Чем обусловлена агрегативная устойчивость коллоидных систем
Устойчивость коллоидных растворов
Коллоидные растворы представляют собой термодинамически неустойчивые системы, в которых проявляется тенденция к снижению поверхностной энергии Гиббса за счет укрупнения частиц и уменьшения суммарной поверхности раздела фаз. Слипание коллоидных частиц приводит к увеличению их массы, в результате чего более крупные частицы под действием силы тяжести оседают на дно (седиментируют).
Известны, однако, многочисленные коллоидные растворы, в которых не происходит слипания частиц в течение длительного времени. Способность дисперсной системы сохранять во времени свое состояние и свойства характеризует устойчивость дисперсной системы.
Различают седиментационную и агрегативную устойчивость.
Седиментационная устойчивость характеризует способность частиц дисперсной фазы находиться во взвешенном состоянии и не оседать под действием сил тяжести.
Агрегативная устойчивость характеризует способность частиц дисперсной фазы противостоять их слипанию между собой.
Седиментационная устойчивость коллоидных систем обусловлена малыми размерами частиц и их броуновским движением.
Примером коагуляции коллоидной системы служит процесс свертывания крови. Ему способствует наличие в крови катионов кальция, поэтому для длительного хранения крови, предназначенной для консервирования, эти ионы удаляют из крови различными физико-химическими методами.
Коагуляцию можно вызвать различными внешними воздействиями: добавлением небольших количеств электролита, концентрированием коллоидного раствора, изменением температуры, действием ультразвука, электромагнитного поля и др. Наибольшее практическое значение имеет коагуляция под действием электролитов.
Для количественной оценки коагулирующей способности электролитов введено понятие порога коагуляции, т.е. минимальной концентрации электролита, достижение которой вызывает начало коагуляции, заметное по помутнению раствора или изменению его окраски.
Порог коагуляции можно рассчитать по формуле:
Величина, обратная порогу коагуляции, называется коагулирующей способностью КС:
О протекании процесса коагуляции можно судить по величине ζ-потенциала (рис.24). Коагуляция становится возможной при снижении толщины диффузного слоя мицеллы, которое сопровождается и уменьшением электрокинетического потенциала. Снижение величины ζ-потенциала до 25-30 мВ свидетельствует о начале коагуляции, хотя внешних признаков (помутнения или изменения окраски) может не наблюдаться из-за низкой скорости этого процесса (так называемая «скрытая» коагуляция). Дальнейшее снижение ζ-потенциала сопровождается увеличением скорости коагуляции и помутнением раствора («явная» коагуляция), и при ζ = 0 скорость коагуляции максимальна. Состояние коллоидных частиц, при котором электрокинетический потенциал равен 0, называется изоэлектрическим состоянием. В этом состоянии заряд гранул равен 0, поэтому в электрическом поле они не приобретают направленного движения.
скрытая явная
v медленная быстрая
|
|
С
ζ >30 мВ ζ 2+ из-за того, что растворе протекает реакция Ва 2+ + SO4 2- ® BaSO4, приводящая к снижению концентрации этих катионов;
Процесс пептизации лежит в основе лечения многих заболеваний: рассасывания атеросклеротических бляшек на стенках кровеносных сосудов, почечных и печеночных камней. Однако застарелые тромбы и уплотнившиеся камни практически не пептизируются.
Устойчивость коллоидных растворов можно повысить добавлением к ним некоторых высокомолекулярных соединений (ВМС). Это явление получило название коллоидной защиты. Защитное действие ВМС объясняется тем, что они адсорбируются на поверхности коллоидных частиц. При этом гидрофобные участки их структур (углеводородные радикалы) обращены к частицам дисперсной фазы, а гидрофильные фрагменты (полярные группы) обращены наружу, к воде. Вокруг мицеллы образуется дополнительная оболочка из макромолекул ВМС и их собственных гидратных оболочек, которая препятствует сближению коллоидных частиц.
По отношению к водным коллоидным растворам защитным действием обладают растворимые в воде белки, полисахариды, пектины. Белки препятствуют выпадению в осадок малорастворимых холестерина и солей кальция на стенках кровеносных сосудов, образованию камней в мочевыводящих и желчепроводящих путях. В фармации защитные свойства ВМС используются для повышения устойчивости лекарственных препаратов, находящихся в коллоидном состоянии.
Для обеспечения коллоидной защиты необходимо создать достаточно высокую концентрацию ВМС, обеспечивающую образование мономолекулярной защитной оболочки вокруг мицеллы. Введение небольшого количества ВМС может привести к обратному эффекту: макромолекулы взаимодействуют одновременно с несколькими коллоидными частицами, связывая их с образованием рыхлых хлопьев. Агрегирование частиц дисперсной фазы в лиофобных коллоидных растворах под действием небольших количеств ВМС называется флокуляцией.
Чем обусловлена агрегативная устойчивость коллоидных систем
ФИЗИЧЕСКАЯ И КОЛЛОИДНАЯ ХИМИЯ
Конспект лекций для студентов биофака ЮФУ (РГУ)
4.2 КОЛЛОИДНЫЕ СИСТЕМЫ
4.2.2 Агрегативная устойчивость лиофобных коллоидов.
Строение коллоидной мицеллы
При получении золя иодида серебра в избытке нитрата серебра коллоидные частицы будут иметь положительный заряд:
Рис. 4.9. Строение коллоидной мицеллы
Агрегативная устойчивость золей обусловлена, таким образом, рядом факторов: во-первых, снижением поверхностной энергии дисперсной фазы (т.е. уменьшения движущей силы коагуляции) в результате образования двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания имеющих одноименный заряд коллоидных частиц и противоионов. Еще одна причина устойчивости коллоидов связана с процессом гидратации (сольватации) ионов. Противоионы диффузного слоя сольватированы; эта оболочка из сольватированных противоионов также препятствует слипанию частиц.
4.2.3 Коагуляция лиофобных коллоидов
Для коагуляции золей электролитами установлен ряд эмпирических закономерностей.
2. Коагулирующим действием обладает тот из ионов электролита, заряд которого противоположен заряду коллоидных частиц, причем коагулирующее действие иона тем сильнее, чем больше его заряд (правило Шульце – Гарди или правило значности). Величины порогов коагуляции двухзарядных ионов примерно на порядок, а трехзарядных – на два порядка меньше, чем для однозарядных ионов. Правило значности имеет приближенный характер и справедливо только для неорганических ионов; некоторые однозарядные органические ионы обладают более сильным коагулирующим действием, чем двухзарядные неорганические ионы, что обусловлено их сильной специфической адсорбируемостью.
3. В рядах неорганических ионов с одинаковыми зарядами коагулирующее действие возрастает с уменьшением гидратируемости ионов; например, в ряду однозарядных катионов щелочных металлов коагулирующее действие возрастает от лития к рубидию:
4. В осадках, получаемых при коагуляции золей электролитами, всегда присутствуют ионы, вызвавшие коагуляцию.
5. При коагуляции золей смесями электролитов сравнительно редко наблюдается их независимое ( аддитивное ) действие; обычно имеет место взаимное усиление либо ослабление коагулирующего действия ( синергизм либо антагонизм ионов).
Механизм и кинетика коагуляции золей электролитами
Необходимому для коагуляции сближению частиц дисперсной фазы препятствует, как было показано выше, электростатическое отталкивание имеющих одноименный заряд коллоидных частиц и противоионов и взаимодействие сольватных оболочек противоионов диффузного слоя. При добавлении к золю раствора электролита имеющееся равновесие адсорбции – десорбции между противоионами адсорбционного и диффузного слоев смещается в сторону адсорбции вследствие увеличения в дисперсионной среде концентрации ионов, имеющих заряд, противоположный заряду ядра (ионы с одноименным зарядом в равновесии адсорбции – десорбции не участвуют). Адсорбция дополнительного числа противоионов приводит к уменьшению заряда коллоидных частиц, уменьшению числа противоионов диффузного слоя (уменьшению толщины ДЭС) и, следовательно, к снижению агрегативной устойчивости золя. При достижении некоторого предельного значения заряда коллоидные частицы получают возможность сближения и объединения в более крупные агрегаты за счет ван-дер-ваальсовых сил; иными словами, происходит коагуляция золя.
