Что такое cuda toolkit

CUDA: Начало

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit
Это первая публикация из цикла статей об использовании GPGPU и nVidia CUDA. Планирую писать не очень объемно, чтобы не слишком утомлять читателей, но достаточно часто.

Я предполагаю, что читатель осведомлен, что такое CUDA, если нет, то вводную статью можно найти на Хабре.

Что потребуется для работы:

1. Видеокарта из серии nVidia GeForce 8xxx/9xxx или более современная
2. CUDA Toolkit v.2.1 (скачать можно здесь: www.nvidia.ru/object/cuda_get_ru.html)
3. CUDA SDK v.2.1 (скачать можно там же где Toolkit)
4. Visual Studio 2008
5. CUDA Visual Studio Wizard (скачать можно здесь: sourceforge.net/projects/cudavswizard)

Создание CUDA проекта:

После установки всего необходимого в VS появиться новый вид проекта для С++ с названием CU-DA WinApp, это именно то, что нам надо. В данном типе проекта доступны дополнительные на-стройки для CUDA, позволяющие настроить параметры компиляции под GPU, например версию Compute Capability в зависимости от типа GPU и т.д.
Обычно я создаю чистый проект (Empty Project), так как Precompiled Headers навряд ли пригодиться для CUDA.
Важно отметить, как собирается CUDA приложение. Файлы с расширением *.cpp обрабатываются компилятором MS C++ (cl.exe), а файлы c расширением *.cu компилятором CUDA (nvcc.exe), который в свою очередь определяет, какой код будет работать на GPU, а какой на CPU. Код из *.cu, работающий на CPU, передается на компиляцию MS C++, эту особенность удобно использовать для написания динамических библиотек, которые будут экспортировать функции, использующие для расчетов GPU.
Далее привожу листинг простой программы на CUDA, который выводит на экран информацию об аппаратных возможностях GPU.

Листинг. Программа CudaInfo.

int main()
<
int deviceCount;
cudaDeviceProp deviceProp;

//Сколько устройств CUDA установлено на PC.
cudaGetDeviceCount(&deviceCount);

for ( int i = 0; i //Получаем информацию об устройстве
cudaGetDeviceProperties(&deviceProp, i);

В программе я подключаю библиотеку “cuda_runtime_api.h”. Хотя это делать не обязательно, так она инклюдится автоматически, но без неё не будет работать IntelliSence (хотя все равно периодически косячит).

Заключение

Я думаю, что это самый простой способ для написания CUDA-программ, так как требуется минимум усилий для конфигурирования и настройки среды, единственная проблема только с использованием IntelliSence.
В следующий раз будет рассмотрено использование CUDA для математических вычислений и вопросы работы с память видеокарты.

Источник

CUDA: с места в карьер

NB: Статья — краткое введение, покрыть все ньюансы программирования под CUDA в одной статье вряд ли возможно 🙂

О железе

CUDA работает на видеокартых начиная с 8400GS и выше. Разные видеокарты имеют разые возможности. В целом, если вы видите что в видеокарте например 128 SP(Streaming Processor) — это значит что там 8 SIMD MP (multiprocessor), каждый из которых делает одновременно 16 операций. На один MP есть 16кб shared memory, 8192 штуки 4-хбайтных регистров (В картах серии GTX2xx значения больше). Также есть 64кб констант общие для всех MP, они кешируются, при непопадании в кеш — достаточно большая задержка (400-600 тактов). Есть глобальная память видеокарты, доступ туда не кешируется, и текстуры (кешируется, кеш оптимизирован для 2D выборок). Для использования нескольких видеокарт нужно во первый отключать SLI в дровах, а во вторых — на каждую видеокарту запускать по потоку, и вызывать cudaSetDevice().

С чего начать?

Его вы можете использовать во всех своих проектах, только вместо «../../common/inc » можно указать абсолютный путь (или переменную окружения).
nvcc — это и есть великий и ужасный компилатор CUDA. На выходе он генерирует объектный файл, в котором уже включена откомпилированная программа для видеокарты.
Обратите внимение на описание интерфейса в Mandelbrot_kernel.h — тут руками приходится описывать kernel-ы которые мы собираемся вызывать из основной С++ программы (впрочем их обычно не много, так что это не страшно).
После того как вам удалось запустить пример SDK, можно рассмотреть, чем же CUDA программа отличается от обычной.

Определение функций

Определение данных

__constant__ — задает переменную в константной памяти. Следует обратить внимание, что значения для констант нужно загружать функцией cudaMemcpyToSymbol. Константы доступны из всех тредов, скорость работы сравнима с регистрами(когда в кеш попадает).
__shared__ — задает переменную в общей памяти блока тредов (т.е. и значение будет общее на всех). Тут нужно подходить с осторожностью — компилятор агрессивно оптимизирует доступ сюда(можно придушить модификатором volatile), можно получать race condition, нужно использовать __syncthreads(); чтобы данные гарантированно записались. Shared memory разделена на банки, и когда 2 потока одновременно пытаются обратиться к одному банку, возникает bank conflict и падает скорость.

Все локальные переменные которые вы определеили в ядре (__device__) — в регистрах, самая высокая скорость доступа.

Как поток узнает над чем ему работать

Основая идея CUDA в том, что для решения вашей задачи вы запускаете тысячи и тысячи потоков, поэтому не стоит пугаться того что тут будет дальше написано 🙂
Допустим, надо сделать какую-то операцию над картинкой 200×200. Картинка разбивается на куски 10×10, и на каждый пиксел такого кусочка запускаем по потоку. Выглядить это будет так:
dim3 threads(10, 10);//размер квардатика, 10*10
dim3 grid(20, 20);//сколько квадратиков нужно чтобы покрыть все изображение

your_kernel >>(image, 200,200);//Эта строка запустит 40’000 потоков (не одновременно, одновременно работать будет 200-2000 потоков примерно).

В отличии от Brook+ от AMD, где мы сразу определяем какому потоку над какими данными работать, в CUDA все не так: передаваеиые kernel-у параметры одинаковые для всех потоков, и поток должен сам получить данные для себя, чтобы сделать это, потоку нужно вычислить, в каком месте изображения он находится. В этом помогают магические переменные blockDim, blockIdx.
const int ix = blockDim.x * blockIdx.x + threadIdx.x;
const int iy = blockDim.y * blockIdx.y + threadIdx.y;

В ix и iy — координаты, с помощью которых можно получить исходные данные из массива image, и записать результат работы.

Оптимизация

Не получается?

В первую очередь следует прочитать документацию вместе с SDK (NVIDIA_CUDA_Programming_Guide, CudaReferenceManual, ptx_isa), после этого можно спросить на официальном форуме — там даже девелоперы nVidia часто отписываются, да и вообще много умных людей. По русски можно спросить у меня на форуме например, где отвечу я 🙂 Также много людей обитает на gpgpu.ru.

Надеюсь это введение поможет людям, решившим попробовать программирование для видеокарт. Если есть проблемы/вопросы — буду рад помочь. Ну а в переди нас ждет введение в Brook+ и SIMD x86

Источник

CUDA мы катимся: технология NVIDIA CUDA

Содержание статьи

Согласно Дарвинской теории эволюции, первая человекообразная обезьяна (если
быть точным – homo antecessor, человек-предшественник) превратилась впоследствии
в нас. Многотонные вычислительные центры с тысячью и больше радиоламп,
занимающие целые комнаты, сменились полукилограммовыми ноутами, которые, кстати,
не уступят в производительности первым. Допотопные печатные машинки превратились
в печатающие что угодно и на чем угодно (даже на теле человека)
многофункциональные устройства. Процессорные гиганты вдруг вздумали замуровать
графическое ядро в «камень». А видеокарты стали не только показывать картинку с
приемлемым FPS и качеством графики, но и производить всевозможные вычисления. Да
еще как производить! О технологии многопоточных вычислений средствами GPU,
NVIDIA CUDA
и пойдет речь.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Почему GPU?

Интересно, почему всю вычислительную мощь решили переложить на графический
адаптер? Как видно, процессоры еще в моде, да и вряд ли уступят свое теплое
местечко. Но у GPU есть пара козырей в рукаве вместе с джокером, да и рукавов
хватает. Современный центральный процессор заточен под получение максимальной
производительности при обработке целочисленных данных и данных с плавающей
запятой, особо не заботясь при этом о параллельной обработке информации. В то же
время архитектура видеокарты позволяет быстро и без проблем «распараллелить»
обработку данных. С одной стороны, идет обсчет полигонов (за счет 3D-конвейера),
с другой – пиксельная обработка текстур. Видно, что происходит «слаженная
разбивка» нагрузки в ядре карты. Кроме того, работа памяти и видеопроцессора
оптимальнее, чем связка «ОЗУ-кэш-процессор». В тот момент, когда единица данных
в видеокарте начинает обрабатываться одним потоковым процессором GPU, другая
единица параллельно загружается в другой, и, в принципе, легко можно достичь
загруженности графического процессора, сравнимой с пропускной способностью шины,
однако для этого загрузка конвейеров должна осуществляться единообразно, без
всяких условных переходов и ветвлений. Центральный же процессор в силу своей
универсальности требует для своих процессорных нужд кэш, заполненный
информацией.

