Чем отличается искусственный интеллект

Различия между искусственным интеллектом, машинным обучением и глубоким обучением

Искусственный интеллект, машинное обучение и глубокое обучение уже сейчас являются неотъемлемой частью многих предприятий. Часто эти термины используются как синонимы.

Искусственный интеллект движется огромными шагами — от достижений в области беспилотных транспортных средств и способности обыгрывать человека в такие игры, как покер и Го, к автоматизированному обслуживанию клиентов. Искусственный интеллект — это передовая технология, которая готова произвести революцию в бизнесе.

Часто термины искусственный интеллект, машинное обучение и глубокое обучение используются бессистемно как взаимозаменяемые, но, на самом деле, между ними есть различия. Чем именно различаются эти термины будет рассказано далее.

Искусственный интеллект (ИИ)

Искусственный интеллект — широкое понятие, касающееся передового машинного интеллекта. В 1956 году на конференции по искусственному интеллекту в Дартмуте эта технология была описана следующим образом: «Каждый аспект обучения или любая другая особенность интеллекта могут быть в принципе так точно описаны, что машина сможет сымитировать их.»

Искусственный интеллект может относиться к чему угодно — от компьютерных программ для игры в шахматы до систем распознавания речи, таких, например, как голосовой помощник Amazon Alexa, способный воспринимать речь и отвечать на вопросы. В целом системы искусственного интеллекта можно разделить на три группы: ограниченный искусственный интеллект (Narrow AI), общий искусственный интеллект (AGI) и сверхразумный искусственный интеллект.

Программа Deep Blue компании IBM, которая в 1996 году обыграла в шахматы Гарри Каспарова, или программа AlphaGo компании Google DeepMind, которая в 2016 году обыграла чемпиона мира по Го Ли Седоля, являются примерами ограниченного искусственного интеллекта, способного решать одну конкретную задачу. Это его главное отличие от общего искусственного интеллекта (AGI), который стоит на одном уровне с человеческим интеллектом и может выполнять много разных задач.

Сверхразумный искусственный интеллект стоит на ступень выше человеческого. Ник Бостром описывает его следующим образом: это «интеллект, который намного умнее, чем лучший человеческий мозг, практически во всех областях, в том числе в научном творчестве, общей мудрости и социальных навыках.» Другими словами, это когда машины станут намного умнее нас.

Машинное обучение

Машинное обучение является одним из направлений искусственного интеллекта. Основной принцип заключается в том, что машины получают данные и «обучаются» на них. В настоящее время это наиболее перспективный инструмент для бизнеса, основанный на искусственном интеллекте. Системы машинного обучения позволяют быстро применять знания, полученные при обучении на больших наборах данных, что позволяет им преуспевать в таких задачах, как распознавание лиц, распознавание речи, распознавание объектов, перевод, и многих других. В отличие от программ с закодированными вручную инструкциями для выполнения конкретных задач, машинное обучение позволяет системе научиться самостоятельно распознавать шаблоны и делать прогнозы.

В то время, как обе программы — и Deep Blue, и DeepMind, являются примерами использования искусственного интеллекта, Deep Blue была построена на заранее запрограммированном наборе правил, так что она никак не связана с машинным обучением. С другой стороны, DeepMind является примером машинного обучения: программа обыграла чемпиона мира по Го, обучая себя на большом наборе данных ходов, сделанных опытными игроками.

Заинтересован ли Ваш бизнес в интеграции машинного обучения в свою стратегию? Amazon, Baidu, Google, IBM, Microsoft и другие уже предлагают платформы машинного обучения, которые могут использовать предприятия.

Глубокое обучение

Глубокое обучение является подмножеством машинного обучения. Оно использует некоторые методы машинного обучения для решения реальных задач, используя нейронные сетей, которые могут имитировать человеческое принятие решений. Глубокое обучение может быть дорогостоящим и требует огромных массивов данных для обучения. Это объясняется тем, что существует огромное количество параметров, которые необходимо настроить для алгоритмов обучения, чтобы избежать ложных срабатываний. Например, алгоритму глубокого обучения может быть дано указание «узнать», как выглядит кошка. Чтобы произвести обучение, потребуется огромное количество изображений для того, чтобы научиться различать мельчайшие детали, которые позволяют отличить кошку от, скажем, гепарда или пантеры, или лисицы.

Как уже упоминалось выше, в марте 2016 года искусственным интеллектом была достигнута крупная победа, когда программа AlphaGo DeepMind обыграла чемпиона мира по Го Ли Седоля в 4 из 5 игр с использованием глубокого обучения. Как объясняют в Google, система глубокого обучения работала путем комбинирования «метода Монте-Карло для поиска в дереве с глубокими нейронными сетями, которые прошли обучение с учителем на играх профессионалов и обучения с подкреплением на играх с собой».

Глубокое обучение также имеет бизнес-приложения. Можно взять огромное количество данных — миллионы изображений, и с их помощью выявить определенные характеристики. Текстовый поиск, обнаружение мошенничества, обнаружения спама, распознавание рукописного ввода, поиск изображений, распознавание речи, перевод — все эти задачи могут быть выполнены с помощью глубокого обучения. Например, в Google сети глубокого обучения заменили много «систем, основанных на правилах и требующих ручной работы».

Стоит отметить, что глубокое обучение может быть весьма «предвзятым». Например, когда была первоначально развернута система распознавания лиц Google, она помечала много черных лиц как гориллы. «Это пример того, что произойдет, если у вас нет афроамериканских лиц в вашем наборе обучения», сказала Anu Tewary, главный специалист по работе с данными Mint at Intuit. «Если у вас нет афроамериканцев, работающих над системой, если у вас нет афроамериканцев, тестирующих систему, то, когда ваша система сталкивается с афроамериканскими лицами, она не будет знать, как вести себя.»

Существует мнение, что тема глубокого обучения сильно раздута. Система Sundown AI, например, предоставляет автоматизированные взаимодействия с клиентами с использованием комбинации машинного обучения и policy graph алгоритмов без использования глубокого обучения.

Источник

Искусственный интеллект: краткая история, развитие, перспективы

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Сейчас технологии развиваются с немыслимой скоростью. Ранее те возможности, что, казалось бы, были доступны только профессиональным ученым, в современной жизни доступны каждому. Один из подобных прорывов – искусственный интеллект, прочно обосновавшийся во многих сферах человеческой жизни.

Сегодня поговорим о том, что такое ИИ, как он возник, где применяется, а также чем он отличается от человеческого разума.

Что представляет собой искусственный интеллект

Искусственный интеллект – это свойство интеллектуальной системы выполнять те функции и задачи, которые обычно характерны для разумных существ. Это может быть проявление каких-то творческих способностей, склонность к рассуждению, обобщение, обучение на основании полученного ранее опыта и так далее.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.

История возникновения и развития искусственного интеллекта

Впервые термин artificial intelligence (с английского переводится как «искусственный интеллект») был упомянут в 1956 году Джоном МакКарти, основателем функционального программирования и изобретателем языка Lisp, на конференции в Университете Дартмута.

Однако сама идея подобной системы была сформирована в 1935 году Аланом Тьюрингом. Ученый дал описание абстрактной вычислительной машине, состоящей из безграничной памяти и сканера, перемещающегося вперед и назад по памяти. Однако позднее, в 1950 году, он предложил считать интеллектуальными те системы, которые в общении не будут отличаться от человека.

Тогда же Тьюринг разработал эмпирический тест для оценки машинного интеллекта. Он показывает, насколько искусственная система продвинулась в обучении общению и удастся ли ей выдать себя за человека.

Самая ранняя успешная программа искусственного интеллекта была создана Кристофером Стрейчи в 1951 году. А уже в 1952 году она играла в шашки с человеком и удивляла зрителей своими способностями предсказывать ходы. По этому поводу в 1953 году Тьюринг опубликовал статью о шахматном программировании.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.

Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.

Отличие ИИ от нейросетей и машинного обучения

Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.

Искусственный интеллект, как мы помним, является свойством сложных систем выполнять задачи, обычно свойственные человеку. К ИИ часто относят узкоспециализированные компьютерные программы, также различные научно-технологические методы и решения. ИИ в своей работе имитирует человеческий мозг, при этом основывается на прочих логических и математических алгоритмах или инструментах, в том числе нейронных сетях.

Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.

Если сравнивать с человеком, то ИИ подобен головному мозгу, машинное обучение – это один из многочисленных способов обработки поступающих данных и решения назревающих задач, а нейросети соответствуют объединению более мелких, базовых элементов мозга – нейронов.

Разница между искусственным и естественным интеллектом

Сравнивать искусственный и естественный интеллект можно лишь по некоторым общим параметрам. Например, человеческий мозг и компьютер работают по примерно схожему принципу, включающему четыре этапа – кодирование, хранение данных, анализ и предоставление результатов. И естественный, и искусственный разум склонны к самообучению, они решают те или иные задачи и проблемы, используя специальные алгоритмы.

Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.

Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.

С другой стороны, для ИИ создан собственный «IQ-тест», названный в честь Тьюринга. Он помогает определить, насколько хорошо машина обучилась и способна ли она уподобиться в общении человеку. Это своего рода планка для ИИ, установленная людьми. А ведь все больше ученых склоняется к тому, что скоро компьютеры обгонят человечество по всем параметрам… Развитие технологий идет по непредсказуемому сценарию, и вполне допустимо, что так и будет.

Применение ИИ в современной жизни

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

В зависимости от области и обширности сферы применения, выделяют два вида ИИ – Weak AI, называемый еще «слабым», и Strong AI, «сильный». В первом случае перед системой ставят узкоспециализированные задачи – диагностика в медицине, управление роботами, работа на базе электронных торговых платформ. Во втором же подразумевается решение глобальных задач.

Так, одна из наиболее популярных сфер применения ИИ – это Big Data в коммерции. Крупные торговые площадки используют подобные технологии для исследования потребительского поведения. Компания «Яндекс» вообще создает с их помощью музыку. В некоторые мобильные приложения встроены голосовые помощники вроде Siri, Алисы или Cortana. Они упрощают процесс навигации и совершения покупок в сервисе. И не стоит забывать про программы с нейросетями, обрабатывающими фото и видео.

ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…

Люксовые бренды внедряют ИИ в свои системы для анализа потребностей клиентов. Стремительно развивается использование подобных систем в системах здравоохранения, в основном при диагностике заболеваний, разработке лекарств, создании медицинских страховок, проведении клинических исследований и так далее.

Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.

Влияние на различные области

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают.

Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно.

Перспективы развития искусственного интеллекта

Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.

Заключение

Не так давно, казалось бы, ученые ввели понятие «искусственный интеллект», а чуть больше полвека спустя технология уже находит широкий спрос в самых различных сферах. Сейчас искусственный разум, можно сказать, находится в шаговой доступности для любого человека – компьютер и ноутбук, смартфон и электронные часы, даже многие простейшие приложения работают именно с его помощью. ИИ в самых разных своих проявлениях проник во многие сферы человеческой жизни и прочно обосновался в них.

Возможно, страхи ученых вполне обоснованы? Как знать 🙂

Источник

Как работают искусственный интеллект, машинное и глубокое обучение

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Об авторе: Андрей Беляев, технический директор (CTO) исследовательской компании Neurodata Lab.

Умные дома, самоуправляемые автомобили, роботы-помощники… Нас окружают инновационные технологии, в основе которых лежат алгоритмы, по своей специфике напоминающие работу человеческого мозга. Их называют по-разному: алгоритмы с использованием машинного обучения, глубокого обучения, а иногда и вовсе искусственный интеллект (ИИ).

В чем разница между этими названиями?

Все задачи, которые может решать человек или компьютер, можно условно разделить на две категории: рутинные и нерутинные.

К рутинным задачам можно отнести те, где достаточно просто найти универсальный путь решения: например, сложение чисел или измерение температуры воздуха.

Искусственным интеллектом сейчас принято называть все, что способно решать нерутинные задачи на уровне, близком к человеческому, а иногда и лучше. Такие задачи окружают нас везде. Камеры над дорогой вычисляют скорость автомобиля, распознают его знак и высылают штраф, а системы безопасности в метро и аэропортах находят преступников в толпе. Все это сегодня принято считать искусственным интеллектом, хотя в действительности алгоритмы, лежащие в основе каждой такой технологии, уникальны. И только некоторые используют машинное обучение.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Получается, что машинное обучение — это обучение ИИ

Искусственный интеллект — это название не какого-то отдельного алгоритма, но скорее группы методов, которыми пользуются для решения различного рода задач. Алгоритмы, которые используют подходы с обучением, являются лишь одной из подгрупп всего того множества алгоритмов, что принято называть искусственным интеллектом.

Машинное обучение — это подход, при котором алгоритм «учится» решать задачу. Один из самых простых примеров алгоритма, использующего машинное обучение, это классификация фотографий на те, где изображены кошки и те, где есть собаки:

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

Применяя методы машинного обучения, эти же алгоритмы можно «натренировать» и для выполнения более сложных задач — таких как поиск людей на кадре, определение пола и возраста человека и т.д.

Такие алгоритмы можно научить решать задачи любой сложности?

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

А что насчет глубокого обучения? Чем оно отличается от машинного?

Как машинное обучение является подвидом искусственного интеллекта, так и глубокое обучение является подвидом машинного (см. картинку в начале статьи). В глубоком обучении используются те же подходы: алгоритму дают много данных и «ругают» его за ошибки. Разница здесь в том, что сами алгоритмы глубокого обучения устроены гораздо сложнее и часто используют более серьезные математические модели. Сейчас под алгоритмами глубокого обучения практически всегда подразумевают нейронные сети.

Нейронные сети? Как те, что в мозгу у человека?

Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Некоторое количество идей, используемых в нейросетях, разработчики почерпнули из знаний об устройстве человеческого мозга. Одни из самых частых задач для нейросетей — это задачи, связанные с работой с изображениями. Для таких задач используют специальный тип нейросетей, внутри которых есть так называемые сверточные слои.

Если говорить упрощенно, смысл этой сверточной нейронной сети в том, чтобы оценивать каждый элемент картинки (пиксель) не отдельно, а в группе с несколькими соседними, благодаря чему можно находить как базовые фигуры (линии, углы, и т.д.), так и объекты целиком. Примерно такой же процесс происходит и в человеческом мозге при обработке визуальной информации. После снятия всех возможных визуальных признаков в нейросети, как и в человеческом мозге, происходит анализ этих признаков, а затем принимается решение: видим мы, допустим, кошку или собаку.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

А как происходит процесс обучения?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

Что значит «поощрять» и «штрафовать» нейросеть?

С математической точки зрения нейросеть — это функция с большим количеством параметров. Штрафование этой функции за неверное определения лица — это когда мы, упрощенно говоря, корректируем работу функции таким образом, чтобы в будущем она меньше ошибалась. Соответственно, поощрение нейросети — это когда мы ее просто не штрафуем.

Чем отличается искусственный интеллект. Смотреть фото Чем отличается искусственный интеллект. Смотреть картинку Чем отличается искусственный интеллект. Картинка про Чем отличается искусственный интеллект. Фото Чем отличается искусственный интеллект

Во всех примерах вы рассказываете про конкретные задачи. А можно ли нейросеть научить думать, как человек?

Это уже скорее философский вопрос. Мыслительный процесс напрямую связан с наличием сознания. Нейронная сеть, как и любой другой алгоритм машинного обучения, по своей сути является лишь математической функцией, и умеет решать лишь одну конкретную задачу. Нейросеть, которую учили отличать кошек и собак, не сможет отличить медведя от слона, ведь она даже не знала, что такие существуют. Процессы же анализа данных, которые происходят в голове у человека, намного сложнее чем те, что происходят в нейросети, так что даже при наличии данных, сопоставимых по размеру с массивом информации, которую за жизнь получает человек, сегодня обучить нейросеть думать, как человек, невозможно.

Подписывайтесь и читайте нас в Яндекс.Дзене — технологии, инновации, эко-номика, образование и шеринг в одном канале.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *