Что такое cuda в видеокарте
Нужны ли графические ядра Nvidia CUDA для игр?
Ядра CUDA являются эквивалентом процессорных ядер Nvidia. Они оптимизированы для одновременного выполнения большого количества вычислений, что очень важно для современной графики. Естественно, на графические настройки больше всего повлияло количество ядер CUDA в видеокарте, и они требуют больше всего от графического процессора, то есть теней и освещения, среди прочего.
CUDA долгое время была одной из самых выдающихся записей в спецификациях любой видеокарты GeForce. Однако не все до конца понимают, что такое ядра CUDA и что конкретно они означают для игр.
В этой статье дан краткий и простой ответ на этот вопрос. Кроме того, мы кратко рассмотрим некоторые другие связанные вопросы, которые могут возникнуть у некоторых пользователей.
Что такое ядра видеокарты CUDA?
CUDA является аббревиатурой от одной из запатентованных технологий Nvidia: Compute Unified Device Architecture. Его цель? Эффективные параллельные вычисления.
Одиночное ядро CUDA аналогично ядру ЦП, основное отличие в том, что оно менее изощренное, но реализовано в большем количестве. Обычный игровой процессор имеет от 2 до 16 ядер, но количество ядер CUDA исчисляется сотнями, даже в самых низких современных видеокартах Nvidia GeForce. Между тем, у высококлассных карт сейчас их тысячи.
Что делают ядра CUDA в играх?
Обработка графики требует одновременного выполнения множества сложных вычислений, поэтому такое огромное количество ядер CUDA реализовано в видеокартах. И учитывая, как графические процессоры разрабатываются и оптимизируются специально для этой цели, их ядра могут быть намного меньше, чем у гораздо более универсального CPU.
И как ядра CUDA влияют на производительность в игре?
По сути, любые графические настройки, которые требуют одновременного выполнения вычислений, значительно выиграют от большего количества ядер CUDA. Наиболее очевидными из них считается освещение и тени, но также включены физика, а также некоторые типы сглаживания и окклюзии окружающей среды.
Ядра CUDA или потоковые процессоры?
Там, где у Nvidia GeForce есть ядра CUDA, у их основного конкурента AMD Radeon есть потоковые процессоры.
Ядра CUDA лучше оптимизированы, поскольку аппаратное обеспечение Nvidia обычно сравнивают с AMD, но нет никаких явных различий в производительности или качестве графики, о которых вам следует беспокоиться, если вы разрываетесь между приобретением Nvidia или AMD GPU.
Сколько ядер CUDA вам нужно?
И вот сложный вопрос. Как часто бывает с бумажными спецификациями, они просто не являются хорошим индикатором того, какую производительность вы можете ожидать от аппаратного обеспечения.
Многие другие спецификации, такие как пропускная способность VRAM, более важны для рассмотрения, чем количество ядер CUDA, а также вопрос оптимизации программного обеспечения.
Для общего представления о том, насколько мощен графический процессор, мы рекомендуем проверить UserBenchmark. Однако, если вы хотите увидеть детальное и всестороннее тестирование, есть несколько надежных сайтов, таких как GamersNexus, TrustedReviews, Tom’s Hardware, AnandTech и ряд других.
Вывод
Надеемся, что это помогло пролить некоторый свет на то, чем на самом деле являются ядра CUDA, что они делают и насколько они важны. Прежде всего, мы надеемся, что помогли развеять любые ваши заблуждения по этому поводу.
CUDA: Как работает GPU
Внутренняя модель nVidia GPU – ключевой момент в понимании GPGPU с использованием CUDA. В этот раз я постараюсь наиболее детально рассказать о программном устройстве GPUs. Я расскажу о ключевых моментах компилятора CUDA, интерфейсе CUDA runtime API, ну, и в заключение, приведу пример использования CUDA для несложных математических вычислений.
Вычислительная модель GPU:
При использовании GPU вы можете задействовать грид необходимого размера и сконфигурировать блоки под нужды вашей задачи.
CUDA и язык C:
Дополнительные типы переменных и их спецификаторы будут рассмотрены непосредственно в примерах работы с памятью.