Ученые мужи задумались насчет работы GPU в параллельных вычислениях и
математике и вывели теорию, что многие научные расчеты во многом схожи с
обработкой 3D-графики. Многие эксперты считают, что основополагающим фактором в
развитии GPGPU (General Purpose computation on GPU – универсальные
расчеты средствами видеокарты
) стало появление в 2003 году проекта Brook GPU.

Создателям проекта из Стэндфордского университета предстояло решить непростую
проблему: аппаратно и программно заставить графический адаптер производить
разноплановые вычисления. И у них это получилось. Используя универсальный язык C,
американские ученые заставили работать GPU как процессор, с поправкой на
параллельную обработку. После Brook появился целый ряд проектов по VGA-расчетам,
таких как библиотека Accelerator, библиотека Brahma, система
метапрограммирования GPU++ и другие.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Предчувствие перспективности разработки заставило AMD и NVIDIA
вцепиться в Brook GPU, как питбуль. Если опустить маркетинговую политику, то,
реализовав все правильно, можно закрепиться не только в графическом секторе
рынка, но и в вычислительном (посмотри на специальные вычислительные карты и
серверы Tesla с сотнями мультипроцессоров), потеснив привычные всем CPU.

Естественно, «повелители FPS» разошлись у камня преткновения каждый по своей
тропе, но основной принцип остался неизменным – производить вычисления
средствами GPU. И сейчас мы подробнее рассмотрим технологию «зеленых» – CUDA
(Compute Unified Device Architecture).

Работа нашей «героини» заключается в обеспечении API, причем сразу двух.
Первый – высокоуровневый, CUDA Runtime, представляет собой функции, которые
разбиваются на более простые уровни и передаются нижнему API – CUDA Driver. Так
что фраза «высокоуровневый» применима к процессу с натяжкой. Вся соль находится
именно в драйвере, и добыть ее помогут библиотеки, любезно созданные
разработчиками NVIDIA: CUBLAS (средства для математических расчетов) и
FFT (расчет посредством алгоритма Фурье). Ну что ж, перейдем к практической
части материала.

Терминология CUDA

NVIDIA оперирует весьма своеобразными определениями для CUDA API. Они
отличаются от определений, применяемых для работы с центральным процессором.

Поток (thread) – набор данных, который необходимо обработать (не
требует больших ресурсов при обработке).

Варп (warp) – группа из 32 потоков. Данные обрабатываются только
варпами, следовательно варп – это минимальный объем данных.

Блок (block) – совокупность потоков (от 64 до 512) или совокупность
варпов (от 2 до 16).

Сетка (grid) – это совокупность блоков. Такое разделение данных
применяется исключительно для повышения производительности. Так, если число
мультипроцессоров велико, то блоки будут выполняться параллельно. Если же с
картой не повезло (разработчики рекомендуют для сложных расчетов использовать
адаптер не ниже уровня GeForce 8800 GTS 320 Мб), то блоки данных обработаются
последовательно.

Также NVIDIA вводит такие понятия, как ядро (kernel), хост (host)
и девайс (device).

Работаем!

Для полноценной работы с CUDA нужно:

1. Знать строение шейдерных ядер GPU, так как суть программирования
заключается в равномерном распределении нагрузки между ними.
2. Уметь программировать в среде C, с учетом некоторых аспектов.

Разработчики NVIDIA раскрыли «внутренности» видеокарты несколько
иначе, чем мы привыкли видеть. Так что волей-неволей придется изучать все
тонкости архитектуры. Разберем строение «камня» G80 легендарной GeForce 8800
GTX
.

