Что значит симметрично в математике
Что такое симметрия и асимметрия?
Симметрия ассоциируется с гармонией и порядком. И не зря. Потому что на вопрос, что такое симметрия, есть ответ в виде дословного перевода с древнегреческого. И получается, что она означает соразмерность и неизменность. А что может быть упорядоченней, чем строгое определение местоположения? И что можно назвать более гармоничным, чем то, что строго соответствует размерам?
Что означает симметрия в разных науках?
Биология. В ней важной составляющей симметрии является то, что животные и растения имеют закономерно расположенные части. Причем в этой науке не существует строгой симметрии. Всегда наблюдается некоторая асимметрия. Она допускает то, что части целого не совпадают с абсолютной точностью.
Физика. Система тел и изменения в ней описываются с помощью уравнений. В них оказываются симметричные составляющие, что позволяет упростить все решение. Это выполняется благодаря поиску сохраняющихся величин.
Математика. Именно в ней в основном и дается разъяснение, что такое симметрия. Причем большее значение ей уделяется в геометрии. Здесь симметрия — это способность к отображению у фигур и тел. В узком смысле она сводится просто к зеркальному отображению.
Как определяют симметрию разные словари?
На вопрос, что такое симметрия, словарь Ожегова уже говорит об одинаковости в положении частей относительно точки, прямой или плоскости.
В словаре Ушакова упоминается еще и пропорциональность, а также полное соответствие двух частей целого друг другу.
Когда говорят об асимметрии?
Приставка «а» отрицает смысл основного существительного. Поэтому асимметрия означает то, что расположение элементов не поддается определенной закономерности. В ней отсутствует всякая неизменность.
В живой природе асимметрия играет важную роль. Причем она может быть как полезной, так и вредной. К примеру, сердце помещается в левую половину груди. За счет этого левое легкое существенно меньшего размера. Но это необходимо.
О центральной и осевой симметрии
В математике выделяют такие ее виды:
Что такое ось и центр симметрии? Это точка или прямая, относительно которой любой точке тела найдется другая. Причем такая, чтобы расстояние от исходной до получившейся делилось пополам осью или центром симметрии. Во время движения этих точек они описывают одинаковые траектории.
В ситуациях, когда необходимо найти центр симметрии, нужно поступать следующим образом. Если фигур две, то найти у них одинаковые точки и соединить их отрезком. Потом разделить пополам. Когда фигура одна, то помочь может знание ее свойств. Часто этот центр совпадает с точкой пересечения диагоналей или высот.
Какие фигуры являются симметричными?
Геометрические фигуры могут обладать осевой или центральной симметрией. Но это не обязательное условие, существует множество объектов, которые не обладают ею вовсе. К примеру, параллелограмм обладает центральной, но у него нет осевой. А неравнобедренные трапеции и треугольники не имеют симметрии совсем.
Если рассматривается центральная симметрия, фигур, обладающих ею, оказывается довольно много. Это отрезок и круг, параллелограмм и все правильные многоугольники с числом сторон, которое делится на два.
Центром симметрии отрезка (также круга) является его центр, а у параллелограмма он совпадает с пересечением диагоналей. В то время как у правильных многоугольников эта точка тоже совпадает с центром фигуры.
Если в фигуре можно провести прямую, вдоль которой ее можно сложить, и две половинки совпадут, то она (прямая) будет являться осью симметрии. Интересно то, сколько осей симметрии имеют разные фигуры.
К примеру, острый или тупой угол имеет только одну ось, которой является его биссектриса.
Если нужно найти ось в равнобедренном треугольнике, то нужно провести высоту к его основанию. Линия и будет осью симметрии. И всего одной. А в равностороннем их будет сразу три. К тому же, треугольник обладает еще и центральной симметрией относительно точки пересечения высот.
У круга может быть бесконечное число осей симметрии. Любая прямая, которая проходит через его центр, может исполнить эту роль.
Прямоугольник и ромб обладают двумя осями симметрии. У первого они проходят через середины сторон, а у второго совпадают с диагоналями.
Квадрат же объединяет предыдущие две фигуры и имеет сразу 4 оси симметрии. Они у него такие же, как у ромба и прямоугольника.
Симметрия
Полезное
Смотреть что такое «Симметрия» в других словарях:
СИММЕТРИЯ — (от греч. symmetria соразмерность) законов физики. Если законы, устанавливающие соотношение между величинами, характеризующими физ. систему, или определяющие изменение этих величин со временем, не меняются при определённых операциях… … Физическая энциклопедия
СИММЕТРИЯ — (от греч. соразмерность), понятие, характеризующее переход объектов в самих себя или друг в друга при осуществлении над ними оп редел. преобразований (преобразований С.); в широком смысле свойство неизменности (инвариантности) некоторых… … Философская энциклопедия
СИММЕТРИЯ — (греч. соразмерность, от syn вместе, и metron мера). Соответствие между собою величины и формы частей, которым предназначено быть вместе. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. СИММЕТРИЯ большая или… … Словарь иностранных слов русского языка
СИММЕТРИЯ — [συμμετρια ρоразмерность] закономерная повторяемость равных частей, слагающих фигуру. С. описывается с помощью элементов симметрии, дающих понятие о соответственных симметрических преобразованиях … Геологическая энциклопедия
симметрия — и, ж. symétrie f., нем. Symmetrie <гр. symmetria соразмерность. 1. Соразмерное, пропорциональное расположение частей чего л. по отношению к центру, середине; соразмерность, пропорциональность чего л. БАС 1. Достаточный рисовальщик, дабы мог… … Исторический словарь галлицизмов русского языка
симметрия — См. соответствие. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. симметрия согласие, соответствие; неизменность, билатеральность, соразмерность, гармония, равноудаленность,… … Словарь синонимов
СИММЕТРИЯ — (от греческого symmetria соразмерность), в широком смысле инвариантность (неизменность) структуры, свойств, формы (например, в геометрии, кристаллографии) материального объекта относительно его преобразований (т.е. изменений ряда физических… … Современная энциклопедия
СИММЕТРИЯ — (от греч. symmetria соразмерность) в широком смысле инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований (т. е. изменений ряда физических условий). Симметрия лежит в основе законов… … Большой Энциклопедический словарь
СИММЕТРИЯ — СИММЕТРИЯ, в биологии анатомическое описание формы тела или геометрического рисунка растения или животного. Может быть использована в классификации живых организмов (ТАКСОНОМИИ). В математике симметрией является схожесть, или соответствие, между… … Научно-технический энциклопедический словарь
СИММЕТРИЯ — СИММЕТРИЯ, симметрии, мн. нет, жен. (греч. symmetria). Пропорциональность, соразмерность в расположении частей целого в пространстве, полное соответствие (по расположению, величине) одной половины целого другой половине. Симметрия в планировке… … Толковый словарь Ушакова
Симметрия чисел
Симметрия чисел
1. Введение
В нашем мире все взаимосвязано, похоже друг на друга, имеет одинаковые или схожие параметры. Часто эти свойства называют симметрией. В «Кратком Оксфордском словаре» симметрия определяется как «Красота, обусловленная пропорциональностью частей тела или любого целого, равновесием, подобием, гармонией, согласованностью». [1 ] Очень часто симметрия проявляется в математике и физике. В физике свойства симметрии ярко проявляются в квантовой механике и ее математическом аппарате, например Уравнении Шредингера [ 2]. В математике существует специальный математический аппарат, оперирующий понятиями подобия и симметрии. Этот математический аппарат называется теорией групп [3]. Одним из практических применений симметрии в математике, является шифрование с открытым ключом “RSA” [4].
2. Матрица остатков простого числа
Рассмотрим определение вычета и сравнения по модулю. Вот определение, приведенное в современном толковом словаре. Число “ a “ называется вычетом числа “ b “ по модулю “ m “, если разность “ a – b “ делится на “ m “ ( a, b, m > 0 – целые числа ). То есть “ a “ сравнимо с “ b “ по модулю “ m “.
Это означает, что если “ a “ не делится нацело на “ m ”, то “ b “ остаток от деления “ a “ на “ m “. Два целых числа “ a “ и “ b “ сравнимы по модулю натурального числа “ m “, если при делении на “ m “ они дают одинаковые остатки.
Возьмем простое целое число и обозначим его “ b ”. Множество целых чисел в интервале (1,2,3,…b-1) обозначим “ B “. Если это множество записать в виде столбца, в порядке возрастания снизу вверх, то получим матрицу столбец. Все числа в этом столбце расположены одно за другим, их количество равно “ b – 1 “. Обозначим этот столбец номером “ 1 “. Каждое число из множества “ B “ возведем в квадрат и разделим на “ b “ с остатком. Полученные в результате деления остатки запишем в столбец. Обозначим этот столбец номером “ 2 “ и расположим его справа от столбца номер “ 1 “. Нужно расположить остатки так, чтобы они соответствовали числам, возводимым в квадрат, и находились с ними на одной прямой. После этого каждое число из множества “ B “ возведем в третью степень и разделим на “ b “ с остатком. Из полученных остатков сформируем столбец под номером “ 3 “, по аналогии со столбцом номер “ 2 “. Далее по аналогии возводим в следующую степень и находим остатки от деления на “ b “. Действия выполняем до тех пор, пока показатель степени, в которую возводим числа из множества “ B “, меньше “ b “. В результате получим квадратную матрицу размером (b-1) x (b-1).
Пример такой квадратной матрицы для простого целого числа “ b = 23 “ представлен на рис.1.
Рис. 1 Матрица остатков простого целого числа b = 23.
Полученная матрица обладает удивительными свойствами:
— Наглядно видно, что последний столбец матрицы состоит из одних единиц. Это полностью соответствует тесту простоты Ферма. A n-1 ≡ 1(mod N) [5].
— Следует отметить, что столбец с номером (b-1)/2 ( “ b “ минус 1 деленное на 2 ) состоит только из двух значений множества “ B “. Это значения 1 и ( b-1).
— Значения чисел, множества “ B “, в столбцах, симметричны относительно середины интервала, т.е. пары значений (b-1)/2 и (b+1)/2.
— Виды симметрии для различных столбцов различны.
— Для столбцов с четными номерами, значения равноудаленные от середины интервала, т.е. пары значений (b-1)/2 и (b+1)/2, совпадают. Для матрицы, изображенной на рис. 1, остаток от 11 в квадрате, деленное на 23 и остаток от 12 в квадрате, деленное на 23, совпадают и равны 6.
— Для столбцов с нечетными номерами, значения, равноудаленные от середины интервала, т.е. пары значений (b-1)/2 и (b+1)/2, в сумме всегда равны “ b “. Для матрицы, изображенной на рис. 1, остаток от 11 в третьей степени, деленное на 23, равен 20, остаток от 12 в третьей степени, деленное на 23, равен 3. В сумме эти два остатка равны 23, т.е. равны “ b “.
Все свойства, описанные выше и рассмотренные для матрицы, изображенной на рис. 1, присущи матрицам, построенным по таким же правилам для других простых целых чисел.
3. Матрица остатков составного числа
Матрица, рассмотренная в разделе 2, характеризует симметрию простых чисел. Для составных чисел матрица, построенная по тем же самым правилам, существенно отличается. Она наследует свойства матрицы простого числа, но приобретает и новые свойства. Рассмотрим составное число, являющееся произведением двух простых чисел “ x “ и “ y “. Точно так же величину числа обозначим “ b “, а множество всех чисел, в интервале (1,b-1), обозначим “ B “. Рассмотрим составное число “ b = 35 “, являющееся результатом перемножения простых чисел “ x = 5 “ и “ y = 7 “. Построим матрицу остатков различных степеней, для числового интервала (35-1). Матрица остатков представлена на рис. 2
Рис. 2 Матрица остатков составного числа b = 35.
Часть свойств унаследована от матрицы остатков простого числа. Так например, значения чисел, присутствующих в столбцах, симметричны относительно середины значений числового интервала, т.е. значений (b-1)/2 и (b+1)/2.
Матрица, изображенная на рис. 2, несет в себе новые свойства:
— Значения строк матрицы, у которых в первом столбце присутствуют величины кратные делителям составного числа, принимают числовые значения кратные делителям составного числа и никогда не равны 1. Например, в матрице рис. 2, строка 5, во втором столбце, имеет значение 25, в третьем 20, в четвертом 30 и так далее. Все эти значения кратны 5.
— Если исключить строки, значения которых кратны делителям числа “ b “, то обязательно найдутся два столбца, в которых остальные значения равны 1. Например, на рис. 2 это столбцы с номерами 12, 24.
— Из этих двух выбранных столбцов, наибольший номер столбца равен произведению (x-1) на (y-1). Т.е. если от каждого из сомножителей, вычесть 1 и перемножить их, то получим номер наибольшего выбранного столбца. Для матрицы на рис. 2 сомножители числа “ b “ равны 5 и 7. Если от каждого из них отнять 1 и перемножить, то получим (5-1) x (7-1) = 24. Это как раз номер наибольшего выбранного столбца. Следует отметить, что в данном случае, номер столбца равен функции Эйлера, значение которой равно (x-1) x (y-1) = ѱ(n). [6].
— Во втором столбце обязательно присутствуют четыре значения равные 1. Для матрицы остатков простого числа и значений множества “ B “равных (1,b-1), величины во втором столбце принимают значение 1. Для матрицы остатков составного числа, обязательно существуют еще два числа множества “ B “, при возведении которых в квадрат и делении на “ b “, остаток равен 1. На рис. 2 это числа 6 и 29.
— Всегда присутствуют пары чисел, множества “ B “, следующих друг за другом, значения которых, кратны делителям “ x “ и “ y “ числа “ b”. Для матрицы на рис. 2 это пары ( 14, 15 ) и ( 20, 21 ).
Все свойства, описанные выше и рассмотренные для матрицы, изображенной на рис. 2, присущи матрицам, построенным по таким же правилам для других составных целых чисел.
4. Факторизация чисел
Если рассмотреть метод шифрования с открытым ключом RSA [4], то его использование основано на существовании взаимно противоположных отображений в матрице остатков составного числа. Если взять составное число “ b “, в его матрице остатков всегда существуют два столбца “ c “ и “ d “, для которых выполняются следующие условия:
(b1**c) ≡ c1( mod b); (c1**d) ≡ d1( mod b ); b1 = d1
где b1, c1, d1 числовые значения в столбцах 1, c, d.
То есть для составного числа “ b “ всегда существует два числа “ c “, “ d “ из диапазона (1,b-1), для которых справедлива последовательность действий:
— Определим остаток любого числа “ b1 “, из диапазона (1,b-1), возведенного в степень “ c “ и деленного на “ b “. Обозначим этот остаток “ c1 “.
— Полученный остаток “ c1 “ возведем в степень “ d “ и разделим на “ b “ с остатком. Обозначим этот остаток “ d1 “.
— Полученный остаток “ d1 “ всегда равен “ b1 “.
Для алгоритма шифрования RSA, (c,b) – открытый ключ, (d,b) – секретный ключ.
Рис. 3 Матрица остатков составного числа b = 33.
Рассмотрим матрицу остатков числа b = 33, рис. 3. Для этого числа c = 3, d =7. Возьмем любое число из первого столбца, например 8 и возведем его в 3 степень, остаток равен 17. Число 17 возведем в степень 7, остаток равен 8, т.е. этот остаток равен исходному числу из первого столбца.
RSA один из распространенных алгоритмов шифрования с открытым ключом. Вместе с совершенствованием методов шифрования, совершенствуются методы дешифровки секретных сообщений.
Часто задачу дешифровки для RSA, пытаются решить в лоб, т.е. найти делители базового составного числа. Эти методы называются факторизацией чисел. Кроме простого перебора значений и проверки чисел, используют метод квадратичного решета.
Основы этого метода в том, что часть остатков от возведения в квадрат и деления на число “ b “, являются полными квадратами чисел. На рис. 2 полными квадратами являются квадратичные остатки чисел (11, 12, 17), из первого столбца. Для нахождения делителей числа “ b “, необходимо из квадратичного остатка извлечь квадратный корень. Результат, т.е. квадратный корень, вычесть из числа “ b “ или сложить с числом “ b “. Будут получены числа кратные делителям числа “ b”. Используя алгоритм Евклида можно найти делители числа “ b “.
На рис. 2, для числа 11, квадратичный остаток равен 16. Извлекаем из 16 корень квадратный, он равен 4. К 11 прибавляем 4, получаем 15, число кратное делителю 5. От 11 отнимаем 4, получаем 7, число равное делителю 7.
Одним из самых современных методов факторизации чисел, является метод решета числового поля [7]. Этот метод позволяет сократить количество проверяемых значений и уменьшить время проведения вычислений. Использование метода решета числового поля и свойств матрицы остатков составного числа, позволяет достичь еще более весомых результатов.
Для экспериментальной проверки методов факторизации чисел можно использовать, так называемые, числа Мерсенна [8]. Эти числа представляют собой число 2 в степени “ n “, минус 1, где “ n “ натуральное число. Только ограниченное количество чисел Мерсенна являются простыми, остальные разлагаются на конечное количество делителей.
Как наглядный пример, один из делителей, числа 2 в степени 4099, минус 1, равен –
431654595928296534254101974033397155588925169723783332084380283993261
209600632883153055473166663136594966053411838575253500155337120152873
781979635198920643526624304319945635699208877607737201529464080041890
547345467573782661041054825447947267620282789541695832747170633177331
920343746996221855049648583763367504662477325712779883313257418325242
923223374882540094860518718525171060169694349915604794431233943848839
032331927197514745282594881581533286782002526616104836932259305133211
436643050243706215479754994805351437606942854754835739144357537526269
041212016993538655106720507482318994547865735219931202814880677303379
021540170667630675512896640229254326407201860556265718380698467494757
374722667518146123812589844575734597771351069823560862537030159862538
798769879690913001816439118925869829536250846639469310212937581855933
518710668619729641309263324784218037304674615635505157625365285797298
443305108038716358762651248086440048468372406494047491988831492829285
161751678332086837187972136968851829414833128243888620308340321378185
123642015152620056914762030047166652837911735649104226834442937368573
819974224203735488718107356908123314371578553175076071717675764345142
549580867720367836084289513946899287311856029114297
ВИДЫ СИММЕТРИИ
СИММЕТРИЯ ОТНОСИТЕЛЬНО ПРЯМОЙ (ОСЕВАЯ СИММЕТРИЯ)
Одна точка называются симметричной другой относительно прямой, если данная прямая проходит через середину отрезка, соединяющего эти точки, и перпендикулярна к этому отрезку. Каждая точка прямой а считается симметричной самой себе. Прямая называется осью симметрии фигуры если каждая точка фигуры симметрична относительно некоторой точки той же фигуры.
зеркальная симметрия
Геометрическая фигура называется симметричной относительно плоскости S, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, перпендикулярен плоскости S и делится этой плоскостью пополам. Плоскость S называется плоскостью симметрии.
Симметричные фигуры, предметы и тела не равны друг другу в узком смысле слова (например, левая перчатка или ботинок не подходит для правой руки или ноги и наоборот). Они называются зеркально равными.
центральная симметрия
Геометрическая фигура (или тело) называется симметричной относительно центра О, если для каждой точки этой фигуры может быть найдена другая точка этой же фигуры, так что отрезок, соединяющий эти точки, проходит через центр О и делится в этой точке пополам. Точка О называется центром симметрии.
поворотная симметрия (симметрия вращения)
При поворотной симметрии переход частей фигуры в новое положение или преобразование исходной фигуры происходит при повороте фигуры на определенный угол вокруг точки, которая называется центром поворота. Поворотная симметрия может рассматриваться на плоскости и в пространстве.
Тело (фигура) обладает симметрией вращения, если при повороте на угол 360°/n (n – целое число, например, 2, 3, 4 и т.д. до бесконечности) вокруг некоторой прямой (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию.
симметрия подобия
Представляет собой своеобразный аналог предыдущих симметрий с той лишь разницей, что она связана с одновременным уменьшением или увеличением подобных частей фигуры и расстояний между ними. Простейшим примером такой симметрии являются матрешки.
переносная (трансляционная симметрия)
О такой симметрии говорят тогда, когда при переносе фигуры вдоль прямой на какое-то расстояние, либо расстояние, кратное этой величине, она совмещается сама с собой. Прямая, вдоль которой производится перенос, называется осью переноса.
примеры симметрии геометрических фигур
Разными видами симметрии могут обладать и плоские и объемные фигуры. Например, квадрат, прямоугольник, ромб имеют и центр симметрии и оси симметрии.
Окружность и круг имеют центр симметрии и бесконечно много осей симметрии. Объемные фигуры могут иметь центр симметрии, оси симметрии и обладать зеркальной симметрией.
Правильные многогранники своей симметрией с древних времён привлекали к себе внимание учёных, архитекторов, художников. Их по праву называют самыми симметричными из всех многогранников.
Подробно описал свойства правильных многогранников древнегреческий учёный Платон. Поэтому их называют телами Платона. Правильным многогранникам посвящена 13 книга “Начал” Евклида.
Очень симметричной фигурой является, например, куб. Центром симметрии куба является точка пересечения его диагоналей. Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).
Через центр симметрии проходят 9 осей симметрии. Плоскостей симметрии у куба также 9 и проходят они либо через противоположные ребра (6), либо через середины противоположных ребер (3).