Чем определяется период в автоколебательном генераторе незатухающих электромагнитных колебаний
Генератор электромагнитных колебаний.
Генератор электромагнитных колебаний
Генератор электромагнитных колебаний представляет собой один из примеров автоколебательных систем.
Получение незатухающих колебаний в контуре.
Если конденсатор колебательного контура заряжен, то в контуре возникают затухающие колебания. Электрическая энергия W переходит во внутреннюю энергию:.
Пополнять энергию колебательного контура можно, подзаряжая конденсатор. Для этого контур подключают к источнику тока. Контур подключается к источнику тока только в те интервалы времени, когда пластина конденсатора, присоединенная к положительному полюсу источника, заряжена положительно.
Если источник постоянного тока будет все время подключен к контуру, то в энергия поступает в контур, а следующую
возвращается в источник, т. е. колебания затухают.
Частота колебаний, возникающих в контуре, определяется его параметрами (индуктивностью и емкостью), а амплитуда колебаний – напряжением на источнике (его эдс).
Незатухающие колебания установятся в том случае, если контур будет подключаться к источнику только в первую половину периода. Для выполнения такого условия ключ должен замыкать и размыкать цепь с частотой, соответствующей частоте электромагнитных колебаний контура. Однако механический ключ инертен.
Безынерционным ключом является транзистор. Транзистор обеспечивает поступление энергии к колебательному контуру, если напряжение на электронном переходе меняется синфазно с напряжением на контуре.
Генератор высокочастотных колебаний на транзисторе
Первая четверть периода. Положительно заряженная пластина конденсатора, соединенная с коллектором, разряжается. Ток в колебательном контуре возрастает до максимального значения. В катушке связи возникает индукционный ток такого направления, что база имеет отрицательный потенциал относительно эмиттера. Переходы база — коллектор и эмиттер — база прямые. Транзистор открыт. Энергия от источника поступает через транзистор в колебательный контур (ключ замкнут).
Вторая четверть периода. Ток в контуре убывает. Верхняя пластина заряжается отрицательно. В катушке связи ток меняет направление. На базе положительный потенциал. Переход коллектор—база обратный. Тока в цепи нет (ключ разомкнут).
Третья четверть периода. Конденсатор разряжается. Ток растет до максимального значения, направлен от нижней пластины к верхней. В катушке связи ток направлен так, что база получает положительный потенциал. Переход база — коллектор обратный. Тока в цепи нет (ключ разомкнут).
Четвертая четверть периода. Ток в контуре, не меняя направления, убывает. Верхняя пластина заряжается положительно.
В катушке связи ток меняется по направлению. Заряд на базе отрицательный. Переходы база — коллектор и эмиттер — база прямые. Энергия поступает от источника в колебательный контур (ключ замкнут).
Таким образом, происходят незатухающие электромагнитные колебания за счет поступления энергии от источника в колебательный контур в течение 1/2 Т.
Чем определяется период в автоколебательном генераторе незатухающих электромагнитных колебаний
После однократной зарядки конденсатора в колебательном контуре возникают гармонические колебания, частота колебаний определяется параметрами контура. Электромагнитные колебания в любом реальном контуре быстро затухают из-за потерь энергии на нагревание проводок и излучение электромагнитных волн. Для поддержания незатухающих электромагнитных колебаний в контуре необходимо пополнять запасы энергии в нем. Это можно сделать, периодически подключая конденсатор контура к источнику постоянного тока. Трудность заключается в том, что электрические колебания в контуре происходят с частотой сотни тысяч или миллионы герц. С такой частотой конденсатор нужно подключать к источнику постоянного тока и отключать от него; при этом согласуя моменты подключений обкладок конденсатора с моментами приобретения ими заряда, совпадающими по знаку со знаками полюсов подключаемого источника тока.