Очевидно, что, поскольку при адсорбции многозарядных противоионов заряд коллоидной частицы уменьшается быстрее, чем при адсорбции того же числа однозарядных противоионов; адсорбируемость неорганических ионов с увеличением их заряда также возрастает. Следствием этого и является тот факт, что величина порога коагуляции для неорганических ионов будет тем меньше, чем больше заряд иона-коагулянта (величина порога коагуляции γ обратно пропорциональна заряду иона-коагулянта в шестой степени z 6 ).
Рис. 4.10 Коагуляционная кривая. Рис. 4.11 Зависимость скорости
коагуляции от концентрации.
Взаимная коагуляция золей
Коагуляция золя может быть вызвана его взаимодействием с другим золем, частицы которого имеют противоположный заряд. Так, смешение золя гидроксида железа, частицы которого имеют положительный заряд, с отрицательно заряженным золем сульфида мышьяка приводит к их взаимной коагуляции:
В данном случае коагуляция обусловлена тем, что коллоидные частицы одного вида являются как бы очень крупными многозарядными ионами – коагулянтами для частиц другого вида. Взаимная коагуляция коллоидных систем может наблюдаться и тогда, когда частицы золей имеют одноименный заряд; в этом случае причиной потери устойчивости одного из золей является сильная специфическая адсорбция иона – стабилизатора данной системы поверхностью коллоидных частиц другой системы.
Старение золей и пептизация
Термодинамическая неустойчивость лиофобных коллоидных систем является причиной старения золей – самопроизвольной коагуляции (автокоагуляции) золей. Автокоагуляция золей происходит значительно медленнее, чем коагуляция электролитами; так, золи золота могут сохраняться без видимых изменений десятилетиями. Одной из основных причин старения золей является медленно совершающийся процесс перекристаллизации вещества ядра.
Пептизацией (дезагрегацией) называется процесс расщепления коагулировавшего золя (коагулята) на первичные частицы – процесс, противоположный коагуляции. Пептизация возможна лишь тогда, когда структура частиц в коагуляте не изменена по сравнению с первоначальной (т.е. когда еще не произошло полного сращивания частиц и они слабо связаны друг с другом). Различают непосредственную и опосредованную пептизацию.
Непосредственная пептизация происходит в результате добавления к коагуляту электролита, содержащего потенциалопределяющий ион; в результате его специфической адсорбции на поверхности частиц дисперсной фазы их заряд вновь увеличивается, толщина двойного электрического слоя возрастает. Это приводит к тому, что силы отталкивания между частицами начинают преобладать над силами притяжения; происходит деагрегация – распад образовавшегося ранее агрегата из слипшихся частиц.
Опосредованная пептизация вызывается добавлением в систему вещества, химическое взаимодействие которого с поверхностью коагулята приводит к высвобождению потенциалопределяющих ионов. Например, коагулировавший золь гидроксида железа(III) может быть пептизирован добавлением в систему либо какой-либо соли железа (непосредственная пептизация), либо соляной кислоты (опосредованная пептизация).
Факторы агрегативной устойчивости коллоидных систем. Виды коагуляции коллоидных систем
Основным методом очистки природных и сточных вод от мелкодисперсных, эмульгированных, коллоидных и окрашенных примесей (1 и 2 группы) является коагуляция и флокуляция. Методы основаны на агрегировании частиц дисперсной фазы с последующим их удалением из воды механическим отстаиванием.
Эффективность и экономичность процессов коагуляционной очистки сточных вод определяется устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, плотности частиц, величины электрокинетического потенциала, концентрации, наличия в сточной воде других примесей, например, электролитов, высокомолекулярных соединений.
Существуют различные способы проведения коагуляции, целесообразность применения которых зависит от факторов обусловливающих агрегативную устойчивость систем.
Агрегативная устойчивость коллоидных систем зависит от их строения.
Обладая большой удельной поверхностью, коллоидные частицы способны адсорбировать из воды ионы, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равные по величине. В результате на поверхности возникает двойной электрический слой. Ионы относительно прочно связанные с дисперсной твердой фазой называют потенциалопределяющими. Они нейтрализуются избытком противоионов. Толщина двойного слоя в водных растворах не превышает 0,002 мм.
Степень адсорбции ионов зависит от сродства адсорбируемых ионов к поверхности, их способности образовывать недиссоциируемые поверхностные соединения. При адсорбции ионов одинаковой валентности адсорбционная способность повышается с увеличением радиуса иона и, соответственно, его поляризуемости, т.е. способности притягиваться к поверхности коллоидной частицы. Увеличение радиуса иона сопровождается также уменьшением его гидратации, наличие плотной гидратной оболочки препятствует адсорбции, т.к. уменьшает электрическое взаимодействие иона с поверхностью коллоидной частицы.
Согласно современным представлениям о строении двойного электрического слоя слой противоинов состоит из двух частей. Одна часть примыкает к межфазной поверхности и образует адсорбционный слой, толщина которого равна радиусу составляющих его гидратированных ионов. Другая часть противоионов находится в диффузном слое, толщина которого зависит от свойств и состава системы. В целом мицелла электронейтральна. Строение мицеллы – коллоидной частицы – представлено на рис.1.1.
Разность потенциалов между потенциалопределяющими ионами и всеми противоионами называется термодинамическим φ-потенциалом.
Заряд на частицах препятствует их сближению, чем, в частности, и определяется устойчивость коллоидной системы. В целом устойчивость коллоидных систем обусловлена наличием заряда у гранулы, диффузионного слоя и гидратной оболочки.
Рис.3.1. Строение мицеллы: Рис.3.2. Схема двойного электрического
I – ядро мицеллы; слоя в электрическом поле
II – адсорбционный слой; (I-II – гранула);
III – диффузионный слой ;
IV – гидратная оболочка
При движении частицы в дисперсной системе или при наложении электрического поля часть противоионов диффузного слоя остается в дисперсной среде и гранула приобретает заряд, соответствующий заряду потенциалопределяющих ионов. Таким образом, дисперсионная среда и дисперсная фаза оказываются противоположно заряженными.
Разность потенциалов между адсорбционным и диффузным слоями противоионов называется электрокинетическимζ – потенциалом (рис. 1.2).
Электрокинетический потенциал является одним из важнейших параметров двойного электрического слоя. Величина ζ – потенциала обычно составляет единицы и десятки милливольт в зависимости от состава фаз и концентрации электролита. Чем больше величина ζ– потенциала, тем более устойчива частица.
Рассмотрим термодинамические и кинетические факторы устойчивости дисперсных систем:
· Электростатический фактор устойчивости. С позиции физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы (ее агрегативной неустойчивости). Если на коллоидных частицах образовался адсорбционный слой, имеющий ионную природу, то при достаточном сближении одноименно заряженных частиц возникают электростатические силы отталкивания. Чем толще двойной электрический слой, тем интенсивнее результирующая сила отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Таким образом, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя.
· Сольватационный фактор устойчивости. Силы отталкивания могут быть вызваны существованием на поверхности сближающихся частиц сольватных (гидратных) оболочек или так называемых граничных фаз, состоящих лишь из молекул дисперсионной среды и обладающих особыми физическими свойствами. Ядро мицеллы нерастворимо в воде, следовательно, и не гидратировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя гидратированы. Благодаря этому вокруг ядра создается ионно-гидратная оболочка. Толщина ее зависит от распределения двойного электрического слоя: чем больше ионов находится в диффузном слое, тем больше и толщина гидратной оболочки.
· Энтропийный фактор устойчивости. Обусловлен тепловым движением сегментов молекул ПАВ, адсорбированных на коллоидных частицах. При сближении частиц, имеющих адсорбционные слои из молекул ПАВ или высокомолекулярных веществ, происходит сильное уменьшение энтропии адсорбционного слоя, что препятствует агрегированию частиц.
· Структурно-механический фактор устойчивости. Адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц. Защитные слои противоионов-стабилизаторов, являясь гелеобразными, обладают повышенной структурной вязкостью и механической прочностью.
· Гидродинамический фактор устойчивости. Скорость коагуляции может снижаться благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.
· Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.
Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой.
Сольватация при сольватационном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снизить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.
Седиментационная устойчивость коллоидных систем (СУ) – способность дисперсной системы сохранять равномерное распределение частиц по всему объему) обусловлена броуновским движением коллоидных дисперсий и диффузией частиц дисперсной фазы.
Седиментационная устойчивость системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы оседают, и диффузии, при которой частицы стремятся к равномерному распределению по объему. В результате возникает равновесное диффузионно-седиментационное распределение частиц по высоте, зависящее от их размера.
Диффузия замедляется с увеличением размера частиц. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, приводит к выравниванию концентраций по всему объему. Чем меньше частицы, тем больший срок требуется для установления равновесия.
Скорость оседания частиц пропорциональна квадрату их диаметра. В грубодисперсных системах скорость достижения равновесия сравнительно большая и равновесие устанавливается в течение нескольких минут или часов. В тонкодисперсных растворах она мала, и до момента равновесия проходят годы или даже десятки лет.
В современной теории коагуляции дисперсных систем разработанной Дерягиным, Ландау, Фервеем, Овербеком (теория ДЛФО) степень устойчивости системы определяется из баланса молекулярных и электростатических сил. Различают два типа коагуляции:
1) концентрационную, при которой потеря устойчивости частиц связана со сжатием двойного слоя;
2) нейтрализационную (коагуляция электролитами), когда наряду со сжатием двойного слоя уменьшается потенциал φ1.
По мере увеличения концентрации электролита величина ζ – потенциала (ДП) снижается, а φ1 практически сохраняет свое значение (рис. 3.3).
|
|
Рис. 3.3. а) Взаимосвязь между φ-потенциалом и ДП (ζ – потенциал) для сильно заряженной частицы (концентрационная коагуляция);
б) Взаимосвязь между φ-потенциалом и ДП для слабо заряженной частицы (нейтрализационная коагуляция).
Чтобы вызвать коагуляцию золя, необходимо превысить некоторую максимальную концентрацию ионов – коагулянтов – порог коагуляции.
Теория ДЛФО дает возможность определить величину порога концентрационной коагуляции (γ):
γ = , (3.4)
Из уравнения (1.1.) видно, что порог коагуляции не зависит от φ1, и обратно пропорционален шестой степени валентности противоионов. Для одно-, двух-, трех- и четырехвалентных ионов соотношение порогов коагуляции будет равно
1: :
:
Нейтрализационная коагуляция характерна для слабо заряженных частиц. Потеря агрегативной устойчивости обусловлена адсорбцией противоионов и снижением потенциала диффузного слоя φ1.
При невысоких концентрациях электролита, когда толщина диффузного слоя велика, значения φ1 и ζ – потенциала близки (рис.3.3.).Поэтому значение ζ – потенциала при нейтрализационной коагуляции достаточно надежно характеризует степень устойчивости золя.
Согласно теории Дерягина, критическая величина потенциала ( ) связана с условиями нейтрализационной коагуляции соотношением
=
, (3.5)
3) Коагуляция может быть вызвана прибавлением в систему электролитов и под воздействием физико-химических факторов (перемешивание системы, нагревание, замораживание с последующим оттаиванием, воздействие магнитного или электрического полей, ультрацентрифугирование, ультразвуковое воздействие и др.).