Чем определяется фармакодинамический эффект лекарственного препарата

Фармакодинамика

Полезное

Смотреть что такое «Фармакодинамика» в других словарях:

фармакодинамика — фармакодинамика … Орфографический словарь-справочник

ФАРМАКОДИНАМИКА — (греч., от pharmakon лекарство, и dynamis сила). Учение о силе лекарственных средств. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФАРМАКОДИНАМИКА греч., от pharmakon, лекарство, и dynamis, сила. Учение о силе… … Словарь иностранных слов русского языка

ФАРМАКОДИНАМИКА — (от греч. pharmakon лекарство и dynamis сила), раздел фармакологии, изучающий совокупность эффектов, вызываемых лекарственным веществом, а также механизм его действия. Фармакодинамика токсических веществ носит название токсикодинамики.… … Экологический словарь

фармакодинамика — – раздел фармацевтической химии, задачей которого является изучение метаболизма лекарственных препаратов … Краткий словарь биохимических терминов

Фармакодинамика — Фармакодинамика раздел фармакологии, изучающий биохимические эффекты и физиологические действия лекарств на тело человека, на микроорганизмы или паразитов, находящихся внутри тела человека или снаружи. Она также изучает механизмы действия… … Википедия

ФАРМАКОДИНАМИКА — (pharmacodynamics) изучение механизмов действия лекарственных препаратов на клетки организма. Фармакодинамика включает в себя изучение таких факторов, как связывание лекарственных веществ с клетками, их усвоение в организме и их внутриклеточный… … Толковый словарь по медицине

фармакодинамика — (фармако + греч. dynamikos имеющий силу, действующий) раздел фармакологии, изучающий совокупность эффектов, вызываемых лекарственным веществом, а также механизмы его действия … Большой медицинский словарь

фармакодинамика — … Словарь синонимов

фармакодинамика — (1 ж) … Орфографический словарь русского языка

фармакодинамика — фармакодина/мика, и … Слитно. Раздельно. Через дефис.

Источник

ФАРМАКОДИНАМИКА

ФАРМАКОДИНАМИКА (греческий pharmakon лекарство + dynamikos сильный) — составная часть фармакологии, изучающая локализацию, механизм действия и фармакологические эффекты лекарственных веществ.

Влияние лекарственных веществ на функции какого-либо органа или ткани обусловлено прямым или косвенным воздействием веществ на биохимические субстраты, от которых зависит та или иная функция. Прямое взаимодействие с субстратом чаще всего осуществляется путем соединения лекарственного вещества со специфическими рецепторами, которыми могут быть любые функционально значимые макромолекулы или их фрагменты. Кроме специфических рецепторов, выделяют так называемые неспецифические рецепторы, при связывании с которыми лекарственные вещества не вызывают функциональных изменений.

Большинство из известных типов специфических рецепторов относится к клеточным протеинам, локализованным либо в клеточной мембране (холинорецепторы, инсулиновые рецепторы и др.), либо в цитоплазме (рецепторы большинства стероидных гормонов). Известны специфические рецепторы и иной химической природы, напр, ядерные нуклеиновые кислоты, с которыми взаимодействуют противоопухолевые средства (см.) из числа алкилирующих веществ. Рецепторы ферментов (см.), напр, активные центры ацетилхолинэстеразы, моно-аминоксидазы и др., также рассматриваются как специфические рецепторы. Некоторые специфические рецепторы, в частности н-холинорецепторы скелетных мышц, выделены в изолированном виде и установлено их детальное строение. Изолирование большинства других специфических рецепторов встречает большие методические трудности. Характер многих специфических рецепторов не установлен, хотя существование их доказано разными методическими приемами и в том числе радиолигандными методами (см. Радиоизо-топное исследование).

Специфические рецепторы имеют определенную локализацию. Например, м-холинорецепторы локализованы в постсинаптических мембранах эффекторных клеток в области окончаний холинергических волокон (см. Синапс); опиатные рецепторы в центральной нервной системен (см. Опиаты эндогенные) находятся в нейронах серого вещества околоводопроводного пространства и задних рогов спинного мозга.

Прочность связывания вещества с рецепторами обозначают термином «аффинитет». Вещества, действующие на одни и те же рецепторы, могут обладать по отношению к ним разной степенью аффинитета. При этом вещества с более высоким аффинитетом могут вытеснять вещества с меньшим аффинитетом из соединения с рецепторами. Для определения равновесного состояния между «оккупированными» рецепторами (DR), свободными рецепторами (R) и свободным веществом (D) используется константа диссоциации (КD), которую определяют по следующей формуле:

Отрицательный логарифм KD(pKD) является показателем аффинитета. Для характеристики аффинитета часто используют показатель pD2, то есть отрицательный логарифм ЕС50 (концентрации вещества, в которой оно вызывает эффект, составляющий 50% от максимального эффекта).

Способность веществ после их взаимодействия со специфическими рецепторами вызывать биохимические или физиологические реакции, соответствующие функциональной значимости этих рецепторов, называют внутренней активностью. Внутренняя активность какого-либо вещества определяется отношением величины его максимального эффекта к максимальному эффекту другого (стандартного) вещества. Так, если внутреннюю активность вещества А принять за единицу, а максимальный эффект вещества Б составляет 50% от максимального эффекта вещества А, то внутренняя активность вещества Б составит 0,5. Следует отметить, что максимальный эффект вещества может достигаться при «оккупации» этим веществом лишь части специфических рецепторов.

Специфические рецепторы могут иметь одни и те же или разные места связывания для агонистов и антагонистов. Возможны разные места связывания для разных агонистов. В том случае, когда агонист и антагонист имеют одни и те же места связывания, и блокирующее действие антагониста на рецептор полностью устраняется при повышении концентрации агониста (достигается максимальный эффект агониста), отношения между антагонистом и агонистом обозначают как конкурентный антагонизм (см. Антагонизм лекарственных веществ). Если места связывания для агониста и антагониста различны, то отношения между ними определяют как неконкурентный антагонизм. Для характеристики антагонистов часто используют показатель рА2 (отрицательный логарифм молярной концентрации антагониста, при к-рой для получения стандартного эффекта агониста его концентрацию надо увеличить вдвое).

В условиях целого организма агонисты и антагонисты вызывают изменения тех или иных физиологических функций. Действие антагонистов при этом определяется тем, что они препятствуют влиянию на специфические рецепторы соответствующих естественных лигандов (например, антагонист м-холинорецепторов атропин препятствует действию их агониста ацетилхолина). Изменения, которые непосредственно связаны с взаимодействием веществ со специфическими рецепторами, обозначают термином «первичная фармакологическая реакция», которая может быть началом целой серии реакций, приводящих к стимуляции или угнетению определенных физиологических функций.

Продолжительное воздействие агонистов на специфические рецепторы нередко сопровождается их де-сенситизацией (снижением чувствительности). Последняя может быть связана с изменениями рецепторов, уменьшением их количества (плотности) или нарушением процессов, к-рые следуют за возбуждением рецепторов. При этом фармакологические эффекты агонистов становятся менее выраженными.

Таким образом, фармакологические эффекты большинства лекарственных средств связаны с их воздействием на соответствующие специфические рецепторы. В то же время действие некоторых лекарственных веществ не связано со специфическими рецепторами. Так, для осмотических диуретиков — маннита, мочевины (см. Мочегонные средства) — не существует специфических рецепторов. Эти вещества повышают осмотическое давление (см.) в почечных канальцах, вследствие чего нарушается реабсорбция воды и увеличивается диурез. Со специфическими рецепторами не связано действие адсорбирующих средств (см.), кислотообразующих диуретиков, комплексонов (см.).

Способы, которыми лекарственные вещества вызывают те или иные фармакологические эффекты, обозначают термином «механизмы действия». Это понятие используют для объяснения действия лекарственных веществ на молекулярном, органном и системном уровнях. Напр., механизм действия антихолинэстеразных средств (см.) на молекулярном уровне сводится к блокаде ацетилхолинэстеразы путем взаимодействия с ее анионным и эстеразным центрами. Вместе с тем, объясняя механизм гипотензивного действия антихолинэстеразных средств, указывают в качестве причины этого эффекта брадикардию и расширение сосудов, то есть рассматривают механизм данного эффекта на органном уровне.

Механизмы действия отдельных лекарственных средств изучены в разной степени. В связи с этим исследования механизмов действия лекарственных веществ ведутся постоянно, причем представления о механизме действия того или иного лекарственного вещества по мере получения новых данных могут не только становиться более детальными, но и существенно изменяться.

Предметом фармакодинамики являются также виды действия лекарственных средств. Различают местное, резорбтивное и рефлекторное действие, главное и побочное, прямое и косвенное, обратимое и необратимое, избирательное и неизбирательное, терапевтическое и токсическое действие. Примером местного действия может быть действие местных анестетиков при поверхностной анестезии, хотя при этом часть анестетика может всасываться и оказывать резорбтивное действие, то есть общее действие после всасывания. Рефлекторно действуют, например, раздражающие вещества (см.).

Главным (основным) называют действие веществ, которое используется в лечебных целях в каждом конкретном случае (в других случаях оно может быть побочным). Действие, не имеющее лечебного значения в каком-либо конкретном случае, называют побочным. Побочное действие, как правило, неблагоприятно для больного (см. Побочные действия лекарственных средств).

Примером прямого действия может быть действие сердечных гликозидов на сердце. Косвенное действие проявляется, в частности, увеличением диуреза, связанным с улучшением кровоснабжения почек.

Большинство лекарственных средств действует обратимо, однако возможно и необратимое действие, напр, блокада ацетилхолинэстеразы фосфорорганическими соединениями (см.).

Лекарственные средства изменяют различные функции организма с разной степенью избирательности действия. Примером избирательного действия является миопаралитический эффект некоторых курареподобных средств, которые в терапевтических дозах мало влияют на другие ткани и органы. Нередко вместо термина «избирательное действие» используют термин «преимущественное действие», так как истинная избирательность действия лекарственных веществ практически не встречается. Ряд лекарственных веществ оказывает влияние одновременно на многие функции организма, то ест проявляет неизбирательное действие. К таким веществам относятся, например, средства для наркоза (см. Наркоз, т. 20, доп. материалы).

Действие веществ при превышении их терапевтических доз называют токсическим. Неблагоприятные эффекты применяемых женщинами во время беременности лекарственных веществ в отношении плода обозначают как эмбриотоксическое действие. Если такое действие ведет к врожденным порокам развития (см.), то его обозначают как тератогенный эффект (см. Тератогенез). Эмбриотоксические, и в том числе тератогенный, эффекты обычно рассматривают как проявление побочного действия лекарственных веществ.

Фармакодинамика лекарственных веществ зависит от многих факторов, в частности от свойств самих веществ, их дозировки, времени их назначения, комбинации с другими лекарственными препаратами, а также от особенностей организма, на который данные вещества воздействуют.

Наиболее важным фактором, определяющим действие лекарственных веществ, является их хим. строение. В целом для веществ со сходной химической структурой характерны и сходные особенности фармакодинамики. Однако в ряде случаев фармакодинамики веществ с очень близким химическим строением может существенно различаться. Примером могут служить значительные различия в величине фармакологических эффектов между стереоизомерами ряда лекарственных средств (адреналина, анаприлина и др.). Определенное значение для фармакодинамики лекарственных средств могут иметь и их физические и физико-химические свойства: растворимость в воде и липидах, летучесть, степень диссоциации и др.

Действие лекарственных средств в значительной степени зависит от их дозы (см.) или концентрации. В целом при увеличении дозы увеличивается и выраженность фармакологических эффектов лекарственных средств. Чаще всего при этом регистрируется S-образная зависимость между дозой и величиной эффекта; возможны также линейная и гиперболическая зависимости. При сопоставлении активности двух лекарственных средств сравнивают их изоэффективные дозы, обычно дозы 50% эффекта (ЭД50). Считается, что вещество А во столько раз активнее вещества Б, во сколько ЭД50 вещества А меньше ЭД50 вещества Б. Кроме того, выделяют понятие «эффективность» веществ. Об эффективности судят по величине максимального эффекта лекарственного препарата.

Зависимость действия лекарственных веществ от времени их назначения относится к разделу хронофармакологии. Наиболее подробно изучены суточные ритмы в действии лекарственных средств, к-рые зависят от циркадности процессов, происходящих в организме (в частности, известны циркадные ритмы в секреции гормонов, активности микросомальных ферментов и др.). Так, глюкокортикоидные препараты (см. Глюкокортикоидные гормоны) наиболее эффективны при их назначении в 8 часов, инсулин (см.) — в 8—13 часов, аллергические реакции на лекарственные вещества чаще возникают в 21 — 24 часа (в это же время суток наиболее эффективны противогистаминные средства). Известны также годичные ритмы фармакологической активности; предполагают существование месячных и недельных ритмов.

Фармакодинамика лекарственных средств может меняться при повторных их назначениях. Так, возможно развитие привыкания к лекарственным средствам (см.). При этом для достижения прежнего эффекта необходимо увеличивать дозу лекарственного вещества. Быстрое развитие привыкания обозначают термином тахифилаксия (см.). При повторных введениях лекарственных средств к ним может развиваться лекарственная зависимость (см.).

При одновременном назначении двух лекарственных средств они могут усиливать (синергизм) или ослаблять действие друг друга (антагонизм). Различают следующие виды синергизма: потенцирование, аддитивное действие, прямой синергизм, косвенный синергизм (см. Синергизм лекарственных веществ). Антагонизм также может быть прямым и косвенным. Антагонизм, связанный с химическим или физико-химическим взаимодействием лекарственных веществ, называют антидотизмом.

На фармакодинамику лекарственных веществ могут оказывать влияние пол, возраст, функциональные и патологические состояния, а также генетические особенности организма. Так, известно, что активность микросомальных энзимов печени, которые инактивируют многие лекарственные средства, стимулируется андрогенами, поэтому мужчины более устойчивы к токсическому действию веществ по сравнению с женщинами. Система микросомальных энзимов очень несовершенна у новорожденных и в значительной степени утрачивает свою активность в пожилом возрасте, чем объясняется более высокая чувствительность детей и пожилых лиц к некоторым лекарственным средствам. Лекарственные вещества, стимулирующие какие-либо функции (стимуляторы центральной нервной системы, гормональные препараты и др.), как правило, более эффективны на фоне угнетения соответствующих функций. Некоторые вещества оказывают терапевтическое действие лишь в условиях патологии, например, жаропонижающие средства (см.), антидепрессанты (см.) и др.

Генетическими особенностями (генетически обусловленными энзимопатиями) объясняют идиосинкразию (см.), то есть необычные реакции на отдельные лекарственные препараты. Примером идиосинкразии могут быть значительное удлинение действия дитилина (недостаточность псевдохолинэстеразы), гемолиз при применении прима хина (недостаточность глюкозо-6-фосфат—дегидрогеназы) и др.

Кроме перечисленных факторов, фармакодинамика тесно связана с фармакокинетическими особенностями лекарственных средств, то есть их распределением, депонированием, характером метаболизма и выведением из организма (см. Фармакокинетика).

Источник

Фармакодинамика. Фармакологические эффекты, механизм действия

» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>

Фармакодинамика

Глава 2. Фармакодинамика (Т.А. Зацепилова, Д.А. Еникеева)

Фармакодинамика включает понятия о фармакологических эффектах, ло­кализации действия и механизмах действия лекарственных веществ (т.е. представ­ление о том, как, где и каким образом лекарственные вещества действуют в организме). К фармакодинамике относится также понятие о видах действия ле­карственных веществ.

ФАРМАКОЛОГИЧЕСКИЕ ЭФФЕКТЫ, ЛОКАЛИЗАЦИЯ И МЕХАНИЗМЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Фармакологические эффекты – изменения функции органов и си­стем организма, вызываемые лекарственными веществами. К фармакологичес­ким эффектам лекарственных веществ относятся, например, повышение часто­ты сердечных сокращений, снижение артериального давления, повышение порога болевой чувствительности, снижение температуры тела, увеличение продолжи­тельности сна, устранение бреда и галлюцинаций и т.п. Каждое вещество, как правило, вызывает ряд определенных, характерных для него фармакологических эффектов. При этом одни фармакологические эффекты лекарственного вещества являются полезными — благодаря этим эффектам лекарственное вещество исполь­зуют в медицинской практике (основные эффекты), а другие эффекты, вызывае­мые лекарственным веществом, не используются и, более того, являются неже­лательными (побочные эффекты).

Для многих веществ известны места их преимущественного действия в орга­низме — т.е. локализация действия. Некоторые вещества преимуществен­но действуют на определенные структуры мозга (противопаркинсонические сред­ства, антипсихотические средства), известны вещества, которые в основном действуют на сердце (сердечные гликозиды).

Одни и те же фармакологические эффекты могут быть вызваны различными способами. Так, есть вещества, которые вызывают снижение артериального дав­ления, уменьшая синтез ангиотензина II (ингибиторы ангиотензин-конвертиру­ющего фермента), или блокируя поступление Са 2+ в гладкомышечные клетки (блокаторы потенциалозависимых кальциевых каналов), или уменьшая выделение медиатора норадреналина из окончаний симпатических волокон (симпатолитики). Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

Фармакологические эффекты большинства лекарственных веществ вызываются их действием на определенные биохимические субстраты, так называемые «мишени».

К основным «мишеням» для лекарственных веществ относятся:

Рецепторы

А. Свойства и виды рецепторов. Взаимодействие рецепторов с ферментами и ионными каналами

Рецепторы представляют собой функционально активные макромолеку­лы или их фрагменты (в основном, это белковые молекулы – липопротеины, гликопротеины, нуклеопротеины и др.). При взаимодействии веществ (лигандов) с рецепторами возникает цепь биохимических реакций, которая приводит к определенному фармакологическому эффекту. Рецепторы являются мишенями для эн­догенных лигандов (нейромедиаторов, гормонов, других эндогенных биологичес­ки активных веществ), но могут взаимодействовать и с экзогенными биологически активными веществами, в том числе с лекарственными веществами. Рецепторы взаимодействуют только с определенными веществами (веществами, имеющими определенную химическую структуру), т.е. обладают свойством избирательнос­ти, поэтому их называют специфическими рецепторами.

Рецепторы могут находиться в мембране клетки (мембранные рецепторы) или внутри клетки – в цитоплазме или в ядре (внутриклеточные рецепторы).

В мембранных рецепторах выделяют внеклеточный и внутриклеточный доме­ны. На внеклеточном домене имеются места связывания для лигандов (веществ, взаимодействующих с рецепторами).

Известны 4 вида рецепторов, первые три из которых являются мембранными рецепторами:

Н-холинорецептор состоит из 5 субъединиц, пронизывающих мембрану – при связывании двух молекул ацетилхолина с двумя а-субъединицами рецептора от­крывается натриевый канал и ионы Na + поступают в клетку, вызывая деполяри­зацию клеточной мембраны (в скелетных мышцах это приводит к мышечному сокращению).

ГАМКА-рецепторы непосредственно сопряжены с хлорными каналами. При взаимодействии рецептора с гамма-аминомасляной кислотой хлорные каналы от­крываются и ионы С1

поступают в клетку, вызывая гиперполяризацию клеточ­ной мембраны (это приводит к усилению тормозных процессов в ЦНС). Таким же образом функционируют глициновые рецепторы.

3) Рецепторы, взаимодействующие с G-белками. Эти рецепторы взаимодейству­ют с ферментами и ионными каналами клеток через белки-посредники, так на­зываемые G-белки — ГТФ (СТР)-связывающие белки. При действии вещества на рецептор а-субъединица G-белка связывается с ГТФ. При этом комплекс G-белок—ГТФ вступает во взаимодействие с ферментами или ионными каналами. Как правило, один рецептор сопряжен с несколькими G-белками, а каждый G-белок может одновременно взаимодействовать с несколькими молекулами ферментов или несколькими ионными каналами. Результатом такого взаимодействия явля­ется усиление (амплификация) эффекта.

Хорошо изучено взаимодействие G-белков с аденилатциклазой и фосфолипазой С.

Аденилатциклаза — мембраносвязанный фермент, гидролизующий АТФ. В ре­зультате гидролиза АТФ образуется цАМФ, который активирует цАМФ-зависимую протеинкиназу, фосфорилирующую клеточные белки. При этом изменяется активность белков и регулируемых ими процессов. По влиянию на активность аденилатциклазы G-белки подразделяются на Gs-белки, стимулирующие аденилатциклазу и G-белки, ингибирующие аденилатциклазу. Примером рецепторов, взаимодействующих с Gs-белками, являются β1-адренорецепторы (опосредуют влияние симпатической иннервации), а примером рецепторов, взаимодействую­щих с Gj-белками — М2-холинорецепторы (опосредуют тормозное влияние на сер­дце парасимпатической иннервации). Эти рецепторы локализованы на мембране кардиомиоцитов.

При стимуляции β1-адренорецепторов повышается активность аденилат­циклазы и увеличивается уровень цАМФ в кардиомиоцитах — в результате ак­тивируется протеинкиназа, фосфорилирующая кальциевые каналы мембран кардиомиоцитов, через которые ионы Са 2+ поступают в клетку. При этом поступ­ление Са 2+ в клетку увеличивается, что приводит к повышению автоматизма синусного узла и увеличению частоты сердечных сокращений. Противополож­ные внутриклеточные эффекты возникают при стимуляции М2-холинорецепто-ров кардиомиоцитов (уменьшение автоматизма синусного узла и частоты сердеч­ных сокращений).

Кроме М-холинорецепторов и адренорецепторов к рецепторам, взаимо­действующим с G-белками, относятся дофаминовые рецепторы, некоторые под­типы серотониновых рецепторов, опиоидные рецепторы, гистаминовые рецеп­торы и др.

4) Рецепторы, регулирующие транскрипцию ДНК, являются внутриклеточными рецепторами. Эти рецепторы представляют собой растворимые цитозольные или ядерные белки. Лигандами внутриклеточных рецепторов являются липофильные вещества: стероидные гормоны, витамины А и D. В результате взаимодействия веществ с внутриклеточными рецепторами изменяется (увеличивается или умень­шается) синтез многих функционально активных белков.

Б. Связывание вещества с рецептором. Понятие об аффинитете

Для того чтобы вещество подействовало на рецептор, оно должно связаться с рецептором. В результате образуется комплекс «вещество—рецептор». Образова­ние комплекса «вещество-рецептор» осуществляется за счет межмолекулярных связей. Существует несколько видов таких связей.

Ковалентные связи — самый прочный вид межмолекулярных свя­зей. Они образуются между двумя атомами за счет общей пары электронов. Кова­лентные связи чаще всего обеспечивают необратимое связывание веществ, однако они не характерны для взаимодействия лекарственных веществ с рецепторами (примером является необратимое связывание феноксибензамина с а-адренорецепторами).

Ионные связи – менее прочные – возникают между группировками, не­сущими разноименные заряды (электростатическое взаимодействие).

Ион-дипольные и диполь-дипольные связи близки по ха­рактеру ионным связям. В электронейтральных молекулах лекарственных веществ, попадающих в электрическое поле клеточных мембран или находящихся в окру­жении ионов, происходит образование индуцированных диполей. Ионные и дипольные связи характерны для взаимодействия лекарственных веществ с ре­цепторами.

Водородные связи играют весьма существенную роль во взаимодействии лекарственных веществ с рецепторами. Атом водорода способен связывать ато­мы кислорода, азота, серы, галогенов. Это достаточно слабые связи, для их обра­зования необходимо, чтобы молекулы находились друг от друга на расстоянии не более 0,3 нм.

Ван-дер-ваальсовы связи— наиболее слабые связи, образуются между двумя любыми атомами, если они находятся на расстоянии не более 0,2 нм. При увеличении расстояния эти связи ослабевают.

Гидрофобные связи образуются при взаимодействии неполярных мо­лекул в водной среде.

Для характеристики связывания вещества с рецептором используется термин аффинитет.

Аффинитет (от лат. afflnis — родственный) определяется как способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор». Кроме того, термин аффинитет используется для характеристики прочности связывания вещества с рецептором (т.е. продолжительности существования комплекса «вещество—рецептор»). Количественной мерой аффинитета (прочности связывания вещества с рецептором) является кон­станта диссоциации (Kd).

В. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов

Вещества, которые обладают аффинитетом, могут обладать внутренней актив­ностью.

Внутренняя активность – способность вещества при взаимодейст­вии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности лекарственные вещества раз­деляют на: агонисты и антагонисты.

Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики — вещества, обладающие аффинитетом и внутренней активностью. При взаимодей­ствии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохими­ческих реакций и развиваются определенные фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максималь­но возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней ак­тивностью).

Если антагонисты занимают те же рецепторы, что и агонисты, они могут вы­теснять друг друга из связи с рецепторами. Такой антагонизм называют конку­рентным, а антагонисты называются конкурентными антагонис­тами. Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ и их концентрации. В достаточно высоких концентра­циях даже вещество с более низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Конкурентные антагонисты часто используют для устранения токсических эффектов лекарственных веществ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частич­ные агонисты уменьшают эффекты полных агонистов и поэтому в клинической практике могут использоваться вместо антагонистов. Например, частичные аго­нисты β-адренорецепторов (окспренолол, пиндолол) также, как антагонисты этих рецепторов (пропранолол, атенолол), используются при лечении гипертоничес­кой болезни.

Если антагонисты занимают другие участки макромолекулы, не относящие­ся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентными антагонистами.

Некоторые лекарственные вещества сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как

агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом µ-, и агонистом δ-, и κ-опиоидных рецепторов.

Другие «мишени» для лекарственных веществ

Лекарственные вещества могут действовать и на другие «мишени», включая ионные каналы, ферменты, транспортные белки.

да приводит к повышению секреции инсулина. Блокаторы этих каналов (производные сульфонилмочевины) используются как противодиабетические средства.

Многие лекарственные вещества являются ингибиторами ферментов. Ингибиторы моноаминоксидазы (МАО) нарушают метаболизм (окислительное дезаминирование) катехоламинов (норадреналина, дофамина, серотонина) и повышают их содержание в ЦНС. На этом принципе основано действие антидепрессантов – ингибиторов МАО (ниаламид, пиразидол). Механизм дей­ствия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез простагландина Е2 и простациклина, обладающих провоспалительным действием. Ингибиторы ацетилхолинэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхолина и повышают его содержание в синаптической щели. Эти препараты применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

Возможны и другие «мишени», на которые могут действовать лекарственные вещества. Так, антацидные средства действуют на хлористоводородную кислоту желудка, нейтрализуя ее, и поэтому используются при повышенной кислотности желудочного сока (гиперацидном гастрите, язве желудка).

Перспективной «мишенью» для лекарственных средств являются гены. С по­мощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов.

ВИДЫ ДЕЙСТВИЯ ЛЕКАРСТВЕННЫХ ВЕЩЕСТВ

Различают следующие виды действия:

Местное действие лекарственное вещество оказывает при контакте с тканями в месте его нанесения (обычно это кожа или слизистые оболочки). На­пример, при поверхностной анестезии местный анестетик действует на оконча­ния чувствительных нервов только в месте нанесения на слизистую оболочку. Для оказания местного действия лекарственные вещества назначают в форме мазей, примочек, полосканий, пластырей. При назначении некоторых лекарственных веществ в виде глазных или ушных капель также рассчитывают на их местное дей­ствие. Однако какое-то количество лекарственного вещества обычно всасывается с места нанесения в кровь и оказывает общее (резорбтивное) действие. При мес­тном нанесении лекарственных веществ возможно также рефлекторное действие.

Резорбтивное действие (от лат. resorbeo — поглощаю) — это эффекты, которые лекарственное вещество вызывает после всасывания в кровь или непос­редственного введения в кровоток и распределения в организме. При резорбтивном действии так же, как при местном вещество может возбуждать чувствитель­ные рецепторы и вызывать рефлекторные реакции.

Рефлекторное действие. Некоторые лекарственные вещества способ­ны возбуждать окончания чувствительных нервов кожи, слизистых оболочек (экстерорецепторы), хеморецепторы сосудов (интерорецепторы) и вызывать реф­лекторные реакции со стороны органов, расположенных в удалении от места не­посредственного контакта вещества с чувствительными рецепторами. Примером возбуждения экстерорецепторов кожи под действием эфирного горчичного мас­ла является применение горчичников при патологии органов дыхания, в резуль­тате чего рефлекторно улулшается трофика тканей. Хеморецепторы сосудов возбуждаются под действием лобелина (вводят внутривенно), что приводит к реф­лекторной стимуляции дыхательного и сосудодвигательного центров.

Прямое (первичное) действие лекарственного вещества на сердце, сосуды, кишечник и другие органы возникает при непосредственном воздействии его на клетки этих органов. Например, сердечные гликозиды вызывают кардиотонический эффект (усиление сокращений миокарда) вследствие их непосред­ственного действия на кардиомиоциты. В то же время вызываемое сердечными гликозидами повышение диуреза у больных с сердечной недостаточностью обус­ловлено увеличением сердечного выброса и улучшением гемодинамики. Такое действие, при котором лекарственное вещество изменяет функцию одних орга­нов, воздействуя на другие органы, обозначается как косвенное (вторич­ное) действие.

Основное действие. Действие, ради которого применяется лекарствен­ное вещество при лечении данного заболевания. Например, фенитоин (дифенин) обладает противосудорожными и антиаритмическими свойствами. У больного эпилепсией основным действием фенитоина является противосудорожное, а у больного с сердечной аритмией, вызванной передозировкой сердечных гликозидов — антиаритмическое.

Все остальные эффекты лекарственного вещества (кроме основного), которые возникают при его приеме в терапевтических дозах, расцениваются как проявле­ния побочного действия. Эти эффекты часто бывают неблагоприятными (отрицательными) (см. главу 5). Например, ацетилсалициловая кислота может вызвать изъязвление слизистой оболочки желудка, антибиотики из группы аминогликозидов (канамицин, гентамицин и др.) — нарушать слух. Отрицатель­ное побочное действие часто является причиной ограничения применения того или иного лекарственного вещества и даже исключения его из списка лекар­ственных препаратов.

Избирательное действие лекарственного вещества направлено пре­имущественно на один орган или систему организма. Так, сердечные гликозиды обладают избирательным действием на миокард, окситоцин — на матку, снотвор­ные средства – на ЦНС.

Центральное действие возникает вследствие прямого влияния лекар­ственного вещества на ЦНС (головной и спинной мозг). Центральное действие характерно для веществ, проникающих через гематоэнцефалический барьер. Для снотворных средств, антидепрессантов, анксиолитиков, средств для наркоза и не­которых других центральное действие является основным. В то же время цент­ральное действие может быть побочным (нежелательным). Так, многие антигистаминные (противоаллергические) средства вследствие их центрального действия вызывают сонливость.

Периферическое действие обусловлено влиянием лекарственных ве­ществ на периферический отдел нервной системы или непосредственным дей­ствием на органы и ткани. Курареподобные средства (миорелаксанты периферического действия) расслабляют скелетные мышцы, блокируя передачу возбужде­ния в нервно-мышечных синапсах, некоторые периферические вазодилататоры расширяют кровеносные сосуды, действуя непосредственно на гладкомышечные клетки. Для веществ с основным центральным действием периферические эф­фекты чаще всего являются побочными. Например, антипсихотическое средство хлорпромазин (аминазин) расширяет сосуды и вызывает снижение артериаль­ного давления (нежелательное действие), блокируя периферические α-адренорецепторы.

Обратимое действие является следствием обратимого связывания лекарственного вещества с «мишенями» (рецепторами, ферментами). Действие такого вещества можно прекратить путем его вытеснения из связи другим соеди­нением.

Необратимое действие возникает, как правило, в результате прочного (ковалентного) связывания лекарственного вещества с «мишенями». Например, ацетилсалициловая кислота необратимо блокирует циклооксигеназу тромбоци­тов, и функция этого фермента восстанавливается только после образования но­вых клеток.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *