Что такое vts в математике
Что такое vts в математике
Смотреть что такое «VTS» в других словарях:
VTS — steht für: Everts Air, amerikanische Fluggesellschaft (ICAO Code) Verordnung über die technischen Anforderungen an Strassenfahrzeugen in der Schweiz Vertical Tabulation Set, ein veraltetes ISO 8859 1 Steuerzeichen Vessel Traffic Service, ein… … Deutsch Wikipedia
VTS — vessel traffic service … Military dictionary
VTS — Vessel Traffic Service (Governmental » Transportation) Vessel Traffic Services (Governmental » US Government) **** Veritas D G C, Inc. (Business » NYSE Symbols) ** Video Title Set (Computing » File Extensions) * Variable Training System… … Abbreviations dictionary
VTS — • Virtual Terminal Service Dienst der ISO /OSI Schicht 7 • Video Teleconferencing System • Virtual Tape Server (IBM) • Vertical Test Stand • Vertical Test Site • Vertical Test System • Vandenberg Tracking Station NASA … Acronyms
VTS — Volumen telesistólico … Diccionario de siglas médicas y otras abreviaturas
VTS — [1] Virtual Terminal Service Dienst der ISO /OSI Schicht 7 [2] Video Teleconferencing System [3] Virtual Tape Server ( IBM) [4] Vertical Test Stand [5] Vertical Test Site [6] Vertical Test System [7] Vandenberg Tracking Station ( > NASA… … Acronyms von A bis Z
VTS — voto suscepto … Abbreviations in Latin Inscriptions
VTS — abbr. Vault Tracking System … Dictionary of abbreviations
VTS — • Vessel Traffic Service/System … Maritime acronyms and abbreviations
VTS — abbr. Video Teleconferencing System abbr. Virtual Terminal Service (OSI) comp. abbr. Volume Tracking Driver … United dictionary of abbreviations and acronyms
Что нужно знать про арифметику с плавающей запятой
В далекие времена, для IT-индустрии это 70-е годы прошлого века, ученые-математики (так раньше назывались программисты) сражались как Дон-Кихоты в неравном бою с компьютерами, которые тогда были размером с маленькие ветряные мельницы. Задачи ставились серьезные: поиск вражеских подлодок в океане по снимкам с орбиты, расчет баллистики ракет дальнего действия, и прочее. Для их решения компьютер должен оперировать действительными числами, которых, как известно, континуум, тогда как память конечна. Поэтому приходится отображать этот континуум на конечное множество нулей и единиц. В поисках компромисса между скоростью, размером и точностью представления ученые предложили числа с плавающей запятой (или плавающей точкой, если по-буржуйски).
Арифметика с плавающей запятой почему-то считается экзотической областью компьютерных наук, учитывая, что соответствующие типы данных присутствуют в каждом языке программирования. Я сам, если честно, никогда не придавал особого значения компьютерной арифметике, пока решая одну и ту же задачу на CPU и GPU получил разный результат. Оказалось, что в потайных углах этой области скрываются очень любопытные и странные явления: некоммутативность и неассоциативность арифметических операций, ноль со знаком, разность неравных чисел дает ноль, и прочее. Корни этого айсберга уходят глубоко в математику, а я под катом постараюсь обрисовать лишь то, что лежит на поверхности.
1. Основы
Множество целых чисел бесконечно, но мы всегда можем подобрать такое число бит, чтобы представить любое целое число, возникающее при решении конкретной задачи. Множество действительных чисел не только бесконечно, но еще и непрерывно, поэтому, сколько бы мы не взяли бит, мы неизбежно столкнемся с числами, которые не имеют точного представления. Числа с плавающей запятой — один из возможных способов предсталения действительных чисел, который является компромиссом между точностью и диапазоном принимаемых значений.
Число с плавающей запятой состоит из набора отдельных разрядов, условно разделенных на знак, экспоненту порядок и мантиссу. Порядок и мантисса — целые числа, которые вместе со знаком дают представление числа с плавающей запятой в следующем виде:
Математически это записывается так:
Основание определяет систему счисления разрядов. Математически доказано, что числа с плавающей запятой с базой B=2 (двоичное представление) наиболее устойчивы к ошибкам округления, поэтому на практике встречаются только базы 2 и, реже, 10. Для дальнейшего изложения будем всегда полагать B=2, и формула числа с плавающей запятой будет иметь вид:
Что такое мантисса и порядок? Мантисса – это целое число фиксированной длины, которое представляет старшие разряды действительного числа. Допустим наша мантисса состоит из трех бит (|M|=3). Возьмем, например, число «5», которое в двоичной системе будет равно 1012. Старший бит соответствует 2 2 =4, средний (который у нас равен нулю) 2 1 =2, а младший 2 0 =1. Порядок – это степень базы (двойки) старшего разряда. В нашем случае E=2. Такие числа удобно записывать в так называемом «научном» стандартном виде, например «1.01e+2». Сразу видно, что мантисса состоит из трех знаков, а порядок равен двум.
Допустим мы хотим получить дробное число, используя те же 3 бита мантиссы. Мы можем это сделать, если возьмем, скажем, E=1. Тогда наше число будет равно
2 = 10 (в двоичной системе) = 1.000e+1 = 0.100e+2 = 0.010e+3. (E=1, E=2, E=3 соответственно)
Обратите внимание, что одно и то же число имеет несколько представлений. Это не удобно для оборудования, т.к. нужно учитывать множественность представлния при сравнении чисел и при выполнении над ними арифметических операций. Кроме того, это не экономично, поскольку число представлений — конечное, а повторения уменьшают множество чисел, которые вообще могут быть представлены. Поэтому уже в самых первых машинах начали использовать трюк, делая первый бит мантиссы всегда положительным. Такое предаставление назвали нормализованным.
Это экономит один бит, так как неявную единицу не нужно хранить в памяти, и обеспечивает уникальность представления числа. В нашем примере «2» имеет единственное нормализованное представление («1.000e+1»), а мантисса хранится в памяти как «000», т.к. старшая единица подразумевается неявно. Но в нормализованном представлении чисел возникает новая проблема — в такой форме невозможно представить ноль.
Строго говоря, нормализованное число имеет следующий вид:
Качество решения задач во многом зависит от выбора представления чисел с плавающей запятой. Мы плавно подошли к проблеме стандартизации такого представления.
2. Немного истории
В 60-е и 70-е годы не было единого стандарта представления чисел с плавающей запятой, способов округления, арифметических операций. В результате программы были крайне не портабельны. Но еще большей проблемой было то, что у разных компьютеров были свои «странности» и их нужно было знать и учитывать в программе. Например, разница двух не равных чисел возвращала ноль. В результате выражения «X=Y» и «X-Y=0» вступали в противоречие. Умельцы обходили эту проблему очень хитрыми трюками, например, делали присваивание «X=(X-X)+X» перед операциями умножения и деления, чтобы избежать проблем.
Инициатива создать единый стандарт для представления чисел с плавающей запятой подозрительно совпала с попытками в 1976 году компанией Intel разработать «лучшую» арифметику для новых сопроцессоров к 8086 и i432. За разработку взялись ученые киты в этой области, проф. Джон Палмер и Уильям Кэхэн. Последний в своем интервью высказал мнение, что серьезность, с которой Intel разрабатывала свою арифметику, заставила другие компании объединиться и начать процесс стандартизации.
Все были настроены серьезно, ведь очень выгодно продвинуть свою архитектуру и сделать ее стандартной. Свои предложения представили компании DEC, National Superconductor, Zilog, Motorola. Производители мейнфреймов Cray и IBM наблюдали со стороны. Компания Intel, разумеется, тоже представила свою новую арифметику. Авторами предложенной спецификации стали Уильям Кэхэн, Джероми Кунен и Гарольд Стоун и их предложение сразу прозвали «K-C-S».
Практически сразу же были отброшены все предложения, кроме двух: VAX от DEC и «K-C-S» от Intel. Спецификация VAX была значительно проще, уже была реализована в компьютерах PDP-11, и было понятно, как на ней получить максимальную производительность. С другой стороны в «K-C-S» содержалось много полезной функциональности, такой как «специальные» и «денормализованные» числа (подробности ниже).
В «K-C-S» все арифметические алгоритмы заданы строго и требуется, чтобы в реализации результат с ними совпадал. Это позволяет выводить строгие выкладки в рамках этой спецификации. Если раньше математик решал задачу численными методами и доказывал свойства решения, не было никакой гарантии, что эти свойства сохранятся в программе. Строгость арифметики «K-C-S» сделала возможным доказательство теорем, опираясь на арифметику с плавающей запятой.
Компания DEC сделала все, чтобы ее спецификацию сделали стандартом. Она даже заручилась поддержкой некоторых авторитетных ученых в том, что арифметика «K-C-S» в принципе не может достигнуть такой же производительности, как у DEC. Ирония в том, что Intel знала, как сделать свою спецификацию такой же производительной, но эти хитрости были коммерческой тайной. Если бы Intel не уступила и не открыла часть секретов, она бы не смогла сдержать натиск DEC.
Подробнее о баталиях при стандартизации смотрите в интервью профессора Кэхэна, а мы рассмотрим, как выглядит представление чисел с плавающей запятой сейчас.
3. Представление чисел с плавающей запятой сегодня
Разработчики «K-C-S» победили и теперь их детище воплотилось в стандарт IEEE754. Числа с плавающей запятой в нем представлены в виде знака (s), мантиссы (M) и порядка (E) следующим образом:
Замечание. В новом стандарте IEE754-2008 кроме чисел с основанием 2 присутствуют числа с основанием 10, так называемые десятичные (decimal) числа с плавающей запятой.
Чтобы не загромождать читателя чрезмерной информацией, которую можно найти в Википедии, рассмотрим только один тип данных, с одинарной точностью (float). Числа с половинной, двойной и расширенной точностью обладают теми же особенностями, но имеют другой диапазон порядка и мантиссы. В числах одинарной точности (float/single) порядок состоит из 8 бит, а мантисса – из 23. Эффективный порядок определяется как E-127. Например, число 0,15625 будет записано в памяти как
Рисунок взят из Википедии
3.1 Специальные числа: ноль, бесконечность и неопределенность
Неопределенность или NaN (от not a number) – это представление, придуманное для того, чтобы арифметическая операция могла всегда вернуть какое-то не бессмысленное значение. В IEEE754 NaN представлен как число, в котором E=Emax+1, а мантисса не нулевая. Любая операция с NaN возвращает NaN. При желании в мантиссу можно записывать информацию, которую программа сможет интерпретировать. Стандартом это не оговорено и мантисса чаще всего игнорируется.
Вернемся к примеру. Наш Emin=-1. Введем новое значение порядка, E=-2, при котором числа являются денормализованными. В результате получаем новое представление чисел:
Интервал от 0 до 0,5 заполняют денормализованные числа, что дает возможность не проваливаться в 0 рассмотренных выше примерах (0,5-0,25 и 1,5-1,25). Это сделало представление более устойчиво к ошибкам округления для чисел, близких к нулю.
Но роскошь использования денормализованного представления чисел в процессоре не дается бесплатно. Из-за того, что такие числа нужно обрабатывать по-другому во всех арифметических операциях, трудно сделать работу в такой арифметике эффективной. Это накладывает дополнительные сложности при реализации АЛУ в процессоре. И хоть денормализованные числа очень полезны, они не являются панацеей и за округлением до нуля все равно нужно следить. Поэтому эта функциональность стала камнем преткновения при разработке стандарта и встретила самое сильное сопротивление.
3.4 Очередность чисел в IEEE754
Одна из удивительных особенностей представления чисел в формате IEEE754 состоит в том, что порядок и мантисса расположены друг за другом таким образом, что вместе образуют последовательность целых чисел
4.2 Неассоциативность арифметических операций
В арифметике с плавающей запятой правило (a*b)*c = a*(b*c) не выполняется для любых арифметических операций. Например,
Допустим у нас есть программа суммирования чисел.
Некоторые компиляторы по умолчанию могут переписать код для использования нескольких АЛУ одновременно (будем считать, что n делится на 2):
Так как операции суммирования не ассоциативны, эти две программы могут выдать различный результат.
4.3 Числовые константы
Помните, что не все десятичные числа имеют двоичное представление с плавающей запятой. Например, число «0,2» будет представлено как «0,200000003» в одинарной точности. Соответственно, «0,2 + 0,2 ≈ 0,4». Абсолютная погрешность в отдельном
случае может и не высока, но если использовать такую константу в цикле, можем получить накопленную погрешность.
4.4 Выбор минимума из двух значений
4.5 Сравнение чисел
Очень распространенная ошибка при работе с float-ами возникает при проверке на равенство. Например,
Ошибка здесь, во-первых, в том, что 0,2 не имеет точного двоичного представления, а во-вторых 0,2 – это константа двойной точности, а переменная fValue – одинарной, и никакой гарантии о поведении этого сравнения нет.
Лучший, но все равно ошибочный способ, это сравнивать разницу с допустимой абсолютной погрешностью:
Недостаток такого подхода в том, что погрешность представления числа увеличивается с ростом самого этого числа. Так, если программа ожидает «10000», то приведенное равенство не будет выполняться для ближайшего соседнего числа (10000,000977). Это особенно актуально, если в программе имеется преобразование из одинарной точности в двойную.
Выбрать правильную процедуру сравнения сложно и заинтересованных читателей я отсылаю к статье Брюса Доусона. В ней предлагается сравнивать числа с плавающей запятой преобразованием к целочисленной переменной. Это — лучший, хотя и не портабельный способ:
5. Проверка полноты поддержки IEE754
Думаете, что если процессоры полностью соответствуют стандарту IEEE754, то любая программа, использующая стандартные типы данных (такие как float/double в Си), будет выдавать один и тот же результат на разных компьютерах? Ошибаетесь. На портабельность и соответствие стандарту влияет компилятор и опции оптимизации. Уильям Кэхэн написал программу на Си (есть версия и для Фортрана), которая позволяет проверить удовлетворяет ли связка «архитектура+компилятор+опции» IEEE754. Называется она «Floating point paranoia» и ее исходные тексты доступны для скачивания. Аналогичная программа доступна для GPU. Так, например, компилятор Intel (icc) по умолчанию использует «расслабленную» модель IEEE754, и в результате не все тесты выполняются. Опция «-fp-model precise» позволяет компилировать программу с точным соответствием стандарту. В компиляторе GCC есть опция «-ffast-math», использование которой приводит к несоответствию IEEE754.
Заключение
Напоследок поучительная история. Когда я работал над тестовым проектом на GPU, у меня была последовательная и параллельная версия одной программы. Сравнив время выполнения, я был очень обрадован, так как получил ускорение в 300 раз. Но позже оказалось, что вычисления на GPU «разваливались» и обращались в NaN, а работа с ними в GPU была быстрее, чем с обычными числами. Интересно было другое — одна и та же программа на эмуляторе GPU (на CPU) выдавала корректный результат, а на самом GPU – нет. Позже оказалось, что проблема была в том, что этот GPU не поддерживал полностью стандарт IEEE754 и прямой подход не сработал.
Сейчас арифметика с плавающей запятой почти совершенна. Практически всегда наивный подход сработает, и программа, не учитывающая все ее особенности, выдаст правильный результат, а описанные подводные камни касаются только экзотических случаев. Но нужно всегда оставаться бдительным: в таком вопросе как компьютерная математика легко наступить на грабли.
Как легко понять знаки Σ и П с помощью программирования
Для тех, кто подзабыл матешу
Вот говорят, что если ты не закончил Физтех, ФПМ или Бауманку, тебе в программировании делать нечего. Почему так говорят? Потому что, дескать, ты не учил сложную математику, а в программировании без неё никуда.
Это всё чушь, конечно. Если вы плохо знаете математику, вы можете быть блестящим разработчиком. Вы вряд ли напишете драйверы для видеокарты, но вы запросто сделаете мобильное приложение или веб-сервис. А это — основные деньги в этой среде.
Но всё же, чтобы получить некоторое интеллектуальное превосходство, вот вам пара примеров из страшного мира математики. Пусть они покажут вам, что не все закорючки в математике — это ад и ужас. Вот две нестрашные закорючки.
Знак Σ — сумма
Когда математикам нужно сложить несколько чисел подряд, они иногда пишут так:
Σ (читается «сигма») — это знак алгебраической суммы, который означает, что нам нужно сложить все числа от нижнего до верхнего, а перед этим сделать с ними то, что написано после знака Σ.
На картинке выше написано следующее: «посчитать сумму всех чисел от 5 до 15, умноженных на два». То есть:
Давайте для закрепления ещё один пример. На картинке ниже будет сказано «Найди сумму квадратов чисел от 5 до 10». То есть «возьми все числа от 5 до 10, каждое из них возведи в квадрат, а результаты сложи».
Но мы с вами как программисты видим, что здесь есть повторяющиеся действия: мы много раз складываем числа, которые меняются по одному и тому же правилу. А раз мы знаем это правило и знаем, сколько раз надо его применить, то это легко превратить в цикл. Для наглядности мы показали, какие параметры в Σ за что отвечают в цикле:
Произведение П
С произведением в математике работает точно такое же правило, только мы не складываем все элементы, а перемножаем их друг на друга:
А если это перевести в цикл, то алгоритм получится почти такой же, что и в сложении:
Что дальше
Сумма и произведение — простые математические операции, пусть они и обозначаются страшными символами. Впереди нас ждут интегралы, дифференциалы, приращения и бесконечные ряды. С ними тоже всё не так сложно, как кажется на первый взгляд.
Три самые известные математические константы: как они появились и зачем нужны
В основе нашей Вселенной стоят числа, также известные как фундаментальные константы. Они показывают, как движутся галактики, как расширяется Вселенная, как вообще работает пространство и время. Рассказываем, кто их открыл и за что отвечает каждое число.
Читайте «Хайтек» в
Что такое математическая константа?
В противоположность переменным величинам существуют математические постоянные. Математическая постоянная, или константа — это величина, значение которой неизменно. Главной отличительной чертой математических констант является их независимость от физических измерений. Все математические константы имеют буквенный символ.
Число Пи
Число Пи (π) — это математическая константа, равная отношению длины окружности к ее диаметру. Десятичное представление числа никогда не заканчивается и является эталоном для высокопроизводительных вычислений.
Чему равно: 3,1415926535…
На сегодняшний день число Пи рассчитали с точностью до 62,8 трлн знаков после запятой — с помощью 32-ядерных процессоров AMD.
Если измерить веревкой длину окружности, получится, что она равна приблизительно трем ее диаметрам. Человечество выяснило это еще в древности. Кстати, это соотношение подходит для любой окружности — неважно, речь о часах или колесе обозрения. Иными словами, все окружности в мире связаны этой математической константой. Еще до нашей эры люди знали, что это число чуть больше трех. Вопрос в том, насколько. Столетия эта загадка не давала покоя мыслителям, поскольку имела большое значение и была почти высчитана. Но это «почти» растянулось на несколько тысяч лет.
Точное авторство числа Пи неизвестно. Вообще, открытие приписывается древним индийцам, грекам, китайцам и прочим хорошим людям. Впервые обозначил его греческой буквой π в начале XVIII века английский математик Уильям Джонс.
Числу π столько же лет, сколько всей математике: около 4 тыс. Старейшие шумерские таблички приводят для него цифру 25/8, или 3,125. Ошибка — меньше процента. Вавилоняне абстрактной математикой особо не увлекались, так что π вывели опытным путем, просто измеряя длину окружностей. Кстати, это первый эксперимент по численному моделированию мира.
Число Бога
Число Фи (φ) — число Бога, Золотое Сечение, Золотая Пропорция — у него много названий. Сам по себе это отношение одной части чего-либо к другой с коэффициентом 1,618 (это 61,8%), или 62% на 38%.
Чему равно: 1,6180339887…
Классическое определение Золотой Пропорции: меньшее относится к большему так, как большее относится к целому, с коэффициентом 1,618.
Принято считать, что впервые закономерности соотношения размеров тела человека и отдельных его частей обобщил и сформулировал в 1855 году немецкий исследователь Цейзинг в своем научном труде «Эстетические исследования». За основу своей теории он взял учение о Золотом Сечении.
Еще в VI веке до н. э. древнегреческий философ и математик Пифагор ввел в научный обиход понятие «золотое деление». «Золотое деление» — это пропорциональное деление отрезка на неравные части. При этом меньший отрезок так относится к большему, как больший отрезок относится ко всему отрезку. a : b = b : c или с : b = b : а.
История Золотого Сечения связана еще с одним известным итальянским математиком Фибоначчи. До наших времен дошел ряд чисел: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т. д., известный как ряд Фибоначчи.
Особенность последовательности данных чисел заключается в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих (2+3=5, 3+5=8), а отношение смежных чисел ряда приближается к отношению Золотого Сечения (21:34=0,617, а 34:55=0,618). Впоследствии все исследователи Золотого Сечения в растительном и животном мире, искусстве и анатомии приходили к этому ряду как арифметическому выражению закона золотого деления. Интересно, что свой закон Фибоначчи вывел, подсчитывая количество рожденных кроликов от пары кроликов за год.
Число Непера
Число е — своего рода двойник π. Если π отвечает за пространство, то е — за время, и тоже проявляет себя почти всюду. Скажем, радиоактивность полония-210 уменьшается в е раз за средний срок жизни одного атома, а раковина моллюска Nautilus — это график степеней е, обернутый вокруг оси.
Чему равно: 2,718281828…
е — основание натурального логарифма, математическая константа, иррациональное и трансцендентное число. Приблизительно равно 2,71828. Иногда его называют числом Эйлера или числом Непера. Обозначается строчной латинской буквой «e».
Иными словами, число е является базовым соотношением роста для всех непрерывно растущих процессов. Оно участвует как в системах с экспоненциальным, так и постоянным ростом: население, радиоактивный распад, подсчет процентов и других. Даже ступенчатые системы, которые не растут равномерно, можно аппроксимировать с помощью числа е.
Также, как любое число можно рассматривать в виде «масштабированной» версии 1 (базовой единицы), любую окружность можно рассматривать в виде «масштабированной» версии единичной окружности (с радиусом 1). И любой коэффициент роста может быть рассмотрен в виде «масштабированной» версии е («единичного» коэффициента роста).
Так что число е — это не случайное, взятое наугад число. Число е воплощает в себе идею, что все непрерывно растущие системы являются масштабированными версиями одного и того же показателя.
Число открыл Джон Непер, шотландский математик, в 1618 году. Самого числа он не упоминал, зато выстроил на его основе свои таблицы логарифмов. Одновременно кандидатами в авторы константы считаются Якоб Бернулли, Лейбниц, Гюйгенс и Эйлер. Достоверно известно только то, что символ е взялся из фамилии последнего.
Как и π, е — трансцендентное число. Говоря проще, его нельзя выразить через дроби и корни. Есть гипотеза, что у таких чисел в бесконечном «хвосте» после запятой встречаются все комбинации цифр, какие только возможны.