Селезенка. Величина селезенки. Строение селезенки. Форма селезенки
Селезенка, lien (греч. splen), представляет собой богато васкуляризованный лимфоидный орган. В селезенке кровеносная система входит в тесное соотношение с лимфоидной тканью, благодаря чему кровь здесь обогащается свежим запасом развивающихся в селезенке лейкоцитов.
Кроме того, проходящая через селезенку кровь освобождается благодаря фагоцитарной деятельности макрофагов селезенки от отживших красных кровяных телец («кладбище» эритроцитов) и от попавших в кровяное русло болезнетворных микробов, взвешенных инородных частиц и т. п.
Величина селезенки благодаря богатству сосудами может довольно значительно изменяться у одного и того же индивидуума в зависимости от большего или меньшего наполнения сосудов кровью. В среднем длина селезенки равняется 12 см, ширина 8 см, толщина 3 — 4 см, масса около 170 г (100 — 200 г). Во время пищеварения наблюдается увеличение селезенки. Цвет селезенки на поверхности темно-красный с фиолетовым оттенком.
По форме селезенку сравнивают с кофейным зерном. В селезенке различают две поверхности (facies diaphragmatica и facies visceralis), два края (верхний и нижний) и два конца (передний и задний). Наиболее обширная и обращенная в латеральную сторону facies diaphragmatica выпукла, она прилежит к диафрагме.
На висцеральной вогнутой поверхности, на участке прилежащем к желудку (facies gastrica), имеется продольная борозда, hilus lienis — ворота, через которые в селезенку входят сосуды и нервы. Кзади от facies gastrica находится продольно расположенный плоский участок, это — facies renalis, так как здесь селезенка соприкасается с левыми надпочечником и почкой.
Близ заднего конца селезенки заметно место соприкосновения селезенки с colon и lig. phrenicocolicum; это — facies colica.
Строение селезенки. Кроме серозного покрова, селезенка обладает собственной соединительнотканной капсулой, tunica fibrosa, с примесью эластических и неисчерченных мышечных волокон. Капсула продолжается в толщу органа в виде перекладин, образуя остов селезенки, разделяющей ее на отдельные участки. Здесь между трабекулами находится пульпа селезенки, pulpa lienis. Пульпа имеет темно-красный цвет.
На свежесделанном разрезе в пульпе видны более светло окрашенные узелки — folliculi lymphatici lienales. Они представляют собой лимфоидные образования круглой или овальной формы, около 0,36 мм в диаметре, сидящие на стенках артериальных веточек. Пульпа состоит из ретикулярной ткани, петли которой наполнены различными клеточными элементами, лимфоцитами и лейкоцитами, красными кровяными тельцами, в большинстве уже распадающимися, с зернышками пигмента.
Селезенка — периферический орган кроветворной и иммунной систем. Кроме выполнения кроветворной и защитной функций, она участвует в процессах гибели эритроцитов, вырабатывает вещества, угнетающие эритропоэз, депонирует кровь.
Развитие селезенки. Закладка селезенки происходит на 5-й неделе эмбриогенеза образованием плотного скопления мезенхимы. Последняя дифференцируется в ретикулярную ткань, прорастает кровеносными сосудами, заселяется стволовыми кроветворными клетками. На 5-м месяце эмбриогенеза в селезенке отмечаются процессы миелопоэза, которые к моменту рождения сменяются лимфоцитопоэзом.
Строение селезенки. Селезенка снаружи покрыта капсулой, состоящей из мезотелия, волокнистой соединительной ткани и гладких миоцитов. От капсулы внутрь отходят перекладины — трабекулы, анастомозирующие между собой. В них также есть волокнистые структуры и гладкие миоциты. Капсула и трабекулы образуют опорно-сократительный аппарат селезенки. Он составляет 5-7% объема этого органа. Между трабекулами находится пульпа (мякоть) селезенки, основу которой составляет ретикулярная ткань.
Стволовые кроветворные клетки определяются в селезенке в количестве, примерно, 3,5 в 105 клеток. Различают белую и красную пульпы селезенки.
Белая пульпа селезенки — это совокупность лимфоидной ткани, которая образована лимфатическими узелками (В-зависимые зоны) и лимфатическими периартериальными влагалищами (Т-зависимые зоны).
Белая пульпа при макроскопическом изучении срезов селезенки выглядит в виде светло-серых округлых образований, составляющих 1/5 часть органа и распределенных диффузно по площади среза.
Лимфатическое периартериальное влагалище окружает артерию после выхода ее из трабекулы. В его составе обнаруживаются антигенпредставляющие (дендритные) клетки, ретикулярные клетки, лимфоциты (преимущественно Т-хелперы), макрофаги, плазматические клетки. Лимфатические первичные узелки по своему строению аналогичны таковым в лимфатических узлах. Это округлое образование в виде скопления малых В-лимфоцитов, прошедших антигеннезависимую дифференцировку в костном мозге, которые находятся во взаимодействии с ретикулярными и дендритными клетками.
Вторичный узелок с герминативным центром и короной возникает при антигенной стимуляции и наличии Т-хелперов. В короне присутствуют В-лимфоциты, макрофаги, ретикулярные клетки, а в герминативном центре — В-лимфоциты на разных стадиях пролиферации и дифференцировки в плазматические клетки, Т-хелперы, дендритные клетки и макрофаги.
Краевая, или маргинальная, зона узелков окружена синусоидальными капиллярами, стенка которых пронизана щелевидными порами. В эту зону Т-лимфоциты мигрируют по гемокапиллярам из периартериальной зоны и поступают в синусоидные капилляры.
Красная пульпа — совокупность разнообразных тканевых и клеточных структур, составляющих всю оставшуюся массу селезенки, за исключением капсулы, трабекул и белой пульпы. Основные структурные компоненты ее — ретикулярная ткань с клетками крови, а также кровеносные сосуды синусоидного типа, образующие причудливые лабиринты за счет разветвлений и анастомозов. В ретикулярной ткани красной пульпы различают два типа ретикулярных клеток — малодифференцированные и клетки фагоцитирующие, в цитоплазме которых много фагосом и лизосом.
Между ретикулярными клетками располагаются клетки крови — эритроциты, зернистые и незернистые лейкоциты. Часть эритроцитов находится в состоянии дегенерации или полного распада. Такие эритроциты фагоцитируются макрофагами, переносящими затем железосодержащую часть гемоглобина в красный костный мозг для эритроцитопоэза.
Синусы в красной пульпе селезенки представляют часть сосудистого русла, начало которому дает селезеночная артерия. Далее следуют сегментарные, трабекулярные и пульпарные артерии. В пределах лимфоидных узелков пульпарные артерии называются центральными. Затем идут кисточковые артериолы, артериальные гемокапилляры, венозные синусы, пульпарные венулы и вены, трабекулярные вены и т. д. В стенке кисточковых артериол есть утолщения, называемые гильзами, муфтами или эллипсоидами. Мышечные элементы здесь отсутствуют. В эндотелиоцитах, выстилающих просвет гильз, обнаружены тонкие миофиламенты. Базальная мембрана очень пористая.
Основную массу утолщенных гильз составляют ретикулярные клетки, обладающие высокой фагоцитарной активностью. Полагают, что артериальные гильзы участвуют в фильтрации и обезвреживании артериальной крови, протекающей через селезенку.
Венозные синусы образуют значительную часть красной пульпы. Их диаметр 12-40 мкм. Стенка синусов выстлана эндотелиоцитами, между которыми имеются межклеточные щели размером до 2 мкм. Они лежат на прерывистой базальной мембране, содержащей большое количество отверстий диаметром 2-6 мкм. В некоторых местах поры в базальной мембране совпадают с межклеточными щелями эндотелия. Благодаря этому устанавливается прямое сообщение между просветом синуса и ретикулярной тканью красной пульпы, и кровь из синуса может выходить в окружающую их ретикулярную строму. Важное значение для регуляции кровотока через венозные синусы имеют мышечные сфинктеры в стенке синусов в месте их перехода в вены. Имеются также сфинктеры в артериальных капиллярах.
Сокращения этих двух типов мышечных сфинктеров регулирует кровенаполнение синусов. Отток крови из микроциркуляторного русла селезенки происходит по системе вен возрастающего калибра. Особенностью трабекулярных вен являются отсутствие в их стенке мышечного слоя и сращение наружной оболочки с соединительной тканью трабекул. Вследствие этого трабекулярные вены постоянно зияют, что облегчает отток крови.
Возрастные изменения селезенки. С возрастом в селезенке отмечаются явления атрофии белой и красной пульпы, уменьшается количество лимфатических фолликулов, разрастается соединительнотканная строма органа.
Кроветворная и иммунная системы чрезвычайно чувствительны к различным повреждающим воздействиям. При действии экстремальных факторов, тяжелых травмах и интоксикациях в органах происходят значительные изменения. В костном мозге уменьшается число стволовых кроветворных клеток, опустошаются лимфоидные органы (тимус, селезенка, лимфатические узлы), угнетается кооперация Т- и В-лимфоцитов, изменяются хелперные и киллерные свойства Т-лимфоцитов, нарушается дифференцировка В-лимфоцитов.
Селезенка(splen) является наиболее крупным органом иммунной системы, длина которого достигает 12 см, а вес — 150—200 г. Она располагается в левом подреберье, проецируясь широким концом на грудную клетку между IX и XI ребрами, имеет характерный буровато-красный оттенок, уплощенную вытянутую форму и мягкую консистенцию. Селезенка фиксируется в определенном положении при помощи диафрагмально-селезеночной связки (lig. phrenicolienale) и желудочно-селезеночной связки (lig. gastrolienale). Сверху ее покрывает фиброзная оболочка (tunica fibrosa) (рис. 243), срастающаяся с серозной оболочкой (брюшиной).
Выпуклая наружная поверхность селезенки называется диафрагмальной (fasies diaphragmatica), так как соприкасается с диафрагмой, а вогнутая внутренняя поверхность, называемая внутренностной (fasies visceralis), обращена к желудку, селезеночному изгибу ободочной кишки, хвосту поджелудочной железы, левой почке и левому надпочечнику. Отделы внутренностной поверхности называются по имени прилегающих к ним органов. Кроме того, на ней располагаются ворота селезенки (hilus lienis) (рис. 242), через которые в паренхиму проникают сосуды и нервы. Поверхности отделены друг от друга тупым нижним краем (margo inferior) (рис. 242) и острым верхним краем (margo superior) (рис. 242). Кроме того, в селезенке выделяют обращенный назад и кверху задний конец (extremitas posterior) (рис. 242) и передний конец (extremitas anterior) (рис. 242), обращенный вперед и вниз.
Строму органа образуют соединительно-тканные перекладины селезенки (трабекулы) (trabeculae lienis) (рис. 243), соединяющиеся друг с другом и связанные с капсулой, а также ретикулярная ткань, состоящая из ретикулярных клеток и волокон. Эта ткань называется мякотью селезенки (pupla lientis) и образует селезеночные лимфоидные фолликулы (folliculus lymphaticus lienalis) (рис. 243). Паренхимой селезенки являются белая пульпа (рис. 243) (мякоть), подобно лимфоидной ткани состоящая из лимфоидных узелков селезенки и лимфоидных периартериальных влагалищ, представляющих собой скопления лимфоидной ткани вокруг внутриорганных артерий, и красная пульпа, составляющая 75—85% от общей массы органа. Красную пульпу (рис. 243) образуют венозные синусы (рис. 243), эритроциты (чем объясняется ее характерный цвет), лимфоциты и другие клеточные элементы. Эритроциты, закончившие жизненный цикл, разрушаются в селезенке. Кроме того, в ней осуществляется дифференцирование В- и Т-лимфоцитов.
Селезенка (splen) является наиболее крупным органом иммунной системы, длина которого достигает 12 см, а вес — 150—200 г. Она располагается в левом подреберье, проецируясь широким концом на грудную клетку между IX и XI ребрами, имеет характерный буровато-красный оттенок, уплощенную вытянутую форму и мягкую консистенцию. Селезенка фиксируется в определенном положении при помощи диафрагмально-селезеночной связки (lig. phrenicolienale) и желудочно-селезеночной связки (lig. gastrolienale). Сверху ее покрывает фиброзная оболочка (tunica fibrosa) (рис. 243), срастающаяся с серозной оболочкой (брюшиной).
Выпуклая наружная поверхность селезенки называется диафрагмальной (fasies diaphragmatica), так как соприкасается с диафрагмой, а вогнутая внутренняя поверхность, называемая внутренностной (fasies visceralis), обращена к желудку, селезеночному изгибу ободочной кишки, хвосту поджелудочной железы, левой почке и левому надпочечнику. Отделы внутренностной поверхности называются по имени прилегающих к ним органов. Кроме того, на ней располагаются ворота селезенки (hilus lienis) (рис. 242), через которые в паренхиму проникают сосуды и нервы. Поверхности отделены друг от друга тупым нижним краем (margo inferior) (рис. 242) и острым верхним краем (margo superior) (рис. 242). Кроме того, в селезенке выделяют обращенный назад и кверху задний конец (extremitas posterior) (рис. 242) и передний конец (extremitas anterior) (рис. 242), обращенный вперед и вниз.
Строму органа образуют соединительно-тканные перекладины селезенки (трабекулы) (trabeculae lienis) (рис. 243), соединяющиеся друг с другом и связанные с капсулой, а также ретикулярная ткань, состоящая из ретикулярных клеток и волокон. Эта ткань называется мякотью селезенки (pupla lientis) и образует селезеночные лимфоидные фолликулы (folliculus lymphaticus lienalis) (рис. 243). Паренхимой селезенки являются белая пульпа (рис. 243) (мякоть), подобно лимфоидной ткани состоящая из лимфоидных узелков селезенки и лимфоидных периартериальных влагалищ, представляющих собой скопления лимфоидной ткани вокруг внутриорганных артерий, и красная пульпа, составляющая 75—85% от общей массы органа. Красную пульпу (рис. 243) образуют венозные синусы (рис. 243), эритроциты (чем объясняется ее характерный цвет), лимфоциты и другие клеточные элементы. Эритроциты, закончившие жизненный цикл, разрушаются в селезенке. Кроме того, в ней осуществляется дифференцирование Ви Т-лимфоцитов.
I Международная научно-практическая конференция «ФАРМАКОЛОГИЯ, ФАРМАЦЕВТИЧЕСКАЯ ТЕХНОЛОГИЯ И ФАРМАКОТЕРАПИЯ В ОБЕСПЕЧЕНИИ АКТИВНОГО ДОЛГОЛЕТИЯ»
04-05 апреля 2013 г.
в области гериатрии
БИОГЕРОНТОЛОГИЯ
СЕЛЕЗЕНКА: ОНТОГЕНЕЗ И СТАРЕНИЕ
Санкт-Петербургский институт биорегуляции и геронтологии СЗО РАМН, г. Санкт-Петербург, Россия,
В обзоре проанализированы данные морфофункциональных и молекулярных особенностей развития и старения селезенки.Cвозрастом увеличивается вероятность развития аутоиммунных, эндокринных, инфекционных и раковых заболеваний. Известно, что иммунная система, и, в частности, ее центральный орган – тимус, наиболее подвержены возрастной инволюции. С вязи с этим часть функций тимуса при старении организма делегируется селезенке, менее подверженной возрастным изменениям. Кроме того, функциональная активность селезенки при ее старении может быть восстановлена под действием пептидных биорегуляторов. В настоящем обзоре проанализированы данные по развитию и возрастным изменениям селезенки с точки зрения иммунологии. Таким образом, обзор данных по развитию и возрастной инволюции селезенки показал, что указанный орган иммунной системы менее подвержен дистрофии в сравнении с тимусом. Кроме того, структура и функции селезенки могут быть частично восстановлены под действием пептидных биорегуляторов.
Известно, что с возрастом увеличивается вероятность развития аутоиммунных, эндокринных, инфекционных и раковых заболеваний. В старении иммунной системы наибольшую роль играет гетерогенная инволюция тимуса. У людей пожилого и старческого возраста значительная часть тимуса замещена жировой и соединительной тканью. При этом инволютивные изменения селезенки изучены недостаточно и вполне вероятно, что при старении часть функций тимуса делегируется селезенке.
В настоящем обзоре проанализированы данные по развитию и возрастным изменениям селезенки с точки зрения иммунологии.
У человека селезенка закладывается на 5-6 неделе эмбрионального развития в толще дорсальной брыжейки, куда мигрируют клетки лимфоидного ряда. В начале развития селезенка представляет собой плотное скопление мезенхимальных клеток, пронизанное первичными кровеносными сосудами. В дальнейшем часть клеток дифференцируется в ретикулярную ткань, которая заселяется стволовыми клетками.
На 7-8 неделе развития в селезенке появляются макрофаги. На 2-4 месяце эмбриогенеза внутрь селезенки, начиная от капсулы, врастают тяжи, из которых в дальнейшем формируются трабекулы. На 12 неделе развития селезенки в ней впервые появляются В-лимфоциты. В этом же периоде формируются синусоидные капилляры и другие кровеносные сосуды, в сосудистом русле селезенки появляются широкие венозные синусы, разделяющие ее на островки.
На 3-4 месяце внутриутробного развития островки кроветворных клеток располагаются равномерно вокруг артерии (Т-зона), тогда как в конце 4 и в течение 5 месяца происходит концентрация лимфоцитов и макрофагов сбоку от артерии (В-зона). Впоследствии из лимфоцитов формируются периартериальные лимфоидные муфты и лимфоидные узелки.
Процессы миелопоэза в селезенке человека достигают максимального развития на 5 месяце внутриутробного периода, после чего их активность снижается и прекращается к моменту рождения. Основную функцию миелопоэза в антенатальном периоде выполняет красный костный мозг. Одновременно с развитием узелков происходит формирование красной пульпы, которая становится морфологически различимой на 6 месяце внутриутробного развития. На 9 месяце эмбриогенеза в лимфоидных узелках появляются центры размножения иммунных клеток, что свидетельствует об усилении лимфопоэза в селезенке к моменту рождения.
Селезенка покрыта соединительнотканной капсулой и мезотелием. Капсула селезенки состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна, между которыми залегает небольшое количество гладких мышечных клеток.
В трабекулах селезенки человека содержится большое количество эластических волокон и незначительное число гладких мышечных клеток. Строму селезенки составляют ретикулярные клетки и волокна, содержащие коллаген III и IV типов.
Красная пульпа селезенки включает пульпарные тяжи и венозные синусы. Пульпарные тяжи расположены между синусами и представляют собой форменные элементы крови, макрофаги, плазматические клетки, лежащие в петлях ретикулярной соединительной ткани. Здесь плазмоциты заканчивают свою дифференцировку и секретируют антитела. В пульпарных тяжах встречаются скопления В- и Т- лимфоцитов, которые могут формировать новые узелки белой пульпы.
Синусы красной пульпы расположены между селезеночными тяжами и являются частью сосудистой системы селезенки. Синусы красной пульпы представляют собой широкие тонкостенные сосуды неправильной формы, выстланные эндотелиальными клетками необычной веретеновидной формы с узкими щелями между ними. Через эти щели в просвет синусов из окружающих тяжей мигрируют форменные элементы крови. Базальная мембрана синусов прерывиста, ее дополняют ретикулярные волокна и отростки ретикулярных клеток [3, 6].
Периартериальные лимфатические влагалища (ПАЛВ) представляют собой скопления лимфоидной ткани вытянутые по ходу пульпарной артерии. ПАЛВ являются Т-зависимой зоной селезенки.
Лимфатические узелки селезенки являются B-зависимой зоной белой пульпы селезенки и представляют собой капсулу из уплощенных ретикулярных клеток, внутри которой находятся скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов. Через лимфатический узелок проходит центральная артерия. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону.
Маргинальная зона узелков селезенки представляет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она состоит из Т- и В-лимфоцитов и единичных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке.
Периартериальная зона является продолжением ПАЛВ и образована в основном из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка. Отростки интердигитирующих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно контактируют с ними. Полагают, что дендритные клетки способны адсорбировать антигены и передавать Т-лимфоцитам информацию о состоянии микроокружения, стимулируя их бласт-трансформацию и пролиферацию. Активированные Т-лимфоциты задерживаются в периартериальной зоне в течение 2-3 суток, где они размножаются, а затем мигрируют в синусы краевой зоны через гемокапилляры. Тем же путем попадают в селезенку и В-лимфоциты.
Причина заселения Т- и В-лимфоцитами соответствующих зон недостаточно ясна. В функциональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов.
Центр размножения, или герминативный центр узелка, состоит из ретикулярных клеток, пролиферирующих В-лимфобластов и дифференцирующихся плазматических клеток. Кроме того, в центре размножения иммунных клеток селезёнки нередко можно обнаружить скопления макрофагов с фагоцитированными лимфоцитами и дендритные клетки. В этих случаях центральная часть узелка выглядит светлой.
Мантийная зона окружает периартериальную зону и центр размножения и состоит из плотно расположенных малых В-лимфоцитов и небольшого количества Т-лимфоцитов, а также содержит плазмоциты и макрофаги. Клетки мантийной зоны плотно прилегают друг к другу и расслаиваются циркулярно направленными толстыми ретикулярными волокнами [8].
Установлено, что селезенка человека выполняет иммунную, фильтрационную и депонирующую функции, участвует в процессах гемолиза, синтеза белков и в кроветворении, однако механизмы указанных процессов изучены недостаточно.
Иммунная функция селезенки заключается в утилизации макрофагами вредных веществ и очищении крови от чужеродных агентов. В селезенке разрушаются нерастворимые компоненты клеточного детрита – эндотоксины. Иммунные клетки белой пульпы селезенки человека способны синтезировать специфические антитела в ответ на поступление в кровь чужеродных антигенов [10].
Антигены, приносимые кровью, задерживаются в маргинальной зоне и красной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих интердигитирующих клеток белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе клетки, продуцирующие антитела, появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном иммунном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток [11, 12, 13].
Кроме того, селезенка принимает участие в обмене железа. Её макрофаги преобразуют железо из разрушенных эритроцитов в трансферин. Также в селезенке гемоглобин преобразуется в билирубин и гемосидерин.
Фильтрационная функция селезенки заключается в контроле циркулирующих клеток крови. Благодаря специфическому строению селезеночных тяжей красной пульпы, селезенка способна задерживать старые и дефектные эритроциты. Селезеночные тяжи имеют в своих стенках щели (шириной в среднем 3 мкм), которые являются непреодолимым препятствием для старых и поврежденных эритроцитов (диаметром 4.5 мкм), утративших способность к деформации. Из жизнеспособных, проходящих через щели эритроцитов макрофаги удаляют паразитов, остатки ядер (тельца Говелла-Жолли) и денатурированный гемоглобин (тельца Гейнца) [5].
Селезенка способна накапливать форменные элементы крови. В норме у человека в ней депонированы от 30 до 50% всех тромбоцитов и часть нейтрофилов, которые могут выбрасываться в периферическое русло при кровотечениях или в ответ на инфекцию [4].
Участие селезенки в обмене белков заключается в том, что она синтезирует альбумин и глобин, а так же имеет большое значение в образовании иммуноглобулинов [7].
Селезенка взрослого человека продуцирует лимфоциты и моноциты. В красной пульпе моноциты задерживаются и дифференцируются в макрофаги. При нарушении нормальных процессов кроветворения в костном мозге селезенка способна вырабатывать форменные элементы крови и становится главным органом экстрамедуллярного гемопоэза.
В пожилом возрасте наблюдается снижение функциональной активности селезенки, что выражается в увеличении числа стареющих эритроцитов в кровеносном русле, что, в свою очередь, является одной из причин недостаточности газообменных процессов в тканях при старении.
Возрастные изменения в селезенке характеризуются как морфологической, так и функциональной картиной инволюции. В старческом возрасте в селезенке наблюдается атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппарат вырисовывается более четко. Количество лимфатических узелков в селезенке и размеры их центров с возрастом уменьшаются. Ретикулярные волокна белой и красной пульпы грубеют и становятся более извилистыми, формируются узловатые утолщения волокон. При возрастной атрофии селезенки количество макрофагов и лимфоцитов в пульпе уменьшается, тогда как число зернистых лейкоцитов и тучных клеток возрастает. Как в старческом, так и в детском возрасте в селезенке обнаруживаются гигантские многоядерные клетки — мегакариоциты. С возрастом в селезенке возрастает число гибнущих эритроцитов, что выражается в увеличении количества железосодержащего пигмента, имеющего межклеточную локализацию [9]. Увеличение в числа таких эритроцитов в кровяном русле, в свою очередь, является одной из причин недостаточности газообменных процессов в тканях при старении. Сходные инволютивные изменения в селезенке наблюдаются и при её ускоренном старении, индуцированном γ-излучением.
Показано, что при исследовании селезенки мышей после облучения в её тканях наблюдалось сокращение площади белой пульпы и атрофия периартериальных муфт. Лимфоидные фолликулы были замещены центральными артериями, окруженными тонким слоем перифолликулярной ретикулярной ткани, в которой обнаруживались единичные скопления распадающихся лимфоцитов, плазматических и ретикулярных клеток. При ускоренном старении в стенках кровеносных сосудов белой пульпы и соединительно-тканых трабекулах наблюдалась отечность, они были частично гомогенизированы за счет плазматического пропитывания. Периферические синусы в селезенке переполнялись кровью, а строма в субкапсулярной зоне была практически оголена. Более чем в 2 раза снизилась клеточность в субкапсулярной зоне, в то время как пролиферативная активность клеток на периферии селезенки возрастала [1].
По данным других исследований показано, что введение экстракта селезенки старых (20 месячных) мышей молодым (2 месячным) животным приводило к ускоренному старению, затрагивающему всю нейроиммуноэндокринную систему.
Кроме того важную роль в процессах старения селезенки играют кейлоны – высокомолекулярные белки, угнетающие пролиферацию иммунных клеток селезенки. С помощью хромотографического анализа из кейлонов были выделены низкомолекулярные пептиды – супрессоры активности иммунных клеток – тафцин и спленин. Предшественник тафцина синтезируется в лимфоцитах селезенки в виде лейконина, который путем ограниченного протеолиза преобразуется в активную форму. Спленин по функциям и структуре напоминает гормон тимуса тимопоэтин, что свидетельствует о сходстве иммунологических процессов, а возможно, и механизмов старения указанных органов. Так, активные центры спленина и тимопоэтина различаются лишь одним аминокислым остатком.
Важную роль в механизмах старения селезенки, подобно другим органам иммунной системы, играет пептидная регуляция [4].
Наиболее выраженный геропротекторный эффект в отношении функциональной активности селезенки оказывает синтетический пептид Т-38 (H-Lys-Glu-Asp-OH, везуген), сконструированный в Санкт-Петербургском институте биорегуляции и геронтологии СЗО РАМН [2].
Геропротекторные свойства пептида Т-38 были изучены на крысах в возрасте 2.5 месяцев, которым после облучения был введен пептид Т-38 [1]. В исследовании селезенки крыс в модели ускоренного старения, индуцированного γ–облучением, были получены следующие эффекты. По сравнению с контрольной группой под действием пептида Т-38 у таких крыс наблюдалось относительное увеличение содержания белой пульпы и появление крупных гемопоэтических островков. Содержание крупных лимфобластов в лимфатических фолликулах и парафолликулярной зоне также повышалось, многие из которых находились в состоянии митотического деления, что косвенно предполагает активацию процессов репаративной регенерации в селезенке. В паренхиме селезенки верифицировались группы PCNA + клеток, причем в зонах гемопоэза они формировали скопления [1].
Кроме того, известно, что некоторые биогенные амины способны оказывать влияние на свойства клеток микроокружения селезенки, которые, в свою очередь, регулируют активность иммунных клеток в данном органе. Таким образом, пептидные биорегуляторы играют важную роль в поддержании её функциональной активности при старении.
Приведенные данные свидетельствуют о возможности повышения функциональной активности селезенки и замедлении её старения под действием пептидных биорегуляторов.
Выводы.
Обзор данных по развитию и возрастной инволюции селезенки показал, что указанный орган иммунной системы менее подвержен дитрофии в сравнении с тимусом. Кроме того, структура и функции селезенки могут быть частично восстановлены под действием пептидных биорегуляторов. Таким образом, при старении иммунной системы селезенка становится важным центром иммуногенеза.