CUDA host API:
Перед тем, как приступить к непосредственному использованию CUDA для вычислений, необходимо ознакомиться с так называемым CUDA host API, который является связующим звеном между CPU и GPU. CUDA host API в свою очередь можно разделить на низкоуровневое API под названием CUDA driver API, который предоставляет доступ к драйверу пользовательского режима CUDA, и высокоуровневое API – CUDA runtime API. В своих примерах я буду использовать CUDA runtime API.
Понимаем работу GPU:
Как было сказано, нить – непосредственный исполнитель вычислений. Каким же тогда образом происходит распараллеливание вычислений между нитями? Рассмотрим работу отдельно взятого блока.
Задача. Требуется вычислить сумму двух векторов размерностью N элементов.
Нам известна максимальные размеры нашего блока: 512*512*64 нитей. Так как вектор у нас одномерный, то пока ограничимся использованием x-измерения нашего блока, то есть задействуем только одну полосу нитей из блока (рис. 3).
Рис. 3. Наша полоса нитей из используемого блока.
Заметим, что x-размерность блока 512, то есть, мы можем сложить за один раз векторы, длина которых N // Функция сложения двух векторов
__global__ void addVector( float * left, float * right, float * result)
<
//Получаем id текущей нити.
int idx = threadIdx.x;
Таким образом, распараллеливание будет выполнено автоматически при запуске ядра. В этой функции так же используется встроенная переменная threadIdx и её поле x, которая позволяет задать соответствие между расчетом элемента вектора и нитью в блоке. Делаем расчет каждого элемента вектора в отдельной нити.
Пишем код, которые отвечает за 1 и 2 пункт в программе:
#define SIZE 512
__host__ int main()
<
//Выделяем память под вектора
float * vec1 = new float [SIZE];
float * vec2 = new float [SIZE];
float * vec3 = new float [SIZE];
//Инициализируем значения векторов
for ( int i = 0; i //Указатели на память видеокарте
float * devVec1;
float * devVec2;
float * devVec3;
…
dim3 gridSize = dim3(1, 1, 1); //Размер используемого грида
dim3 blockSize = dim3(SIZE, 1, 1); //Размер используемого блока
Теперь нам остаеться скопировать результат расчета из видеопамяти в память хоста. Но у функций ядра при этом есть особенность – асинхронное исполнение, то есть, если после вызова ядра начал работать следующий участок кода, то это ещё не значит, что GPU выполнил расчеты. Для завершения работы заданной функции ядра необходимо использовать средства синхронизации, например event’ы. Поэтому, перед копированием результатов на хост выполняем синхронизацию нитей GPU через event.
Код после вызова ядра:
//Выполняем вызов функции ядра
addVector >>(devVec1, devVec2, devVec3);
//Хендл event’а
cudaEvent_t syncEvent;
cudaEventCreate(&syncEvent); //Создаем event
cudaEventRecord(syncEvent, 0); //Записываем event
cudaEventSynchronize(syncEvent); //Синхронизируем event
Рассмотрим более подробно функции из Event Managment API.
Рис. 4. Синхронизация работы основоной и GPU прграмм.
На рисунке 4 блок «Ожидание прохождения Event’а» и есть вызов функции cudaEventSynchronize.
Ну и в заключении выводим результат на экран и чистим выделенные ресурсы.
cudaFree(devVec1);
cudaFree(devVec2);
cudaFree(devVec3);
Думаю, что описывать функции высвобождения ресурсов нет необходимости. Разве что, можно напомнить, что они так же возвращают значения cudaError_t, если есть необходимость проверки их работы.
Заключение
Надеюсь, что этот материал поможет вам понять, как функционирует GPU. Я описал самые главные моменты, которые необходимо знать для работы с CUDA. Попробуйте сами написать сложение двух матриц, но не забывайте об аппаратных ограничениях видеокарты.
Вычисления на графических процессорах
Вычисления на графических процессорах
CUDA SDK позволяет программистам реализовывать на специальном упрощённом диалекте языка программирования Си алгоритмы, выполнимые на графических процессорах NVIDIA и включать специальные функции в текст программы на Cи. CUDA даёт разработчику возможность по своему усмотрению организовывать доступ к набору инструкций графического ускорителя и управлять его памятью, организовывать на нём сложные параллельные вычисления.
История
В 2003 г. Intel и AMD участвовали в совместной гонке за самый мощный процессор. За несколько лет в результате этой гонки тактовые частоты существенно выросли, особенно после выхода Intel Pentium 4.
После прироста тактовых частот (между 2001 и 2003 гг. тактовая частота Pentium 4 удвоилась с 1,5 до 3 ГГц), а пользователям пришлось довольствоваться десятыми долями гигагерц, которые вывели на рынок производители (с 2003 до 2005 гг.тактовые частоты увеличились 3 до 3,8 ГГц).
Работа GPU относительно простая. Она заключается в принятии группы полигонов с одной стороны и генерации группы пикселей с другой. Полигоны и пиксели независимы друг от друга, поэтому их можно обрабатывать параллельно. Таким образом, в GPU можно выделить крупную часть кристалла на вычислительные блоки, которые, в отличие от CPU, будут реально использоваться.
Первые расчёты на GPU
В дальнейшем, некоторые исследователи из проекта Brook перешли в команду разработчиков NVIDIA, чтобы представить программно-аппаратную стратегию параллельных вычислений, открыв новую долю рынка. И главным преимуществом этой инициативы NVIDIA стало то, что разработчики отлично знают все возможности своих GPU до мелочей, и в использовании графического API нет необходимости, а работать с аппаратным обеспечением можно напрямую при помощи драйвера. Результатом усилий этой команды стала NVIDIA CUDA.
Области применения параллельных расчётов на GPU
При переносе вычислений на GPU, во многих задачах достигается ускорение в 5-30 раз, по сравнению с быстрыми универсальными процессорами. Самые большие цифры (порядка 100-кратного ускорения и даже более!) достигаются на коде, который не очень хорошо подходит для расчётов при помощи блоков SSE, но вполне удобен для GPU.
Это лишь некоторые примеры ускорений синтетического кода на GPU против SSE-векторизованного кода на CPU (по данным NVIDIA):
• Флуоресцентная микроскопия: 12x.
• Молекулярная динамика (non-bonded force calc): 8-16x;
• Электростатика (прямое и многоуровневое суммирование Кулона): 40-120x и 7x.
Таблица, которую NVIDIA, показывает на всех презентациях, в которой показывается скорость графических процессоров относительно центральных.
Перечень основных приложений, в которых применяются вычисления на GPU: анализ и обработка изображений и сигналов, симуляция физики, вычислительная математика, вычислительная биология, финансовые расчёты, базы данных, динамика газов и жидкостей, криптография, адаптивная лучевая терапия, астрономия, обработка звука, биоинформатика, биологические симуляции, компьютерное зрение, анализ данных (data mining), цифровое кино и телевидение, электромагнитные симуляции, геоинформационные системы, военные применения, горное планирование, молекулярная динамика, магнитно-резонансная томография (MRI), нейросети, океанографические исследования, физика частиц, симуляция свёртывания молекул белка, квантовая химия, трассировка лучей, визуализация, радары, гидродинамическое моделирование (reservoir simulation), искусственный интеллект, анализ спутниковых данных, сейсмическая разведка, хирургия, ультразвук, видеоконференции.
Преимущества и ограничения CUDA
Чтобы перенести вычисления на GPU в рамках такой модели, нужен специальный подход. Даже поэлементное сложение двух векторов потребует отрисовки фигуры на экране или во внеэкранный буфер. Фигура растеризуется, цвет каждого пикселя вычисляется по заданной программе (пиксельному шейдеру). Программа считывает входные данные из текстур для каждого пикселя, складывает их и записывает в выходной буфер. И все эти многочисленные операции нужны для того, что в обычном языке программирования записывается одним оператором!
Программно-аппаратная архитектура для вычислений на GPU компании NVIDIA отличается от предыдущих моделей GPGPU тем, что позволяет писать программы для GPU на настоящем языке Си со стандартным синтаксисом, указателями и необходимостью в минимуме расширений для доступа к вычислительным ресурсам видеочипов. CUDA не зависит от графических API, и обладает некоторыми особенностями, предназначенными специально для вычислений общего назначения.
Преимущества CUDA перед традиционным подходом к GPGPU вычислениям
CUDA обеспечивает доступ к разделяемой между потоками памяти размером в 16 Кб на мультипроцессор, которая может быть использована для организации кэша с широкой полосой пропускания, по сравнению с текстурными выборками;
• более эффективная передача данных между системной и видеопамятью;
• отсутствие необходимости в графических API с избыточностью и накладными расходами;
• линейная адресация памяти, и gather и scatter, возможность записи по произвольным адресам;
• аппаратная поддержка целочисленных и битовых операций.
Основные ограничения CUDA:
• отсутствие поддержки рекурсии для выполняемых функций;
• минимальная ширина блока в 32 потока;
• закрытая архитектура CUDA, принадлежащая NVIDIA.
Слабыми местами программирования при помощи предыдущих методов GPGPU является то, что эти методы не используют блоки исполнения вершинных шейдеров в предыдущих неунифицированных архитектурах, данные хранятся в текстурах, а выводятся во внеэкранный буфер, а многопроходные алгоритмы используют пиксельные шейдерные блоки. В ограничения GPGPU можно включить: недостаточно эффективное использование аппаратных возможностей, ограничения полосой пропускания памяти, отсутствие операции scatter (только gather), обязательное использование графического API.
Основные преимущества CUDA по сравнению с предыдущими методами GPGPU вытекают из того, что эта архитектура спроектирована для эффективного использования неграфических вычислений на GPU и использует язык программирования C, не требуя переноса алгоритмов в удобный для концепции графического конвейера вид. CUDA предлагает новый путь вычислений на GPU, не использующий графические API, предлагающий произвольный доступ к памяти (scatter или gather). Такая архитектура лишена недостатков GPGPU и использует все исполнительные блоки, а также расширяет возможности за счёт целочисленной математики и операций битового сдвига.
CUDA открывает некоторые аппаратные возможности, недоступные из графических API, такие как разделяемая память. Это память небольшого объёма (16 килобайт на мультипроцессор), к которой имеют доступ блоки потоков. Она позволяет кэшировать наиболее часто используемые данные и может обеспечить более высокую скорость, по сравнению с использованием текстурных выборок для этой задачи. Что, в свою очередь, снижает чувствительность к пропускной способности параллельных алгоритмов во многих приложениях. Например, это полезно для линейной алгебры, быстрого преобразования Фурье и фильтров обработки изображений.
Также, графические API в обязательном порядке хранят данные в текстурах, что требует предварительной упаковки больших массивов в текстуры, что усложняет алгоритм и заставляет использовать специальную адресацию. А CUDA позволяет читать данные по любому адресу. Ещё одним преимуществом CUDA является оптимизированный обмен данными между CPU и GPU. А для разработчиков, желающих получить доступ к низкому уровню (например, при написании другого языка программирования), CUDA предлагает возможность низкоуровневого программирования на ассемблере.
Недостатки CUDA
Альтернативы CUDA
Фреймворк для написания компьютерных программ, связанных с параллельными вычислениями на различных графических и центральных процессорах. В фреймворк OpenCL входят язык программирования, который базируется на стандарте C99, и интерфейс программирования приложений (API). OpenCL обеспечивает параллелизм на уровне инструкций и на уровне данных и является реализацией техники GPGPU. OpenCL является полностью открытым стандартом, его использование не облагается лицензионными отчислениями.
Цель OpenCL состоит в том, чтобы дополнить OpenGL и OpenAL, которые являются открытыми отраслевыми стандартами для трёхмерной компьютерной графики и звука, пользуясь возможностями GPU. OpenCL разрабатывается и поддерживается некоммерческим консорциумом Khronos Group, в который входят много крупных компаний, включая Apple, AMD, Intel, nVidia, Sun Microsystems, Sony Computer Entertainment и другие.
• CAL/IL(Compute Abstraction Layer/Intermediate Language)
Областями применения ATI Stream являются приложения, требовательные к вычислительному ресурсу, такие, как финансовый анализ или обработка сейсмических данных. Использование потокового процессора позволило увеличить скорость некоторых финансовых расчётов в 55 раз по сравнению с решением той же задачи силами только центрального процессора.
NVDIA CUDA в российской научной среде.
По состоянию на декабрь 2009 г., программная модель CUDA преподается в 269 университетах мира. В России обучающие курсы по CUDA читаются в Московском, Санкт-Петербургском, Казанском, Новосибирском и Пермском государственных университетах, Международном университете природы общества и человека «Дубна», Объединённом институте ядерных исследований, Московском институте электронной техники, Ивановском государственном энергетическом университете, БГТУ им. В. Г. Шухова, МГТУ им. Баумана, РХТУ им. Менделеева, Российском научном центре «Курчатовский институт», Межрегиональном суперкомпьютерном центре РАН, Таганрогском технологическом институте (ТТИ ЮФУ).
Знакомство с программно-аппаратной архитектурой CUDA
Поговорим о том, что такое CUDA, как эта технология связана с NVIDIA и как ускоряет обработку данных вычислительной техникой.
Сложность вычислительных заданий требует резкого увеличения ресурсов и скорости компьютеров. Наиболее перспективным направлением повышения скорости решения задач является внедрение идей параллелизма в работу вычислительных систем.
Сегодня спроектированы и испытаны сотни различных компьютеров, которые используют в своей архитектуре тот или иной вид параллельной обработки данных. Основная сложность при проектировании параллельных программ – обеспечение правильной последовательности взаимодействия между разными вычислительными процессами, а также координация ресурсов, которые разделяются между ними.
Поговорим о CUDA
CUDA – это программно-аппаратная архитектура параллельных вычислений, позволяющая существенно увеличить вычислительную продуктивность благодаря использованию графических процессоров NVIDIA.
При использовании данной технологии необходимо знать следующие понятия:
CUDA позволяет программистам реализовывать на специальном упрощенном диалекте языка C алгоритмы, которые используются в графических процессорах NVIDIA, и включать специальные функции в текст программы на C.
«Архитектура CUDA позволяет разработчику на свое усмотрение организовывать доступ к набору инструкций GPU и управлять его памятью.»
Эта технология поддерживает несколько языков программирования. Среди них Java, Python и некоторые другие.
Этапы запуска программы на GPU или как все происходит
Рассмотрим, как происходит запуск программы на графическом процессоре:
На рисунке изображены все перечисленные шаги запуска программы, кроме первого (источник).
Взаимодействие CPU и GPU
Как видно из рисунка, центральный процессор взаимодействует с графическим через CUDA Runtime API, CUDA Driver API и CUDA Libraries. Runtime и Driver API отличаются уровнем абстракции. Грубо говоря, первый вариант более высокого уровня в плане программирования, более абстрактный, а второй – напротив, более низкого (уровень драйвера).
В целом Runtime API является абстрактной оберткой Driver API. Во время программирования вы можете использовать любой из представленных вариантов. Из личного опыта: при использовании Driver API нужно написать немного «лишнего» кода + данный вариант сложнее.
Также необходимо понять одну важную вещь, которая впоследствии сэкономит вам время и нервы:
«Если отношение времени, потраченного на работу ядер, окажется меньше времени, потраченного на выделение памяти и запуск этих ядер, вы получите нулевую эффективность от использования GPU.»
Давайте разберем написанное подробнее. Чтобы запустить некоторые задачи на GPU, необходимо потратить «немного» времени на выделение памяти, копирование результата, etc., поэтому не нужно выполнять на графическом процессоре легкие задания, которые на деле занимают буквально миллисекунды. Зачем выполнять на GPU то, с чем легко, а главное, быстрее справится центральный процессор?
У вас возникнет вопрос: «Тогда зачем вообще использовать GPU, если при этом приходится тратить драгоценное время на выделение памяти и другие ненужные вещи?». Это заблуждение, и со временем вы поймете, что CUDA – действительно мощная технология. Дальше разберемся, почему это так.
Аппаратная часть
Архитектура GPU построена несколько иначе, нежели CPU. Поскольку графические процессоры сперва использовались только для графических расчетов, которые допускают независимую параллельную обработку данных, то GPU и предназначены именно для параллельных вычислений. Он спроектирован таким образом, чтобы выполнять огромное количество потоков (элементарных параллельных процессов).
Архитектура CPU и GPU
Как видно из картинки – в GPU есть много простых арифметически-логических устройств (АЛП), которые объединены в несколько групп и обладают общей памятью. Это помогает повысить продуктивность в вычислительных заданиях, но немного усложняет программирование.
«Для достижения лучшего ускорения необходимо продумывать стратегии доступа к памяти и учитывать аппаратные особенности.»
GPU ориентирован на выполнение программ с большим объемом данных и расчетов и представляет собой массив потоковых процессоров (Streaming Processor Array), что состоит из кластеров текстурных процессоров (Texture Processor Clusters, TPC). TPC в свою очередь состоит из набора мультипроцессоров (SM – Streaming Multi-processor), в каждом из которых несколько потоковых процессоров (SP – Streaming Processors) или ядер (в современных процессорах количество ядер превышает 1024).
Набор ядер каждого мультипроцессора работает по принципу SIMD (но с некоторым отличием) – реализация, которая позволяет группе процессоров, работающих параллельно, работать с различными данными, но при этом все они в любой момент времени должны выполнять одинаковую команду. Говоря проще, несколько потоков выполняют одно и то же задание.
Мультипроцессоры, SM
В результате GPU фактически стал устройством, которое реализует потоковую вычислительную модель (stream computing model): есть потоки входящих и исходящих данных, что состоят из одинаковых элементов, которые могут быть обработаны независимо друг от друга.
Вычислительные возможности
Продолжаем разбираться с CUDA. Каждая видеокарта обладает так называемыми compute capabilities – количественными характеристиками скорости выполнения определенных операций на графическом процессоре. Данное число показывает, насколько быстро видеокарта будет выполнять свою работу.
В NVIDIA эту характеристику обозначают Compute Capability Version. В таблице приведены некоторые видеокарты и соответствующие им вычислительные возможности:
Полный перечень можно посмотреть здесь. Compute Capability Version описывает множество параметров, среди которых: количество потоков на блок, максимальное количество блоков и потоков, размер warp, а также многое другое.
Потоки, блоки и сетки
CUDA использует большое количество отдельных потоков для расчетов. Все они группируются в иерархию – grid / block / thread.
Структура блоков
Верхний уровень – grid – отвечает ядру и объединяет все потоки, которые выполняет данное ядро. Grid – одномерный или двумерный массив блоков (block). Каждый блок (block) представляет собой полностью независимый набор скоординированных между собой потоков. Потоки из разных блоков не могут взаимодействовать.
Мы упоминали об отличии от SIMD-архитектуры. Есть такое понятие, как warp – группа из 32 потоков (в зависимости от архитектуры GPU, но почти всегда 32). Только потоки в рамках одной группы (warp) могут физически выполняться одновременно. Потоки разных варпов могут находиться на разных стадиях выполнения программы. Такой метод обработки данных обозначается термином SIMT (Single Instruction – Multiple Theads). Управление работой варпов выполняется на аппаратном уровне.
Почему иногда центральный процессор выполняет задания быстрее графического?
Выше уже было написано, что не стоит выполнять на GPU слишком простые задания. Чтобы понять, следует определить два термина:
Таким образом, главный вопрос состоит в следующем: почему графический процессор иногда «тупит»? Объясняем на простом примере.
У нас есть 2 автомобиля:
Если одна операция – это передвижение одного человека на определенное расстояние (пусть будет 1 км), то задержка (время, за которое один человек пройдет 1 км) для первого авто составит 3600/120 = 30 сек, а пропускная способность – 9/30 = 0,3. Для автобуса – 3600/90 = 40 сек и 30/40 = 0,75.
CPU – это фургон, а GPU – автобус: у него большая задержка, но также и большая пропускная способность. Если для вашего задания задержка каждой конкретной операции не так важна, как количество этих самых операций в секунду, то стоит рассмотреть использование GPU.
Выводы
Отличительными чертами GPU в сравнении с CPU являются:
Главный минус CUDA в том, что данная технология поддерживается только видеокартами NVIDIA без каких-либо альтернатив.
Графический процессор не всегда может дать ускорение при выполнении определенных алгоритмов. Поэтому перед использованием GPU для вычислений стоит хорошо подумать, а нужен ли он в данном случае. Вы можете использовать видеокарту для сложных вычислений: работа с графикой или изображениями, инженерные расчеты, криптографические задачи (майнинг), и т. д., но не используйте GPU для решения простых задач (разумеется, вы можете, но тогда эффективность будет равняться нулю).
Помните о задаче с фургоном и автобусом, а также не забывайте, что использование графического процессора гораздо вероятнее замедлит программу, нежели ускорит ее.