Шейдерное ядро состоит из восьми TPC (Texture Processor Cluster) – кластеров
текстурных процессоров (так, у GeForce GTX 280 – 15 ядер, у 8800 GTS
их шесть, у 8600 – четыре и т.д.). Те, в свою очередь, состоят из двух
потоковых мультипроцессоров (streaming multiprocessor – далее SM). SM (их всего
16) состоит из front end (решает задачи чтения и декодирования инструкций) и
back end (конечный вывод инструкций) конвейеров, а также восьми scalar SP (shader
processor) и двумя SFU (суперфункциональные блоки). За каждый такт (единицу
времени) front end выбирает варп и обрабатывает его. Чтобы все потоки варпа
(напомню, их 32 штуки) обработались, требуется 32/8 = 4 такта в конце конвейера.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Каждый мультипроцессор обладает так называемой общей памятью (shared memory).
Ее размер составляет 16 килобайт и предоставляет программисту полную свободу
действий. Распределяй как хочешь :). Shared memory обеспечивает связь потоков в
одном блоке и не предназначена для работы с пиксельными шейдерами.

Также SM могут обращаться к GDDR. Для этого им «пришили» по 8 килобайт
кэш-памяти, хранящих все самое главное для работы (например, вычислительные
константы).

Мультипроцессор имеет 8192 регистра. Число активных блоков не может быть
больше восьми, а число варпов – не больше 768/32 = 24. Из этого видно, что G80
может обработать максимум 32*16*24 = 12288 потоков за единицу времени. Нельзя не
учитывать эти цифры при оптимизации программы в дальнейшем (на одной чашу весов
– размер блока, на другой – количество потоков). Баланс параметров может сыграть
важную роль в дальнейшем, поэтому NVIDIA рекомендует использовать блоки
со 128 или 256 потоками. Блок из 512 потоков неэффективен, так как обладает
повышенными задержками. Учитывая все тонкости строения GPU видеокарты плюс
неплохие навыки в программировании, можно создать весьма производительное
средство для параллельных вычислений. Кстати, о программировании.

Программирование

Для «творчества» вместе с CUDA требуется видеокарта GeForce не ниже
восьмой серии
. С

официального сайта нужно скачать три программных пакета: драйвер с
поддержкой CUDA (для каждой ОС – свой), непосредственно пакет CUDA SDK (вторая
бета-версия) и дополнительные библиотеки (CUDA toolkit). Технология поддерживает
операционные системы Windows (XP и Vista), Linux и Mac OS X. Для изучения я
выбрал Vista Ultimate Edition x64 (забегая вперед, скажу, что система вела себя
просто превосходно). В момент написания этих строк актуальным для работы был
драйвер ForceWare 177.35. В качестве набора инструментов использовался
программный пакет Borland C++ 6 Builder (хотя подойдет любая среда, работающая с
языком C).

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Человеку, знающему язык, будет легко освоиться в новой среде. Требуется лишь
запомнить основные параметры. Ключевое слово _global_ (ставится перед функцией)
показывает, что функция относится к kernel (ядру). Ее будет вызывать центральный
процессор, а вся работа произойдет на GPU. Вызов _global_ требует более
конкретных деталей, а именно размер сетки, размер блока и какое ядро будет
применено. Например, строчка _global_ void saxpy_parallel >>, где X –
размер сетки, а Y – размер блока, задает эти параметры.

Символ _device_ означает, что функцию вызовет графическое ядро, оно же
выполнит все инструкции. Эта функция располагается в памяти мультипроцессора,
следовательно, получить ее адрес невозможно. Префикс _host_ означает, что вызов
и обработка пройдут только при участии CPU. Надо учитывать, что _global_ и
_device_ не могут вызывать друг друга и не могут вызывать самих себя.

Также язык для CUDA имеет ряд функций для работы с видеопамятью: cudafree
(освобождение памяти между GDDR и RAM), cudamemcpy и cudamemcpy2D (копирование
памяти между GDDR и RAM) и cudamalloc (выделение памяти).

Все программные коды проходят компиляцию со стороны CUDA API. Сначала берется
код, предназначенный исключительно для центрального процессора, и подвергается
стандартной компиляции, а другой код, предназначенный для графического адаптера,
переписывается в промежуточный язык PTX (сильно напоминает ассемблер) для
выявления возможных ошибок. После всех этих «плясок» происходит окончательный
перевод (трансляция) команд в понятный для GPU/CPU язык.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Набор для изучения

Практически все аспекты программирования описаны в документации, идущей
вместе с драйвером и двумя приложениями, а также на сайте разработчиков. Размера
статьи не хватит, чтобы описать их (заинтересованный читатель должен приложить
малую толику стараний и изучить материал самостоятельно).

