎΠ³Π΅, ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси колСса являСтся ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ β€” винтовая линия (рис. 8 Π°, Π±).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

6. Одной ΠΈΠ· характСристик мСханичСского двиТСния являСтся ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ. ΠŸΡƒΡ‚Ρ‘ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌΡƒ Ρ‚Π΅Π»ΠΎΠΌ вдоль Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

Если извСстны траСктория Ρ‚Π΅Π»Π°, Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΈ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΈΠΌ ΠΏΡƒΡ‚ΡŒ Π·Π° врСмя ​ \( t \) ​, Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t \) ​. (рис. 9)

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΡƒΡ‚ΡŒ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Π±ΡƒΠΊΠ²ΠΎΠΉ ​ \( l \) ​ (ΠΈΠ½ΠΎΠ³Π΄Π° ​ \( s \) ​), основная Π΅Π΄ΠΈΠ½ΠΈΡ†Π° ΠΏΡƒΡ‚ΠΈ 1 ΠΌ: \( [\,\mathrm\,] \) = 1 ΠΌ. ΠšΡ€Π°Ρ‚Π½Π°Ρ Π΅Π΄ΠΈΠ½ΠΈΡ†Π° ΠΏΡƒΡ‚ΠΈ β€” ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€ (1 ΠΊΠΌ = 1000 ΠΌ); Π΄ΠΎΠ»ΡŒΠ½Ρ‹Π΅ Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ β€” Π΄Π΅Ρ†ΠΈΠΌΠ΅Ρ‚Ρ€ (1 Π΄ΠΌ = 0,1 ΠΌ), сантимСтр (1 см = 0,01 ΠΌ) ΠΈ ΠΌΠΈΠ»Π»ΠΈΠΌΠ΅Ρ‚Ρ€ (1 ΠΌΠΌ = 0,001 ΠΌ).

ΠŸΡƒΡ‚ΡŒ β€” Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ, Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚ΠΈ зависит ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° систСмы отсчёта. Π’Π°ΠΊ, ΠΏΡƒΡ‚ΡŒ пассаТира, пСрСходящСго ΠΈΠ· ΠΊΠΎΠ½Ρ†Π° двиТущСгося автобуса ΠΊ Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅Π΄Π½Π΅ΠΉ Π΄Π²Π΅Ρ€ΠΈ, Ρ€Π°Π²Π΅Π½ Π΄Π»ΠΈΠ½Π΅ автобуса Π² систСмС отсчёта, связанной с автобусом. Π’ систСмС отсчёта, связанной с Π—Π΅ΠΌΠ»Ρ‘ΠΉ, ΠΎΠ½ Ρ€Π°Π²Π΅Π½ суммС Π΄Π»ΠΈΠ½Ρ‹ автобуса ΠΈ ΠΏΡƒΡ‚ΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅Ρ…Π°Π» автобус ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ.

7. Если траСктория двиТСния Ρ‚Π΅Π»Π° нСизвСстна, Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚ΠΈ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния Ρ‚Π΅Π»Π° Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ. Π’ этом случаС ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ Π΄Ρ€ΡƒΠ³ΡƒΡŽ характСристику мСханичСского двиТСния β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ β€” Π²Π΅ΠΊΡ‚ΠΎΡ€, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° с Π΅Π³ΠΎ ΠΊΠΎΠ½Π΅Ρ‡Π½Ρ‹ΠΌ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ (рис. 10)

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ проСкция Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ β€” вСкторная физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, ΠΈΠΌΠ΅Π΅Ρ‚ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ числовоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, обозначаСтся ​ \( \overrightarrow \) ​. Π•Π΄ΠΈΠ½ΠΈΡ†Π° пСрСмСщСния \( [\,\mathrm\,] \) = 1 ΠΌ.

Зная Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π°, Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ) Π·Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π² ΠΊΠΎΠ½Ρ†Π΅ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π² Π²ΠΈΠ΄Ρƒ, Ρ‡Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π² ΠΎΠ±Ρ‰Π΅ΠΌ случаС Π½Π΅ совпадаСт с Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠ΅ΠΉ, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния β€” с ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΌ ΠΏΡƒΡ‚Ρ‘ΠΌ. Π­Ρ‚ΠΎ совпадСниС ΠΈΠΌΠ΅Π΅Ρ‚ мСсто лишь ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Ρ‚Π΅Π»Π° ΠΏΠΎ прямолинСйной Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π² ΠΎΠ΄Π½Ρƒ сторону. НапримСр, Ссли ΠΏΠ»ΠΎΠ²Π΅Ρ† ΠΏΡ€ΠΎΠΏΠ»Ρ‹Π» 100-ΠΌΠ΅Ρ‚Ρ€ΠΎΠ²ΡƒΡŽ Π΄ΠΈΡΡ‚Π°Π½Ρ†ΠΈΡŽ Π² бассСйнС, Π΄Π»ΠΈΠ½Π° Π΄ΠΎΡ€ΠΎΠΆΠΊΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ 50 ΠΌ, Ρ‚ΠΎ Π΅Π³ΠΎ ΠΏΡƒΡ‚ΡŒ Ρ€Π°Π²Π΅Π½ 100 ΠΌ, Π° ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ.

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, Ρ‚Π°ΠΊ ΠΆΠ΅ ΠΊΠ°ΠΊ ΠΈ ΠΏΡƒΡ‚ΡŒ, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ, зависит ΠΎΡ‚ Π²Ρ‹Π±ΠΎΡ€Π° систСмы отсчёта.

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ проСкциями Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния. На рисункС 10 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ Π²Π΅ΠΊΡ‚ΠΎΡ€ пСрСмСщСния Π² этой систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠœΠΎΠ΄ΡƒΠ»ΡŒ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° пСрСмСщСния Ρ€Π°Π²Π΅Π½: ​ \( s=\sqrt \) ​.

ΠŸΠ Π˜ΠœΠ•Π Π« Π—ΠΠ”ΠΠΠ˜Π™

Π§Π°ΡΡ‚ΡŒ 1

1. Π’ состав систСмы отсчёта входят

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Π»ΠΎ отсчёта
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Π»ΠΎ отсчёта ΠΈ систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚
3) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚Π΅Π»ΠΎ отсчёта ΠΈ часы
4) Ρ‚Π΅Π»ΠΎ отсчёта, систСма ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚, часы

2. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ являСтся: А. ΠŸΡƒΡ‚ΡŒ; Π‘. ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅. ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ А
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π‘
3) ΠΈ А, ΠΈ Π‘
4) Π½ΠΈ А, Π½ΠΈ Π‘

3. ΠŸΠ°ΡΡΠ°ΠΆΠΈΡ€ ΠΌΠ΅Ρ‚Ρ€ΠΎ стоит Π½Π° двиТущСмся Π²Π²Π΅Ρ€Ρ… эскалаторС. Он Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ΅Π½ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ

1) пассаТиров, стоящих Π½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΌ эскалаторС, двиТущСмся Π²Π½ΠΈΠ·
2) Π΄Ρ€ΡƒΠ³ΠΈΡ… пассаТиров, стоящих Π½Π° этом ΠΆΠ΅ эскалаторС
3) пассаТиров, ΡˆΠ°Π³Π°ΡŽΡ‰ΠΈΡ… Π²Π²Π΅Ρ€Ρ… ΠΏΠΎ этому ΠΆΠ΅ эскалатору
4) ΡΠ²Π΅Ρ‚ΠΈΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² Π½Π° Π±Π°Π»Π»ΡŽΡΡ‚Ρ€Π°Π΄Π΅ эскалатора

4. ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΊΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° покоится Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, двиТущийся ΠΏΠΎ автострадС?

1) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ автомобиля, двиТущСгося с Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ сторону
2) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ автомобиля, двиТущСгося с Ρ‚Π°ΠΊΠΎΠΉ ΠΆΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π² Ρ‚Ρƒ ΠΆΠ΅ сторону
3) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ свСтофора
4) ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ΄ΡƒΡ‰Π΅Π³ΠΎ вдоль Π΄ΠΎΡ€ΠΎΠ³ΠΈ ΠΏΠ΅ΡˆΠ΅Ρ…ΠΎΠ΄Π°

5. Π”Π²Π° автомобиля двиТутся с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 20 ΠΌ/с ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ Π² ΠΎΠ΄Π½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ автомобиля Π² систСмС отсчёта, связанной с Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ?

6. Π”Π²Π° автомобиля двиТутся с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 15 ΠΌ/с ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ навстрСчу Π΄Ρ€ΡƒΠ³ Π΄Ρ€ΡƒΠ³Ρƒ. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ³ΠΎ автомобиля Π² систСмС отсчёта, связанной с Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»Π΅ΠΌ?

7. Какова ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π—Π΅ΠΌΠ»ΠΈ траСктория Ρ‚ΠΎΡ‡ΠΊΠΈ лопасти Π²ΠΈΠ½Ρ‚Π° лСтящСго Π²Π΅Ρ€Ρ‚ΠΎΠ»Ρ‘Ρ‚Π°?

1) прямая
2) ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ
3) Π΄ΡƒΠ³Π°
4) винтовая линия

8. ΠœΡΡ‡ ΠΏΠ°Π΄Π°Π΅Ρ‚ с высоты 2 ΠΌ ΠΈ послС ΡƒΠ΄Π°Ρ€Π° ΠΎ ΠΏΠΎΠ» поднимаСтся Π½Π° высоту 1,3 ΠΌ. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ ΠΏΡƒΡ‚ΡŒ ​ \( l \) ​ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния ​ \( s \) ​ мяча Π·Π° всё врСмя двиТСния?

1) \( l \) = 3,3 ΠΌ, ​ \( s \) ​ = 3,3 ΠΌ
2) \( l \) = 3,3 ΠΌ, \( s \) = 0,7 ΠΌ
3) \( l \) = 0,7 ΠΌ, \( s \) = 0,7 ΠΌ
4) \( l \) = 0,7 ΠΌ, \( s \) = 3,3 ΠΌ

9. Π Π΅ΡˆΠ°ΡŽΡ‚ Π΄Π²Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ. 1. Π Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°ΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния ΠΏΠΎΠ΅Π·Π΄Π° ΠΌΠ΅ΠΆΠ΄Ρƒ двумя станциями. 2. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ силу трСния, Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π½Π° ΠΏΠΎΠ΅Π·Π΄. ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΊΠ°ΠΊΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎΠ΅Π·Π΄ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ?

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΠ΅Ρ€Π²ΠΎΠΉ
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ
3) ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠΉ, ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ
4) Π½ΠΈ ΠΏΠ΅Ρ€Π²ΠΎΠΉ, Π½ΠΈ Π²Ρ‚ΠΎΡ€ΠΎΠΉ

10. Π’ΠΎΡ‡ΠΊΠ° ΠΎΠ±ΠΎΠ΄Π° колСса ΠΏΡ€ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ вСлосипСда описываСт ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Ρƒ окруТности радиуса ​ \( R \) ​. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Ρ‹ ΠΏΡ€ΠΈ этом ΠΏΡƒΡ‚ΡŒ ​ \( l \) ​ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ пСрСмСщСния ​ \( s \) ​ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠ±ΠΎΠ΄Π°?

11. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ элСмСнтами Π·Π½Π°Π½ΠΈΠΉ Π² Π»Π΅Π²ΠΎΠΌ столбцС ΠΈ понятиями Π² ΠΏΡ€Π°Π²ΠΎΠΌ столбцС. Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ элСмСнта Π·Π½Π°Π½ΠΈΠΉ Π»Π΅Π²ΠΎΠ³ΠΎ столбца Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π½ΠΎΠΌΠ΅Ρ€ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π²Π°ΠΌΠΈ понятия ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ столбца.

Π­Π›Π•ΠœΠ•ΠΠ’ Π—ΠΠΠΠ˜Π™
A) физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°
Π‘) Π΅Π΄ΠΈΠ½ΠΈΡ†Π° Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹
B) ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ±ΠΎΡ€

ΠŸΠžΠΠ―Π’Π˜Π•
1) траСктория
2) ΠΏΡƒΡ‚ΡŒ
3) сСкундомСр
4) ΠΊΠΈΠ»ΠΎΠΌΠ΅Ρ‚Ρ€
5) систСма отсчёта

12. УстановитС соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ Π² Π»Π΅Π²ΠΎΠΌ столбцС ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΎΠΌ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Π² ΠΏΡ€Π°Π²ΠΎΠΌ столбцС. Π’ Ρ‚Π°Π±Π»ΠΈΡ†Π΅ ΠΏΠΎΠ΄ Π½ΠΎΠΌΠ΅Ρ€ΠΎΠΌ элСмСнта Π·Π½Π°Π½ΠΈΠΉ Π»Π΅Π²ΠΎΠ³ΠΎ столбца Π·Π°ΠΏΠΈΡˆΠΈΡ‚Π΅ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ Π½ΠΎΠΌΠ΅Ρ€ Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠ³ΠΎ Π²Π°ΠΌΠΈ понятия ΠΏΡ€Π°Π²ΠΎΠ³ΠΎ столбца.

Π’Π•Π›Π˜Π§Π˜ΠΠ
A) ΠΏΡƒΡ‚ΡŒ
Π‘) ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅
B) проСкция пСрСмСщСния

Π₯ΠΠ ΠΠšΠ’Π•Π  Π’Π•Π›Π˜Π§Π˜ΠΠ«
1) скалярная
2) вСкторная

Π§Π°ΡΡ‚ΡŒ 2

13. ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ свСрнул Π½Π° Π΄ΠΎΡ€ΠΎΠ³Ρƒ, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΡƒΡŽ ΡƒΠ³ΠΎΠ» 30Β° с Π³Π»Π°Π²Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³ΠΎΠΉ, ΠΈ ΡΠΎΠ²Π΅Ρ€ΡˆΠΈΠ» ΠΏΠΎ Π½Π΅ΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅, ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π΅Π½ 20 ΠΌ. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΡŽ пСрСмСщСния автомобиля Π½Π° Π³Π»Π°Π²Π½ΡƒΡŽ Π΄ΠΎΡ€ΠΎΠ³Ρƒ ΠΈ Π½Π° Π΄ΠΎΡ€ΠΎΠ³Ρƒ, ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½ΡƒΡŽ Π³Π»Π°Π²Π½ΠΎΠΉ Π΄ΠΎΡ€ΠΎΠ³Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *