Что значит саморегуляция в биологии
КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ
КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ
Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.
Основоположник идеи о физиологическом гомеостазе Клод Бернар рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде. (слайд 3)
Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.
Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 1б). Таким образом , для поддержания гомеостаза системы используется принцип отрицательной обратной связи.
Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.
В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.
По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Однако, у эукариот регуляция генной активности более сложная.
Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом. Суть регуляции состоит в том, что конечный продукт имеет сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет. (слайд 7)
Заметим, однако, что регулируемые параметры не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции.
САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА
У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.
Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (слайд 9).
Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма. (слайд 10)
Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий. (слайд 12)
В этих тканях имеется резерв недифференцированных клеток (например, красный костный мозг для крови), которые многократно делятся, дифференцируются, работают, стареют и отмирают. Считают, что зрелые клетки выделяют вещества, ингибирующие молодые делящиеся клетки. Выстраивается цепь взаимозависимых реакций: при избытке зрелых клеток продукция ингибитора высока и размножение клеток подавляется; уменьшение числа зрелых клеток в результате их естественной гибели сопровождается снижением концентрации ингибитора в среде; блок клеточных делений снимается; размножение молодых клеток усиливается; число зрелых клеток восстанавливается. Далее вновь возрастает продукция ингибитора и цикл повторяется. Общее число зрелых клеток в ткани колеблется около некоторого среднего уровня, резко не снижается и не повышается. По механизму передачи сигнала здесь мы имеем гуморальную систему, ингибитор работает как внутритканевой «гормон».
САМОРЕГУЛЯЦИЯ В ЭКОСИСТЕМАХ
Концепция гомеостаза экосистемы в экологии была разработана Ф. Клементсом (1949) (слайд 15). Равновесие в экосистемах процессами с обратной связью. Гомеостаз –это способность популяции или экосистемы поддерживать устойчивое динамическое равновесие в изменяющихся условиях среды. В гомеостазе (устойчивости) живых систем выделяют:
Упругость (резистентность, сопротивляемость) –способность быстро самостоятельно возвращаться в нормальное состояние из неустойчивого, которое возникло в результате внешнего неблагоприятного воздействия на систему.
Гомеостаз популяции определяется поддержанием пространственной структуры, плотности и генетического разнообразия. На уровне экосистем гомеостаз проявляется в наиболее устойчивых формах взаимодействия между видами, что выражается в приспособленности к особенностям среды и поддержании циклов круговорота биогенов. Можно рассматривать даже гомеостаз биосферы, в которой взаимодействие разнообразных организмов поддерживает постоянство газового состава атмосферы, состав почв, состава и концентрации солей мирового океана и др.
Гомеостаз обеспечивается работой механизмов регулирования, действующих по принципу отрицательной обратной связи. Резкие изменения характеристик окружающей среды, при которых они (или одна из них) выходят за границы допустимого, называют экологическим стрессом.
В экосистемах в результате взаимодействия круговорота веществ, потоков энергии и сигналов обратной связи от субсистем возникает саморегулирующийся гомеостаз. В число управляющих механизмов на уровне экосистемы входят, например, такие субсистемы, как микробное население, регулирующее накопление и высвобождение биогенных элементов.
Субсистема «хищник-жертва» также регулирует плотность: популяций и хищника, и жертвы. Рассмотрим простейшую экосистему: заяц –рысь, состоящую из двух трофических уровней. (слайд 16) Когда численность зайцев невелика, каждый из них может найти достаточно пищи и удобных укрытий для себя и своих детенышей. Т.е. сопротивление среды невысоко, и численность зайцев увеличивается, несмотря на присутствие хищника. Изобилие зайцев облегчает рыси охоту и выкармливание детенышей. В результате численность хищника также возрастает. В этом проявляется обратная положительная связь. Однако с ростом численности зайцев уменьшается количество корма, убежищ и усиливается хищничество, т.е. усиливается сопротивление среды. В результате численность зайцев снижается. Охотиться хищникам становится труднее, они испытывают нехватку пищи и их численность падает. В этом проявляется обратная отрицательная связь, которая компенсирует отклонения и возвращает экосистему в исходное состояние.
Подобные колебания происходят периодически вокруг некого среднего уровня. Рост, снижение и постоянство популяции зависит от соотношения между биотическим потенциалом и сопротивлением среды. Принцип изменения популяции: это результат нарушения равновесия между биотическим потенциалом и сопротивлением окружающей её среды. Подобное равновесие является динамическим, т.к. факторы сопротивления среды редко подолгу остаются неизменными. (слайд 17)
Равновесие в экосистемах обеспечивается избыточностью организмов, выполняющих одинаковые функции. Например, если в сообществе имеются несколько видов растений, каждое из которых развивается в своем температурном диапазоне, то скорость фотосинтеза экосистемы в течение длительного времени может оставаться почти неизменной. При возрастании стресса система может оказаться неспособной возвратиться на прежний уровень, хотя и остается управляемой. Для экосистем возможно не одно, а несколько состояний равновесия. После стрессовых воздействий они часто возвращаются в другое, новое, состояние равновесия.
По мере увеличения притока СО 2 буферная ёмкость биосферы может оказаться недостаточной, и в атмосфере установится новое равновесие между
СО 2 и О 2. В этом случае даже небольшие изменения могут иметь далеко идущие последствия: должна происходить эволюционная подгонка, чтобы вновь появился надежный гомеостатический контроль. Кроме рассмотренных, имеют место и многие другие механизмы, обеспечивающие стабильность и гомеостаз экосистем. Так, например, способность популяции адаптироваться к новым условиям среды зависит от степени гетерозиготности. Конкуренция тоже является механизмом гомеостаза.
Равновесие –понятие относительное. Равновесие в природных экосистемах зависит от плотности популяции. Если плотность популяции растет –сопротивление среды увеличивается, в связи с чем увеличивается смертность и рост численности прекращается. И, наоборот, с уменьшением плотности популяции сопротивление среды ослабевает и восстанавливается прежняя численность. Воздействие человека на природу часто приводит к вымиранию популяции, т.к. не зависит от плотности популяции.
Стабильность экосистем в экологии означает свойство любой системы возвращаться в исходное состояние после того, как она была выведена из состояния равновесия. Стабильность определяется устойчивостью экосистем к внешним воздействиям. Выделят два типа устойчивости: резистентную и упругую.
Резистентная устойчивость –это способность экосистемы сопротивляться нарушениям, поддерживая неизменными свою структуру и функцию.
Упругая устойчивость –способность системы быстро восстанавливаться после нарушения структуры и функции.
Системе трудно одновременно развивать оба типа устойчивости: они связаны обратной связью, а иногда исключают друг друга. Например, калифорнийский лес из секвойи устойчив к пожарам (высокая резистентная устойчивость), но если сгорит, то восстанавливается очень медленно или вовсе не восстанавливается (низкая упругая устойчивость). Заросли вереска легко выгорают (низкая резистентная устойчивость), но быстро восстанавливаются (высокая упругая устойчивость)
Человек самое могущественное существо, способное изменять функционирование экосистем. Человеческий мозг до сих пор опирался в основном на положительную обратную связь, управляя природой и властвуя над ней. Это привело к развитию техники и росту эксплуатации ресурсов. Но этот процесс, в конце концов приведет к снижению качества жизни и разрушению окружающей среды, если не будут найдены пути адекватного управления с помощью отрицательной обратной связи.
Существование человечества возможно только при сохранении регулирующих механизмов, которые позволяют биосфере приспособиться к некоторым антропогенным воздействиям. Стремясь снизить уровень загрязнения окружающей среды, человек должен в равной степени стремиться к сохранению механизмов саморегуляции, поддерживающих естественные системы жизнеобеспечения планеты, т.е. к сохранению установившегося в природе экологического равновесия, что не всегда достигается только снижением уровня загрязнения и экономным использованием природных ресурсов.
Заключение (слайд 19)
В то же время живые системы направленно и необратимо изменяются, самоорганизуются, что составляет сущность их развития. Клетки дифференцируются, работают и умирают. Организмы растут, размножаются, стареют и умирают. Биоценозы подвергаются сукцессиям и так же необратимо изменяются с изменением климата на Земле. Направленное изменение биосистемы по сути противоположно гомеостазу, оно происходит на основе обратных положительных связей.
1.А.П.Анисимов Концепция современного естествознания. Биология. Дальневосточный государственный университет, тихоокеанский институт дистанционного образования и технологий, Владивосток, 2000
2 Биологический энциклопедический словарь
3. Гомеостаз в экосистеме /Открытая библиотека для школьников и студентов. Лекции, конспекты и учебные материалы по всем научным направлениям./ http://oplib.ru/random/view/1196532
Концепция саморегуляции живых систем. Гомеостаз
» data-shape=»round» data-use-links data-color-scheme=»normal» data-direction=»horizontal» data-services=»messenger,vkontakte,facebook,odnoklassniki,telegram,twitter,viber,whatsapp,moimir,lj,blogger»>
КОНЦЕПЦИЯ САМОРЕГУЛЯЦИИ ЖИВЫХ СИСТЕМ
САМОРЕГУЛЯЦИЯ И ГОМЕОСТАЗ
Саморегуляция в системе – это внутреннее регулирование процессов с подчинением их единому стабильному порядку. При этом даже в меняющихся условиях среды живая система сохраняет относительное внутреннее постоянство своего состава и свойств – гомеостаз (от греческих homoios – подобный, одинаковый и stasis – состояние).
Действительно, окружающая среда очень переменчива. Изменяются температура, освещенность, влажность. Для животных, да и для растений не регулярна доступность пищи. Донимают паразиты, хищники и просто конкуренты за среду обитания. Тем не менее, животные и растения выносят эти колебания среды, живут, растут, размножаются. Экологические сообщества долгое время сохраняют некий средний состав.
Человек как высший представитель животного царства также поддерживает свой внутренний гомеостаз – благодаря работе многочисленных управляющих механизмов. Так, несмотря на смену дня и ночи, зимы и лета, температура нашего тела поддерживается на одном и том же уровне – около 37 градусов (под мышкой 36,6 градуса). Кровяное давление варьирует в ограниченных пределах, так как регулируется благодаря иннервации стенок сосудов. Солевой состав крови и межклеточных жидкостей, содержание сахаров и других осмотически активных веществ (способных вызвать нежелательное перераспределение воды между структурами организма) также поддерживаются на оптимальных уровнях. Даже простое и, казалось бы, самопроизвольное стояние на двух ногах требует ежесекундной согласованной работы вестибулярного аппарата и многих мышц тела.
Основоположник идеи о физиологическом гомеостазе Клод Бернар (вторая половина XIX века) рассматривал стабильность физико-химических условий во внутренней среде как основу свободы и независимости живых организмов в непрерывно меняющейся внешней среде.
Саморегуляция происходит на всех уровнях организации биологических систем – от молекулярно-генетического до биосферного. Поэтому проблема гомеостаза в биологии носит междисциплинарный характер. Внутриклеточный гомеостаз изучают цитология и молекулярная биология, организменный – физиология животных и физиология растений, экосистемный – экология. Конкретные проявления этих механизмов мы рассмотрим ниже. Здесь же отметим, что для поддержания гомеостаза во всех системах используются кибернетические принципы саморегулирующихся систем. Кибернетика – наука об управлении – объясняет принцип саморегуляции системы на основе прямых и обратных связей между ее элементами. Вспомним, что система – это совокупность взаимодействующих элементов. Прямая связь между двумя элементами означает передачу информации от первого ко второму в одну сторону, обратная связь – передача ответной информации от второго элемента к первому. Суть в том, что информационный сигнал – прямой или обратный – изменяет состояние системы, принимающей сигнал. И тут принципиально важно, какой по знаку будет ответный сигнал – положительный или отрицательный. Соответственно и обратная связь будет положительной или отрицательной.
В случае обратной положительной связи первый элемент сигнализирует второму о некоторых изменениях своего состояния, а в ответ получает команду на закрепление этого нового состояния и даже его дальнейшее изменение. Цикл за циклом первый элемент с помощью второго (контрольного) элемента накапливает одни и те же изменения, его состояние стабильно изменяется в одну сторону (рис. 18 а). Эта ситуация характеризуется как самоорганизация, развитие, эволюция, и ни о какой стабильности системы говорить не приходится. Это может быть любой рост (клетки, организма, популяции), изменение видового состава в сообществе организмов, изменение концентрации мутаций в генофонде популяции, ведущее через отбор к эволюции видов. Естественно, что обратные положительные связи не только не поддерживают, но, напротив, разрушают гомеостаз.
Рис. 18
Обратная отрицательная связь стимулирует изменения в регулируемой системе с противоположным знаком относительно тех первичных изменений, которые породили прямую связь. Первоначальные сдвиги параметров системы устраняются, и она приходит в исходное состояние. Цикличное сочетание прямых положительных и обратных отрицательных связей может быть, теоретически, бесконечно долгим, так как система колеблется около некоторого равновесного состояния (рис. 18б). Таким образом, для поддержания гомеостаза системы используется принцип отрицательной обратной связи. Этот принцип широко применяется в автоматике. Так регулируется температура в утюге или холодильнике – с помощью термореле, уровень давления пара в автоклаве – с помощью выпускного клапана, положение судна, самолета, космического корабля в пространстве – с помощью гироскопов. В живых системах универсальный принцип обратной отрицательной связи работает во всех случаях, когда сохраняется гомеостаз.
Далее на конкретных примерах покажем саморегуляцию биологических систем разного уровня сложности.
ВНУТРИКЛЕТОЧНАЯ САМОРЕГУЛЯЦИЯ
В клетке для поддержания гомеостаза используются в основном химические (молекулярные) механизмы регуляции. Наиболее важна регуляция генов, от которых зависит производство белков, в том числе многочисленных и разнообразных ферментов.
Самая простая модель для демонстрации генного гомеостаза – регуляция выработки фермента для расщепления пищевого сахара у кишечной палочки. Эта бактерия является типичным гетеротрофом и поглощает из внешней среды несложные органические вещества, в том числе молочный сахар лактозу. Для расщепления и усвоения лактозы с определенного структурного гена, входящего в состав лактозного оперона (ген вместе с регуляторной областью) синтезируется информационная РНК и, далее, фермент. Если сахар в среде отсутствует, фермент не вырабатывается, а при добавлении сахара активируется ген и идет синтез фермента. Но как только весь сахар будет клеткой использован, ген перестает работать. Как клетка узнает о присутствии сахара и его расходовании? Как оберегает свои гены от бесполезной работы и траты энергии? Регуляция генов у бактерий, как у всех прокариот, в целом организована гораздо проще, чем в эукариотных клетках. Оказывается, лактозный оперон у кишечной палочки работает по принципу отрицательной обратной связи, где в роли регуляторного «клапана» выступает особый участок оперона – оператор, а в роли регулятора сам пищевой субстрат – лактоза (рис. 19). Лактоза, поступившая в клетку, сама раскрывает структурный ген, используя для этого в качестве ключика операторный участок. Исчезновение лактозы автоматически приводит к закрытию гена.
Рис. 19
Лактозный оперон – участок молекулы ДНК – состоит из трех частей: промотора, оператора и структурного гена. Промотор – стартовый участок гена, сюда садится фермент РНК-полимераза, ведущий транскрипцию. Оператор – пусковой барьер, в отсутствие лактозы закрытый специальным белком-репрессором. Структурный ген (точнее – здесь находится цепочка, семейство генов) – основной участок ДНК, кодирующий и производящий через иРНК нужный белок-фермент. Пока оператор связан с белком-репрессором, полимераза не может стартовать и структурный ген не работает, синтез фермента отсутствует (см. рис. 19 а). Когда в клетку попадает лактоза, одна ее молекула связывается с репрессором и отнимает его от оператора. Теперь путь полимеразе открыт, идет синтез иРНК (транскрипция) и, далее, синтез соответствующего белка-фермента (трансляция) (рис. 19 б). Ферменты расщепляют поступивший в клетку сахар и в последнюю очередь ту его молекулу, которая связана с репрессором. Но когда будет переварена и эта последняя молекула, белок-репрессор освобождается и вновь блокирует оператор. Производство иРНК и фермента прекращается до поступления новой порции сахара. По своей простоте система регуляции гена концентрацией субстрата похожа на простые технические регуляторы. Напомним, однако, что у эукариот регуляция генной активности более сложная. Она включает возбуждение клеточных рецепторов гормонами или другими биологически активными веществами, запуск каскада реакций вторичных мессенджеров, которые поступают в ядро и избирательно активируют гены.
Другой пример простых саморегулирующихся систем, использующих обратную отрицательную связь, представляют ферментативные цепи, ингибируемые конечным продуктом (рис. 20). Такие цепи обычно локализуются на поверхности внутриклеточных или наружных мембран и проводят комплексную переработку сложного субстрата в простой продукт. Суть регуляции состоит в том, что конечный продукт имеет стереохимическое сродство с первым ферментом. Связываясь с ферментом, продукт ингибирует (подавляет) его активность, так как полностью искажает его третичную структуру. Работает следующий регуляторный цикл. При повышении концентрации конечного продукта выше необходимого уровня его избыток ингибирует ферментную цепь (для этого достаточно остановить самый первый фермент). Ферментация прекращается, а свободный продукт расходуется на нужды клетки. Через некоторое время возникает дефицит продукта, блок с ферментов снимается, цепь активируется, и производство продукта снова растет.
Рис. 20
Третий пример- поддержание внутриклеточного осмотического гомеостаза. В сегменте 19 мы говорили о механизме возникновения нервных импульсов и отмечали важную роль ионов натрия, концентрация которых снаружи клетки должна поддерживаться на более высоком уровне, чем внутри. Благодаря натриевым насосам, встроенным в мембрану клетки, удерживается нужный градиент ионов. Как только клетка получает избыток натрия, активируется натриевый насос (его фермент, расщепляющий АТФ и дающий энергию). Натрий выкачивается, его концентрация в клетке падает, что служит сигналом для отключения насоса.
Аналогично в клетках растений с помощью плазмалеммы (наружной мембраны) и вакуолей регулируется состав солей и питательных веществ. Плазмалемма обеспечивает приток в клетку необходимых ионов и воды из внешней среды и выделение балластных и избыточных ионов водорода, натрия, кальция. Мембрана вакуоли регулирует поступление в протоплазму запасных субстратов из вакуоли при их недостатке и удаление в вакуоль – при избытке.
Во всех рассмотренных случаях действует один и тот же принцип – саморегуляция системы на основе обратной отрицательной связи. Заметим, однако, что регулируемые параметры – концентрация солей, питательных веществ, конечного продукта ферментации или продукта генной активности – не бывают абсолютно постоянными, они поддерживаются в допустимых границах. В каждом случае это свои физиологические границы, позволяющие нормально осуществлять клеточные функции. Аналогичный принцип мы увидим и на организменном уровне.
САМОРЕГУЛЯЦИЯ МНОГОКЛЕТОЧНОГО ОРГАНИЗМА
Как мы только что видели, уже на клеточном уровне возникает необходимость поддержания специфических физико-химических условий, отличающихся от условий окружающей среды. У многоклеточных организмов появляется внутренняя среда, в которой находятся клетки различных органов и тканей, происходит усложнение и совершенствование механизмов гомеостаза. В ходе эволюции формируются специализированные органы кровообращения, дыхания, пищеварения, выделения и др., участвующие в поддержании гомеостаза.
У морских беспозвоночных имеются механизмы стабилизации объема, ионного состава и рН жидкостей внутренней среды. Для животных, перешедших к жизни в пресных водах и на суше, а также у позвоночных, мигрировавших из пресных вод в море, сформированы механизмы осморегуляции, обеспечивающие постоянство концентрации солей внутри организма.
Наиболее совершенен гомеостаз у млекопитающих, что способствует расширению возможностей их приспособления к окружающей среде. В частности, обеспечивается постоянство объема крови и других внеклеточных жидкостей, концентрации в них ионов, осмотически активных веществ, постоянство рН крови, состава в ней белков, липидов и углеводов. У млекопитающих, а также у птиц, в узких пределах регулируется температура тела – их называют теплокровными животными.
Основную роль в поддержании гомеостаза организма играют нервная и гормональная системы регуляции (см. рис. 17 г).
Наиболее важную интегрирующую функцию выполняет центральная нервная система, особенно кора головного мозга. Большое значение имеет и вегетативная нервная система, в частности ее симпатический отдел – система ганглиев (скоплений нервных клеток), расположенных по бокам позвоночника, в брыжейке и других частях тела (например, солнечное сплетение). Чувствительные нервные волокна охватывают сетью все внутренние органы, кровеносные сосуды, обеспечивая рефлекторную взаимосвязь между ними.
Гормональная регуляция обеспечивается системой эндокринных желез (от греческих endon – внутрь и krino – выделяю) – желез внутренней секреции. Центральная эндокринная железа – гипофиз – находится в голове и имеет прямую связь с головным мозгом (через посредство гипоталамуса), а ее гормоны через кровь воздействуют на все местные эндокринные железы- такие как щитовидная, паращитовидная, надпочечники, а также скопления эндокринных клеток в поджелудочной и слюнной железах, семенниках, яичниках, тимусе, плаценте и даже в сердце, желудке, кишечнике, почках. Выделяемые эндокринными железами гормоны с током крови (гуморально) распространяются ко всем органам-мишеням и участвуют в регуляции их роста и функционирования. Таким образом, фактически благодаря связи нервной и эндокринной систем осуществляется единая нейрогормональная саморегуляция организма.
В рамках данного пособия придется ограничиться лишь некоторыми примерами, демонстрирующими нейрогормональную регуляцию, без какой-либо претензии на комплексное освещение вопроса.
Примером сложной гомеостатической системы является система обеспечения оптимального артериального давления. Изменение давления крови воспринимается барорецепторами сосудов – чувствительными нервными окончаниями, реагирующими на растяжение стенок сосудов при изменении внутреннего давления. Сигнал передается в сосудистые нервные центры, которые обратным сигналом изменяют тонус сосудов и сердечную деятельность. Одновременно включается система нейрогормональной регуляции и кровяное давление возвращается к норме.
Интересна и показательна регуляция пищевого поведения у позвоночных животных и человека (рис. 21). В гипоталамусе – отделе головного мозга, ответственном за регуляцию вегетативных функций и связующем нервную и эндокринную системы (см. выше) – находятся центры голода и насыщения. В крови голодного животного (или человека) возникает недостаток глюкозы – простейшего сахара (углевода), который всасывается всеми клетками и расходуется для получения энергии. Низкая концентрация глюкозы в крови приводит к раздражению центра голода. По нервным связям отдаются команды в мозг, на мышцы, и организуется поиск пищи. Когда пища найдена, включаются механизмы питания, пищеварения и всасывания продуктов в кровь. При этом белки перевариваются (расщепляются) до аминокислот, липиды до жирных кислот, а сложные углеводы до простых сахаров, в том числе глюкозы. Концентрация глюкозы в крови растет, что приводит к раздражению центра насыщения, далее к подавлению аппетита и прекращению питания. Когда глюкоза расходуется, ее концентрация в крови вновь понижается, отчего раздражается центр голода. Цикл повторяется. Поскольку гипоталамус связан и с нервными центрами, и со всей эндокринной системой, цикл пищевого поведения синхронизирован также с нервно-рефлекторной и гуморальной регуляцией желез пищеварительного тракта: выделяется слюна, желудочный сок, ферменты поджелудочной железы и кишечника, мобилизуется перистальтика.
Рис. 21
На основе процессов саморегуляции происходит морфологическая и функциональная гипертрофия органов в ответ на усиление нагрузки, на инфекцию, стрессовое воздействие. В результате постоянных тренировок увеличиваются мышцы спортсмена, легкие ныряльщика. Увеличение нагрузки по прокачиванию крови ведет к гипертрофии сердца у тучного человека. Увеличивается и печень у больного человека. Характерная функциональная реакция развивается в ответ на гипоксию (недостаток кислорода): учащение пульса и увеличение числа эритроцитов, приводящие вместе к более быстрому обороту газов через организм. Или – реакция испуга, страха: выброс в кровь стрессового гормона адреналина ведет к повышению потребления кислорода, повышению концентрации глюкозы в крови, учащению пульса и мобилизации мышечной системы – все для мобилизации организма на оборону или избежание опасности. Другие системы при этом угнетаются – пропадают пищевые реакции, половые рефлексы и др. После исчезновения опасности все системы возвращаются в норму.
Механизм обратной отрицательной связи вовлечен в поддержание постоянства числа клеток в обновляющихся тканях, таких как кровь, кишечный или кожный эпителий (рис. 22). В этих тканях имеется резерв недифференцированных клеток (например, красный костный мозг для крови), которые многократно делятся, дифференцируются, работают, стареют и отмирают. Считают, что зрелые клетки выделяют вещества, ингибирующие молодые делящиеся клетки. Выстраивается цепь взаимозависимых реакций: при избытке зрелых клеток продукция ингибитора высока и размножение клеток подавляется; уменьшение числа зрелых клеток в результате их естественной гибели сопровождается снижением концентрации ингибитора в среде; блок клеточных делений снимается; размножение молодых клеток усиливается; число зрелых клеток восстанавливается. Далее вновь возрастает продукция ингибитора и цикл повторяется. Общее число зрелых клеток в ткани колеблется около некоторого среднего уровня, резко не снижается и не повышается. По механизму передачи сигнала здесь мы имеем гуморальную систему, ингибитор работает как внутритканевой «гормон».
Рис. 22
К числу регуляторных систем, обеспечивающих внутреннее постоянство организма, кроме нервной и эндокринной, следует отнести иммунную систему, которая отслеживает и поддерживает генетическую чистоту внутренней среды и тканей организма, устраняя проникшие вирусы, микробы или собственные мутантные клетки. Состав и принципы функционирования иммунной защиты были рассмотрены в сегменте 18. Теперь можно добавить, что сложный цикл выработки неспецифических и специфических защитных факторов (различных белков, в том числе антител), их взаимодействие с разнообразными чужеродными агентами (антигенами) и восстановление нормальной внутренней среды организма представляют звенья саморегулирующегося механизма. Это очень сложный, многокомпонентный механизм, в котором не сразу видны отдельные узлы саморегуляции, так как над ними или параллельно с ними работают другие управляющие механизмы.
Как и в случае с внутриклеточной регуляцией, мы должны заметить, что гомеостаз организма не бывает абсолютным. Любые параметры: температура тела, артериальное давление, пищевое поведение, частота сердечных сокращений, число клеток в ткани и многие другие – находятся в колебательном режиме. Это вытекает из самой природы механизма регуляции – прямая и обратная связи замкнуты в цикл, на оборот которого требуется определенное время. За это время регулируемая система успевает измениться в ту или иную сторону, что и выражается в колебании ее параметров. Но средний уровень параметра должен соответствовать норме, а коридор его колебаний не должен выходить за физиологические пределы. Если это все же происходит, говорят о патологических (болезненных) отклонениях в состоянии организма.
Нормальные колебания функциональных характеристик организма происходят постоянно и называются биоритмами. Скорость синтеза белков в клетке колеблется в околочасовом (1,5 – 2 часа) ритме, большинство организменных ритмов имеют околосуточную периодичность, есть месячные, годичные и даже многолетние ритмы. Внутренний механизм, управляющий ритмами, принято называть биологическими часами, что подчеркивает связь биоритмов с астрономическим временем. Но заметим, что подавляющее большинство биоритмов являются наведенными, они сформированы под действием абиотических (небиологических) ритмов внешней среды. Это очевидно связанные с вращением Земли околосуточные ритмы, связанные с лунным циклом месячные ритмы и т. д. Поэтому биоритмы могут перестраиваться, и это происходит, например, когда мы перелетаем с востока на запад и наоборот. Но для этого требуется время, так как в один и тот же цикл (особенно суточный) бывают включены и жестко связаны друг с другом многие частные ритмы. И вообще колебательное состояние системы является наиболее устойчивым. Именно поэтому колебательное состояние внутренней среды организма выступает как важный фактор поддержания гомеостаза.