Специально для новичков разработан CUDA SDK Browser. Любой желающий может
ощутить силу параллельных вычислений на своей шкуре (лучшая проверка на
стабильность – работа примеров без артефактов и вылетов). Приложение имеет
большой ряд показательных мини-программок (61 «тест»). К каждому опыту имеется
подробная документация программного кода плюс PDF-файлы. Сразу видно, что люди,
присутствующие со своими творениями в браузере, занимаются серьезной работой.
Тут же можно сравнить скорости работы процессора и видеокарты при обработке
данных. Например, сканирование многомерных массивов видеокартой GeForce 8800
GT
512 Мб с блоком с 256 потоками производит за 0.17109 миллисекунды.
Технология не распознает SLI-тандемы, так что если у тебя дуэт или трио,
отключай функцию «спаривания» перед работой, иначе CUDA увидит только один
девайс. Двуядерный AMD Athlon 64 X2 (частота ядра 3000 МГц) тот же опыт
проходит за 2.761528 миллисекунды. Получается, что G92 более чем в 16 раз
быстрее «камня» AMD! Как видишь, далеко не экстремальная система в
тандеме с нелюбимой в массах операционной системой показывает неплохие
результаты.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit

Помимо браузера существует ряд полезных обществу программ. Adobe
адаптировала свои продукты к новой технологии. Теперь Photoshop CS4 в полной
мере использует ресурсы графических адаптеров (необходимо скачать специальный
плагин). Такими программами, как Badaboom media converter и RapiHD можно
произвести декодирование видео в формат MPEG-2. Для обработки звука неплохо
подойдет бесплатная утилита Accelero. Количество софта, заточенного под CUDA API,
несомненно, будет расти.

А в это время…

А пока ты читаешь сей материал, трудяги из процессорных концернов
разрабатывают свои технологии по внедрению GPU в CPU. Со стороны AMD все
понятно: у них есть большущий опыт, приобретенный вместе с ATI.

Творение «микродевайсеров», Fusion, будет состоять из нескольких ядер под
кодовым названием Bulldozer и видеочипа RV710 (Kong). Их взаимосвязь будет
осуществляться за счет улучшенной шины HyperTransport. В зависимости от
количества ядер и их частотных характеристик AMD планирует создать целую ценовую
иерархию «камней». Также планируется производить процессоры как для ноутбуков (Falcon),
так и для мультимедийных гаджетов (Bobcat). Причем именно применение технологии
в портативных устройствах будет первоначальной задачей для канадцев. С развитием
параллельных вычислений применение таких «камней» должно быть весьма популярно.

Intel немножко отстает по времени со своей Larrabee. Продукты AMD,
если ничего не случится, появятся на прилавках магазинов в конце 2009 – начале
2010 года. А решение противника выйдет на свет божий только почти через два
года.

Larrabee будет насчитывать большое количество (читай – сотни) ядер. Вначале
же выйдут продукты, рассчитанные на 8 – 64 ядера. Они очень сходны с Pentium, но
довольно сильно переработаны. Каждое ядро имеет 256 килобайт кэша второго уровня
(со временем его размер увеличится). Взаимосвязь будет осуществляться за счет
1024-битной двунаправленной кольцевой шины. Интел говорит, что их «дитя» будет
отлично работать с DirectX и Open GL API (для «яблочников»), поэтому никаких
программных вмешательств не потребуется.

А к чему я все это тебе поведал? Очевидно, что Larrabee и Fusion не вытеснят
обычные, стационарные процессоры с рынка, так же, как не вытеснят с рынка
видеокарты. Для геймеров и экстремалов пределом мечтаний по-прежнему останется
многоядерный CPU и тандем из нескольких топовых VGA. Но то, что даже
процессорные компании переходят на параллельные вычисления по принципам,
аналогичным GPGPU, говорит уже о многом. В частности о том, что такая
технология, как CUDA, имеет право на существование и, по всей видимости, будет
весьма популярна.

Небольшое резюме

Параллельные вычисления средствами видеокарты – всего лишь хороший инструмент
в руках трудолюбивого программиста. Вряд ли процессорам во главе с законом Мура
придет конец. Компании NVIDIA предстоит пройти еще длинный путь по
продвижению в массы своего API (то же можно сказать и о детище ATI/AMD).
Какой он будет, покажет будущее. Так что CUDA will be back :).

Источник

CUDA: Как работает GPU

Внутренняя модель nVidia GPU – ключевой момент в понимании GPGPU с использованием CUDA. В этот раз я постараюсь наиболее детально рассказать о программном устройстве GPUs. Я расскажу о ключевых моментах компилятора CUDA, интерфейсе CUDA runtime API, ну, и в заключение, приведу пример использования CUDA для несложных математических вычислений.

Вычислительная модель GPU:

При использовании GPU вы можете задействовать грид необходимого размера и сконфигурировать блоки под нужды вашей задачи.

CUDA и язык C:

Дополнительные типы переменных и их спецификаторы будут рассмотрены непосредственно в примерах работы с памятью.

CUDA host API:

Перед тем, как приступить к непосредственному использованию CUDA для вычислений, необходимо ознакомиться с так называемым CUDA host API, который является связующим звеном между CPU и GPU. CUDA host API в свою очередь можно разделить на низкоуровневое API под названием CUDA driver API, который предоставляет доступ к драйверу пользовательского режима CUDA, и высокоуровневое API – CUDA runtime API. В своих примерах я буду использовать CUDA runtime API.

Понимаем работу GPU:

Как было сказано, нить – непосредственный исполнитель вычислений. Каким же тогда образом происходит распараллеливание вычислений между нитями? Рассмотрим работу отдельно взятого блока.

Задача. Требуется вычислить сумму двух векторов размерностью N элементов.

Нам известна максимальные размеры нашего блока: 512*512*64 нитей. Так как вектор у нас одномерный, то пока ограничимся использованием x-измерения нашего блока, то есть задействуем только одну полосу нитей из блока (рис. 3).
Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit
Рис. 3. Наша полоса нитей из используемого блока.

Заметим, что x-размерность блока 512, то есть, мы можем сложить за один раз векторы, длина которых N // Функция сложения двух векторов
__global__ void addVector( float * left, float * right, float * result)
<
//Получаем id текущей нити.
int idx = threadIdx.x;

Таким образом, распараллеливание будет выполнено автоматически при запуске ядра. В этой функции так же используется встроенная переменная threadIdx и её поле x, которая позволяет задать соответствие между расчетом элемента вектора и нитью в блоке. Делаем расчет каждого элемента вектора в отдельной нити.

Пишем код, которые отвечает за 1 и 2 пункт в программе:

#define SIZE 512
__host__ int main()
<
//Выделяем память под вектора
float * vec1 = new float [SIZE];
float * vec2 = new float [SIZE];
float * vec3 = new float [SIZE];

//Инициализируем значения векторов
for ( int i = 0; i //Указатели на память видеокарте
float * devVec1;
float * devVec2;
float * devVec3;


dim3 gridSize = dim3(1, 1, 1); //Размер используемого грида
dim3 blockSize = dim3(SIZE, 1, 1); //Размер используемого блока

Теперь нам остаеться скопировать результат расчета из видеопамяти в память хоста. Но у функций ядра при этом есть особенность – асинхронное исполнение, то есть, если после вызова ядра начал работать следующий участок кода, то это ещё не значит, что GPU выполнил расчеты. Для завершения работы заданной функции ядра необходимо использовать средства синхронизации, например event’ы. Поэтому, перед копированием результатов на хост выполняем синхронизацию нитей GPU через event.

Код после вызова ядра:

//Выполняем вызов функции ядра
addVector >>(devVec1, devVec2, devVec3);

//Хендл event’а
cudaEvent_t syncEvent;

cudaEventCreate(&syncEvent); //Создаем event
cudaEventRecord(syncEvent, 0); //Записываем event
cudaEventSynchronize(syncEvent); //Синхронизируем event

Рассмотрим более подробно функции из Event Managment API.

Что такое cuda toolkit. Смотреть фото Что такое cuda toolkit. Смотреть картинку Что такое cuda toolkit. Картинка про Что такое cuda toolkit. Фото Что такое cuda toolkit
Рис. 4. Синхронизация работы основоной и GPU прграмм.

На рисунке 4 блок «Ожидание прохождения Event’а» и есть вызов функции cudaEventSynchronize.

Ну и в заключении выводим результат на экран и чистим выделенные ресурсы.

cudaFree(devVec1);
cudaFree(devVec2);
cudaFree(devVec3);

Думаю, что описывать функции высвобождения ресурсов нет необходимости. Разве что, можно напомнить, что они так же возвращают значения cudaError_t, если есть необходимость проверки их работы.

Заключение

Надеюсь, что этот материал поможет вам понять, как функционирует GPU. Я описал самые главные моменты, которые необходимо знать для работы с CUDA. Попробуйте сами написать сложение двух матриц, но не забывайте об аппаратных ограничениях видеокарты.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *