Статья находится на проверке у методистов Skysmart. Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Механические колебания
Механические колебания — это физические процессы, точно или приблизительно повторяющиеся через одинаковые интервалы времени.
Колебания делятся на два вида: свободные и вынужденные.
Колебания, которые происходят под действием внутренних сил в колебательной системе, называют свободными. Они всегда затухающие, потому что весь запас энергии, сообщенный в начале, в конце уходит на совершение работы по преодолению сил трения и сопротивления среды (в этом случае механическая энергия переходит во внутреннюю). Из-за этого свободные колебания почти не имеют практического применения.
Вынужденные колебания
А вот вынужденные колебания восполняют запас энергии внешним воздействием. Если это происходит каждый период, то колебания вообще затухать не будут.
Какие колебания называются вынужденными?
Частота, с которой эта сила воздействует, равна частоте, с которой система будет колебаться.
Например, качели — если вас кто-то будет на них качать, каждый раз давая толчок, когда вы приходите в одну и ту же точку, такое колебание будет считаться вынужденным.
Это колебание все еще будет считаться вынужденным, если вас будут раскачивать из положения равновесия. Просто в данном случае амплитуда (о которой речь пойдет чуть ниже) будет увеличиваться с каждым колебанием.
Автоколебания
Иногда вынужденному колебанию не нужно внешнего воздействия, чтобы случиться. Бывают такие системы, в которых это внешние воздействие возникает само из-за способности регулировать поступление энергии от постоянного источника.
У автоколебательной системы есть три важных составляющих:
Например, часы с кукушкой — пример автоколебательной системы. Гиря на ниточке (цепочке) стремится вращать зубчатое колесо (храповик). При колебаниях маятника анкер цепляет за зубец, и вращение приостанавливается.
Но в результате маятник получает толчок, компенсирующий потери энергии из-за трения. Потенциальная энергия гири, которая постепенно опускается, расходуется на поддержание незатухающих колебаний.
Характеристики колебаний
Любое колебательное движение характеризуется величинами: период, частота, амплитуда, фаза колебаний.
Формула периода колебаний
T = t/N
N — количество колебаний [-]
Кстати, для математического и пружинного маятника есть свои формулы периода:
Формула периода колебания математического маятника
g — ускорение свободного падения [м/с^2]
На планете Земля g = 9,8 м/с2
Формула периода колебания пружинного маятника
m — масса маятника [кг]
k — жесткость пружины [Н/м]
Также есть величина, обратная периоду — частота. Она показывает, сколько колебаний совершает система в единицу времени.
Формула частоты
ν = N/t = 1/T
N — количество колебаний [-]
Она используется в уравнении гармонических колебаний:
Уравнение гармонических колебаний
x — координата в момент времени t [м]
t — момент времени [с]
В данном уравнении 2πνt является фазой и обозначается греческой буквой φ.
Фаза колебаний
t — момент времени [с]
Например, в тех же самых часах с кукушкой маятник совершает колебания. Он качается слева направо и приходит в самую правую точку. В той же фазе он будет находиться, когда придет в ту же точку, идя справа налево. Если мы возьмем точку на сантиметр левее самой правой, то идя в нее не слева направо, а справа налево, мы получим уже другую фазу.
Курсы по физике за 9 класс в онлайн-школе Skysmart помогут разобраться в любой сложной теме.
Колебания системы, которые совершаются за счет работы периодически меняющейся внешней силы, называются вынужденными.
Пусть на систему действует внешняя сила, меняющаяся со временем по гармоническому закону: , где F0 – амплитуда силы (максимальное значение), w – угловая частота колебаний вынуждающей силы. Тогда уравнение движения будет иметь вид: =.
Разделим обе части этого уравнения на m и введем вновь обозначения: , тогда получим неоднородное дифференциальное уравнение второго порядка: = (1)
Решение этого уравнения, как известно из высшей математики, представляет собой сумму свободных и вынужденных колебаний:
Таким образом, вынуждающая сила раскачивает систему, сообщая ей запас энергии, и пополняет расходуемую энергию, поддерживая колебательное движение. В первый момент система совершает помимо вынужденных еще свободные колебания. Частота свободных колебаний определяется по известной формуле: . Эти колебания затухают, и устанавливаются колебания, частота которых равна частоте вынуждающей силы, то есть вынужденные колебания. Когда работа вынуждающей силы сравнивается с энергией потерь, колебания становятся установившимися. Амплитуда этих колебаний должна быть постоянной, если постоянна амплитуда вынуждающей силы.
Решение дифференциального уравнения при установившемся движении имеет вид: (2)
(3) (4)
Амплитуда колебаний зависит от амплитуды и частоты внешних сил. При некоторой частоте внешних сил знаменатель в выражении (3) будет иметь минимальное значение, а амплитуда вынужденных колебаний – максимальное значение. Эта частота называется резонансной. Для ее нахождения, приравниваем к нулю производную:
,
Сократим на 4:, откуда получим: .
Резонансная амплитуда:
Явление резкого возрастания амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к частоте w0, называется резонансом.
При коэффициенте затухания b=0, когда отсутствуют силы сопротивления, , а Арез становится бесконечно большой. На рисунке 25.1. даны зависимости амплитуды колебаний от частоты вынуждающей силы. Отдельные кривые соответствуют различным значениям коэффициента затухания b. Эти кривые называются резонансными. Чем меньше коэффициент затухания, тем резче изменяется амплитуда вынужденных колебаний. При резонансе наступают наиболее благоприятные условия для поступления энергии в колеблющуюся систему от источника внешней силы. Увеличение амплитуды происходит до тех пор, пока вся работа внешней силы не сравняется с энергией потерь.
Тема 20. Волны. Уравнение волны. Энергия волны
Процесс распространения колебаний в среде называется волновым процессом (или волной). Все разнообразие волн в природе и технике подразделяют на два типа: волны механические (упругие) и электромагнитные.
Упругими (или механическими) волнами называются механические возмущения, распространяющимися в упругой среде.
Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных – в плоскостях, перпендикулярных направлению распространения. Поперечные волны возникают при деформациях сдвига.
Скорость распространения продольных волн в тонком стержне , где Е – модуль Юнга, r – плотность среды.
Скорость распространения поперечных волн в изотропном твердом теле , где – модуль сдвига.
Скорость распространения продольных (звуковых) волн в жидкости и в газе , где К – модуль объемной упругости среды, r – плотность среды. Например, в воздухе: , где Т – термодинамическая температура, измеренная по шкале Кельвина, t – температура, измеренная по шкале Цельсия.
При распространении колебаний в среде частицы не перемешаются вместе с волной, а лишь колеблются около своих положений равновесия. Поступательно перемещаются лишь фаза и энергия колебаний.
Графически волну изображают так же, как и колебания (рис.26.1).
Геометрическое место точек, колеблющихся в одинаковых фазах, называется волновой поверхностью. В зависимости от формы волновой поверхности различают сферические, плоские, цилиндрические волны. Геометрическое место точек, до которых доходят колебания с одинаковой фазой к некоторому моменту времени t, называется фронтом волны. Фронт волны является частным случаем волновой поверхности.
Пусть плоская волна распространяется вдоль оси х (рис.26.1). Эта волна характеризуется: длиной волны, периодом, амплитудой, частотой, фазовой скоростью.
.
Волна, распространяющаяся в пространстве от какого-либо источника, называется бегущей волной.
Уравнением волны называется алгебраическое выражение, которое дает зависимость смещения колеблющейся точки s как функция ее координат (х) и времени t: .
В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси 0Х, имеет вид: , (2)
где – начальная фаза колебаний; – фаза плоской бегущей волны.
Для характеристики волн используется волновое число k, характеризующее скорость изменения фазы в пространстве
. (3)
Учитывая (3), уравнение (2) примет вид: (4)
Уравнение волны, распространяющейся вдоль отрицательного направления оси 0Х, отличается от (4) знаком члена kx.
Из условия получаем выражение для фазовой скорости: .
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Если колебания совершаются под воздействием внешней силы, они называются вынужденными. Работа внешней силы, которая обеспечивает колебательную систему энергией, при этом является положительной. Благодаря ей колебания не затухают и могут противодействовать силам трения.
Установившиеся вынужденные колебания всегда происходят с частотой внешней силы. Частоту свободных колебаний определяют параметры системы.
Здесь буквой ω обозначена круговая частота, а y m – амплитуда колебаний.
Перемещения такого рода обеспечиваются шатунным механизмом, который преобразует круговые движения в возвратно-поступательные.
При смещении левого конца пружины на некоторое расстояние y и правого – на x по сравнению с первоначальным положением недеформированной пружины будет происходить ее удлинение. Найти величину этого удлинения можно по следующей формуле:
В таком случае мы можем переформулировать второй закон Ньютона для этого случая следующим образом:
Здесь сила, которая действует на тело, показана как сумма двух слагаемых, первым из которых является упругость, стремящаяся к равновесию тела, а вторым – внешнее воздействие, совершающееся с определенными интервалами. Внешнюю силу также называют вынуждающей.
Теперь выразим эту зависимость в строгой математической формуле, учитывающей связь между координатой тела a = x ¨ и его ускорением. У нас получится следующее:
Эта зависимость называется уравнением внешних колебаний. Здесь ω 0 = k m является собственной круговой частотой свободного колебания, а ω – циклической частотой внешней (вынуждающей) силы.
Чтобы найти величину A для вынужденного колебания груза на пружине, нужно воспользоваться следующей формулой:
То уравнение, что мы записали перед этим, не учитывает, что на тело действуют также и силы трения. В уравнении вынужденных колебаний, в отличие от уравнения свободных, учитываются сразу обе частоты – частота вынуждающей силы и частота свободных колебаний.
Вынужденные колебания груза на пружине, которые устанавливаются со временем, имеют частоту внешнего воздействия. Это определяется следующим законом:
Здесь x m обозначает амплитуду вынужденного колебания, а буква θ – его начальную фазу. Значения обоих этих показателей будут зависеть от амплитуды внешней силы и соотношения частот.
Понятие резонанса
Резонанс – это резкое возрастание амплитуды вынужденных колебаний при сближении частоты внешней силы с собственной частотой колебания тела.
Когда происходит резонанс, амплитуда x m может оказаться значительно больше, чем амплитуда колебаний левого (свободного) конца пружины.. Если мы не будем учитывать силы трения, то получится, что при резонансной частоте амплитуда вынужденных колебаний будет возрастать неограниченно. В реальности она будет зависеть от следующего условия: работа внешней силы в течение всего времени колебаний должна совпадать с потерями механической энергии, происходящими из-за трения. При уменьшении трения (и, соответственно, повышении добротности Q колебательной системы) амплитуда вынужденных колебаний при резонансе возрастет.
Явление резонанса имеет большое практическое значение. Именно из-за него зачастую разрушаются здания, мосты и другие сооружения. Это происходит в тот момент, когда их собственные частоты совпадают с частотой внешней силы, например, колебаниями мотора.
Вынужденные колебания являются незатухающими. При трении неизбежно теряется часть энергии, однако воздействие внешних периодически действующих сил компенсирует ее.
Что такое автоколебательные системы
Автоколебательные системы – это системы, в которых могут возникать незатухающие колебания безотносительно внешнего воздействия, а лишь за счет способности самостоятельно регулировать подвод энергии от внешнего источника. Процесс колебаний в таких системах называют автоколебаниями.
Внутри этой системы можно выделить три составляющих – саму систему, источник внешней постоянной энергии и обратную связь между ними. Первым элементом выступает любая механическая система, которая может совершать затухающие колебания, например, часовой маятник. В качестве источника можно использовать потенциальную энергию груза в поле тяжести или энергию деформации пружины. Система обратной связи – это, как правило, особый механизм, функцией которого является регулирование поступлений энергии. На иллюстрации показано, как эти компоненты взаимодействуют между собой.
Какие можно привести примеры таких систем? Ярким примером является часовой механизм с так называемым анкерным ходом. В нем есть ходовое колесо с косыми зубчиками, прочно сцепленное с зубчатым барабаном, через который перекинута цепочка с грузом. В верхней части маятника закреплен якорек (анкер), состоящий из двух твердых пластинок, дугообразно изогнутых по окружности с центром на основной оси. В механизме ручных часов вместо гири используется пружина, а вместо маятника – маховичок-балансир, соединенный со спиральной пружиной, который совершает круговые колебания вокруг своей оси. В качестве источника внешней энергии выступает заведенная пружина или поднятая гиря. Обратная связь осуществляется с помощью анкера: он позволяет ходовому колесу совершать поворот только на один зубец за полупериод. Когда анкер взаимодействует с ходовым колесом, происходит передача энергии. Когда маятник колеблется, зубец ходового колеса передает анкерной вилке энергию по направлению движения маятника, и именно этим компенсируются силы трения. Таким образом, энергия поднятой гири или заведенной пружины поступает маленькими порциями к маятнику.
Существует также много других автоколебательных систем, которые широко применяются в технике. Автоколебания происходят внутри двигателей внутреннего сгорания, паровых машин, электрических звонков, музыкальных инструментов, голосовых связок и т.д.
В этом случае внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.
После начала воздействия внешней силы на колебательную систему необходимо некоторое время для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания свободных колебаний в колебательной системе.
Такой закон перемещения можно обеспечить с помощью шатунного механизма, преобразующего движение по окружности в поступательно-возвратное движение (рис. 2.5.1).
Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой: Тогда уравнение вынужденных колебаний запишется в виде
(**)
где – собственная круговая частота свободных колебаний, – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина определяется выражением:
Уравнение (**) не учитывает действия сил трения. В отличие от уравнения свободных колебаний (*) (см. §2.2) уравнение вынужденных колебаний (**) содержит две частоты – частоту свободных колебаний и частоту вынуждающей силы.
Амплитуда вынужденных колебаний m и начальная фаза зависят от соотношения частот и и от амплитуды ym внешней силы.
При резонансе амплитуда m колебания груза может во много раз превосходить амплитуду m колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.
У колебательных систем с не очень высокой добротностью () резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рис. 2.5.2.
Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.
Источником энергии может служить энергия деформация пружины или потенциальная энергия груза в поле тяжести. Устройство обратной связи представляет собой некоторый механизм, с помощью которого автоколебательная система регулирует поступление энергии от источника. На рис. 2.5.3 изображена схема взаимодействия различных элементов автоколебательной системы.
Примером механической автоколебательной системы может служить часовой механизм с анкерным ходом (рис. 2.5.4). Ходовое колесо с косыми зубьями жестко скреплено с зубчатым барабаном, через который перекинута цепочка с гирей. На верхнем конце маятника закреплен анкер (якорек) с двумя пластинками из твердого материала, изогнутыми по дуге окружности с центром на оси маятника. В ручных часах гиря заменена пружиной, а маятник – балансиром – маховичком, скрепленным со спиральной пружиной. Балансир совершает крутильные колебания вокруг своей оси. Колебательной системой в часах является маятник или балансир. Источником энергии – поднятая вверх гиря или заведенная пружина. Устройством, с помощью которого осуществляется обратная связь, является анкер, позволяющий ходовому колесу повернуться на один зубец за один полупериод. Обратная связь осуществляется взаимодействием анкера с ходовым колесом. При каждом колебании маятника зубец ходового колеса толкает анкерную вилку в направлении движения маятника, передавая ему некоторую порцию энергии, которая компенсирует потери энергии на трение. Таким образом, потенциальная энергия гири (или закрученной пружины) постепенно, отдельными порциями передается маятнику.
Механические автоколебательные системы широко распространены в окружающей нас жизни и в технике. Автоколебания совершают паровые машины, двигатели внутреннего сгорания, электрические звонки, струны смычковых музыкальных инструментов, воздушные столбы в трубах духовых инструментов, голосовые связки при разговоре или пении и т. д.