В качестве быстродействующего «ключа» для получения незатухающих высокочастотных колебаний может использоваться полупроводниковый транзистор. Через транзистор (рис. 232) конденсатор колебательного контура соединяется с источником постоянного тока. Пока на базу транзистора не подается управляющий сигнал, ток через него не проходит, конденсатор отключен от источника постоянного тока. При подаче управляющего сигнала на базу через транзистор протекает электрический ток и конденсатор колебательного контура заряжается от источника постоянного тока.
Для согласования моментов подключения колебательного контура к источнику постоянного тока с соответствующими моментами изменения напряжения на конденсаторе используется принцип обратной связи.
При зарядке и разрядке конденсатора колебательного контура изменения силы тока в катушке контура вызывают изменения магнитного поля вокруг нее. При этом происходят изменения магнитного потока и возникает ЭДС индукции во второй катушке
называемой катушкой обратной связи. Один конец катушки обратной связи соединен с эмиттером транзистора, второй через конденсатор С — с его базой. Катушка обратной связи включена таким образом, что при увеличении силы тока в цепи коллектора на базу подается напряжение, отпирающее транзистор;
при уменьшении коллекторного тока — напряжение, запирающее транзистор. Такой тип связи называется положительной обратной связью.
Резистор в цепи базы транзистора задает начальные значения силы тока базы и коллектора при отсутствии переменного напряжения на концах катушки связи
Задание начального тока через транзистор позволяет усиливать как положительные, так и отрицательные сигналы, поступающие на вход транзистора.
Если конденсатор колебательного контура имеет в начальный момент небольшой заряд и разряжается через катушку то в контуре возникают свободные электрические колебания малой амплитуды. Эти колебания через цепь обратной связи управляют коллекторным током транзистора, конденсатор колебательного контура через транзистор периодически получает дополнительный электрический заряд. При этом энергия электрического поля в конденсаторе увеличивается, растет амплитуда колебаний напряжения на конденсаторе колебательного контура.
Однако увеличение амплитуды колебаний напряжения в электрическом контуре не продолжается беспредельно. Объясняется это нелинейной зависимостью напряжения на выходе транзистора от напряжения на его входе. При возрастании напряжения между базой и эмиттером сила тока через транзистор увеличивается, однако это возрастание с увеличением напряжения между базой и эмиттером становится все меньше. При некотором значении амплитуды колебаний напряжения между базой и эмиттером возрастание амплитуды коллекторного тока прекращается. При этом потери энергии в колебательном контуре за период компенсируются поступлением энергии в контур от источника тока.
Рассмотренный генератор незатухающих электромагнитных колебаний является примером автоколебательной системы. Автоколебательной называется система, состоящая из элемента, в котором могут происходить свободные колебания источника энергии, элемента, управляющего поступлением энергии от источника к колебательной системе, и устройства, обеспечивающего положительную обратную связь колебательной системы с управляющим элементом. Особенностью автоколебательной системы является поддержание колебаний постоянной амплитуды за счет автоматического пополнения энергии в колебательной системе от внутреннего источника.
В транзисторном генераторе элементом, в котором могут происходить свободные колебания, является электрический контур; источником энергии для поддержания незатухающих колебаний может быть гальваническая батарея, аккумулятор или другой источник постоянного тока.
Управляющим элементом в автогенераторе является транзистор, обратная связь осуществляется с помощью катушки индуктивно связанной с катушкой электрического колебательного контура.
Учебники
Журнал «Квант»
Общие
Автоколебания. Генератор незатухающих колебаний (на транзисторе)
Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.
Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.
Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль «клапана» играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.
При замыкании цепи через транзистор проходит импульс тока, который заряжает конденсатор С колебательного контура, в результате чего в контуре возникают свободные электромагнитные колебания малой амплитуды. Ток, протекающий по контурной катушке L, индуцирует на концах катушки обратной связи переменное напряжение. Под действием этого напряжения электрическое поле эмиттерного перехода периодически то усиливается, то ослабляется, а транзистор то открывается, то запирается. В те промежутки времени, когда транзистор открыт, через него проходят импульсы тока. Если катушка Lсв подключена правильно (положительная обратная связь), то частота импульсов тока совпадает с частотой колебаний, возникших в контуре, и импульсы тока приходят в контур в те моменты, когда конденсатор заряжается (когда верхняя пластина конденсатора заряжена положительно). Поэтому импульсы тока, проходящие через транзистор, подзаряжают конденсатор и пополняют энергию контура, и колебания в контуре не затухают.
Если при положительной обратной связи медленно увеличивать расстояние между катушками Lсв и L, то с помощью осциллографа можно обнаружить, что амплитуда автоколебаний уменьшается, и автоколебания могут прекратиться. Это значит, что при слабой обратной связи энергия, поступающая в контур, меньше энергии, необратимо преобразуемой во внутреннюю. Таким образом, обратная связь должна быть такой, чтобы: 1) напряжение на эмиттерном переходе изменялось синфазно с напряжением на конденсаторе контура — это фазовое условие самовозбуждения генератора; 2) обратная связь обеспечивала бы поступление в контур столько энергии, сколько ее необходимо для компенсации потерь энергии в контуре — это амплитудное условие самовозбуждения.
Частота автоколебаний равна частоте свободных колебаний в контуре и зависит от его параметров.
Уменьшая L и С, можно получить высокочастотные незатухающие колебания, используемые в радиотехнике.
Амплитуда установившихся автоколебаний, как показывает опыт, не зависит от начальных условий и определяется параметрами автоколебательной системы — напряжением источника, расстоянием между Lсв и L, сопротивлением контура.
Литература
Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 394-395.
Автоколебания. Генератор незатухающих колебаний (на транзисторе)
Свободные электромагнитные колебания в реальном колебательном контуре всегда затухающие. Для того чтобы они были незатухающими, нужно создать устройство, с помощью которого компенсировались бы потери энергии при каждом полном колебании в контуре. Широко применимы так называемые автоколебания — незатухающие колебания, поддерживаемые в системе за счет постоянного внешнего источника энергии, причем сама система управляет им, обеспечивая согласованность поступления энергии определенными порциями в нужный момент времени.
Любая автоколебательная система состоит из следующих четырех частей (рис. 1): 1) колебательная система; 2) источник энергии, за счет которого компенсируются потери; 3) клапан — некоторый элемент, регулирующий поступление энергии в колебательную систему определенными порциями в нужный момент; 4) обратная связь — управление работой клапана за счет процессов в самой колебательной системе.
Генератор на транзисторе — пример автоколебательной системы. На рисунке 2 приведена упрощенная схема такого генератора, в котором роль «клапана» играет транзистор. Колебательный контур подключен к источнику тока последовательно с транзистором. Эмиттерный переход транзистора через катушку Lсв индуктивно связан с колебательным контуром. Эту катушку называют катушкой обратной связи.
1. Источник энергии, за счет которого поддерживаются незатухающие колебания (в генераторе на транзисторе это источник постоянного напряжения).
2. Колебательная система — та часть автоколебательной системы, непосредственно в которой происходят колебания (в генераторе на транзисторе это колебательный контур).
3. Устройство, регулирующее поступление энергии от источника в колебательную систему, — клапан (в рассмотренном генераторе роль клапана выполняет транзистор).
4. Устройство, обеспечивающее обратную связь, с помощью которой колебательная система управляет клапаном (в генераторе на транзисторе предусмотрена индуктивная связь катушки контура с катушкой в цепи эмиттер — база).
В генераторе на транзисторе вырабатываются незатухающие колебания различных частот. Без таких систем не было бы ни современной радиосвязи, ни телевидения, ни ЭВМ.
Дата добавления: 2015-04-18 ; просмотров: 150 ; Нарушение авторских прав
Теоретическое введение. Ламповый генератор- это радиотехнический прибор, служащий для получения незатухающих электромагнитных колебаний
Ламповый генератор- это радиотехнический прибор, служащий для получения незатухающих электромагнитных колебаний.
Основной частью лампового генератора является колебательный контур, т.е. электрическая цепь, состоящая из индуктивности и ёмкости (рис. 1).
|
Если колебательному контуру сообщить запас энергии, например, зарядить конденсатор от батареи, а затем предоставить контур самому себе, то в нём возникнут электромагнитные колебания.
Пусть в некоторый момент конденсатор был заряжен до какой- то разности потенциалов, а затем источник напряжения был отключён. Конденсатор начнёт разряжаться через катушку индуктивности. Если вместо катушки индуктивности взять короткий провод, обладающий малой индуктивностью, которой мы можем пренебречь, то конденсатор разрядится периодически (рис. 2). При наличии индуктивности процесс будет происходить иначе. Причиной тому является ЭДС самоиндукции, которая возникает в катушке индуктивности при прохождении через неё тока изменяющейся величины.
|
Если при разрядке конденсатора ЭДС самоиндукции препятствует быстрому нарастанию тока, то, когда разность потенциалов на конденсаторе станет равной нулю, и ток уменьшается, она поддержит спадающий ток, и произойдёт перезарядка конденсатора.
Затем разряд конденсатора начнётся снова, только в обратном направлении и т.д. Таким образом, в цепи состоящей из индуктивности и ёмкости, возникнут колебания: периодические, по гармоническому закону, будут изменяться напряжение и величина заряда на конденсаторе, магнитный поток в катушке, энергия электрического поля в конденсаторе будет переходить в энергию магнитного поля в катушке и обратно. Эти колебания подобны колебаниям свободного математического маятника.
Частота (или период) электромагнитных колебаний в контуре полностью определяется его параметрами L, C и R.
Теория даёт для периода колебаний в контуре, омическое сопротивление которого ничтожно мало, формулу
Т = 2π (формула Томсона)
Свободные колебания, определяющиеся свойствами контура, называются собственными колебаниями контура (рис. 3) являются всегда затухающими из- за неизбежной потери энергии, которая тратится в основном на выделение тепла.
Рассмотрим колебательный процесс в этом контуре. В начальный момент времени при t = 0 заряд на обкладках конденсатора qm. Замыкание контура ключом К приводит к возникновению тока I, который вызовет в катушке ЭДС самоиндукции: .
Используя II закон Кирхгофа для мгновенных значений ЭДС и напряжений, можно записат
Ec =
UR + UC
-L =UR + UC UC =
; UR = IR
L + R
+
q =0 (1) I =
;
=
Уравнение (1) – это дифференциальное уравнение затухающих колебаний в контуре.
Решение этого уравнения имеет вид
β =
ω=
w0 – собственная угловая частота колебаний в контуре
ω0=
ω =
Период колебаний определяется по формуле
T =
T =
Графически зависимость q от времени t можно выразить так (рис.4)
Так как омическое сопротивление никогда не может равняться нулю, то сам по себе контур не может служить источником непрерывных электромагнитных колебаний. Для получения незатухающих колебаний нужно пополнять энергию контура за счёт какого- либо внешнего источника. Причём это необходимо делать в такт колебаниям, иначе их можно совсем погасить
Современная радиотехника для получения незатухающих колебаний широко применяет ламповые генераторы. Одна из возможных схем лампового генератора представлена на (рис. 5).
|
Соединение контура с анодной батареей через лампу производится в промежутке времени, когда знаки зарядов на пластинах конденсатора совпадают с полярностью анодной батареи. Когда же они меняются на противоположные, ток в лампе должен прекратиться. Описанный процесс в радиотехнике называется обратной связью, а катушка Ls – катушкой обратной связи. Существуют ламповые генераторы и других конструкций. С их помощью можно получить электромагнитные колебания самых разнообразных частот и длин волн: от высоких n=10 9 Гц, l=30 см, до весьма низких n и больших l. Это обуславливает широкое применение ламповых генераторов в технике.