Что значит решить интегральное уравнение
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Интегральные уравнения
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Содержание
Классификация интегральных уравнений
Линейные интегральные уравнения
Это интегральные уравнения, в которые неизвестная функция входит линейно:
Уравнения Фредгольма
Уравнения Фредгольма 2-го рода
Уравнения Фредгольма 2-го рода — это уравнения вида:
Пределы интегрирования могут быть как конечными, так и бесконечными. Переменные удовлетворяют неравенству: , а ядро и свободный член должны быть непрерывными:
, либо удовлетворять условиям:
Ядра, удовлетворяющие последнему условию, называют фредгольмовыми. Если на
, то уравнение называется однородным, иначе оно называется неоднородным интегральным уравнением.
Уравнения Фредгольма 1-го рода
Уравнения Фредгольма 1-го рода выглядят также, как и уравнение Фредгольма 2-го рода, только в них отсутствует часть, содержащая неизвестную функцию вне интеграла:
при этом ядро и свободный член удовлетворяют условиям, сформулированным для уравнений Фредгольма 1-го рода.
Уравнения Вольтерра
Уравнения Вольтерра 2-го рода
Уравнения Вольтера отличаются от уравнений Фредгольма тем, что один из пределов интегрирования в них является переменным:
Уравнения Вольтерра 1-го рода
Также, как и для уравнений Фредгольма, в уравнениях Вольтерра 1-го рода отсутствует неизвестная функция вне интеграла:
В принципе, уравнения Вольтерра можно рассматривать как частный случай уравнений Фредгольма, если переопределить ядро:
Однако некоторые свойства уравнений Вольтерра не могут быть применены к уравнениям Фредгольма.
Нелинейные уравнения
Можно придумать немыслимое многообразие нелинейных уравнений, поэтому дать им полную классификацию не представляется возможным. Вот лишь их некоторые типы, имеющие большое теоретическое и прикладное значение.
Уравнения Урысона
Постоянная M — это некоторое положительное число, которое заранее не всегда может быть определено.
Уравнения Гаммерштейна
Уравнения Гаммерштейна являются важным частным случаем уравнения Урысона:
где — фредгольмово ядро.
Уравнения Ляпунова — Лихтенштейна
Именами Ляпунова — Лихтенштейна принято называть уравнения, содержащие существенно нелинейные операторы, например, уравнение вида:
Нелинейное уравнение Вольтерра
где функция непрерывна по совокупности своих переменных.
Методы решения
Прежде, чем рассмотреть некоторые методы решения интегральных уравнений, следует заметить, что для них, как и для дифференциальных уравнений не всегда удается получить точное аналитическое решение. Выбор метода решения зависит от вида уравнения. Здесь будут рассмотрены несколько методов для решения линейных интегральных уравнений.
Преобразование Лапласа
Метод преобразования Лапласа может быть применён к интегральному уравнению, если входящий в него интеграл имеет вид свёртки двух функций:
то есть, когда ядро является функцией разности двух переменных:
Например, дано такое уравнение:
Применим преобразование Лапласа к обеим частям уравнения:
Применяя обратное преобразование Лапласа, получим:
Метод последовательных приближений
Метод последовательных приближений применяется для уравнений Фредгольма 2-го рода, если выполняется условие:
Это условие необходимо для сходимости ряда Лиувилля — Неймана:
Метод резольвент
Метод резольвент является не самым быстрым решением интегрального уравнения Фредгольма второго рода, однако иногда нельзя указать других путей решения задачи.
Если ввести следующие обозначения:
то повторными ядрами ядра будут ядра
:
Ряд, составленный из повторных ядер,
называется резольвентой ядра и является регулярно сходящимся при
,
и вышеупомянутому условию сходимости ряда Лиувилля — Неймана. Решение интегрального уравнения представляется по формуле:
Например, для интегрального уравнения
повторными будут следующие ядра:
а резольвентой — функция
Тогда решение уравнения находится по формуле:
Метод сведения к алгебраическому уравнению
В случае, если ядро интегрального уравнения Фредгольма является вырожденным, то есть , само интегральное уравнение можно свести к системе алгебраических уравнений. Действительно, в этом случае уравнение можно переписать так:
где . Умножив предыдущее равенство на gi(x) и проинтегрировав его по x на отрезке
, приходим к системе алгебраических уравнений для неизвестных чисел ci :
где и
— числовые коэффициенты.
Приложения
Термин «интегральное уравнение» ввёл в 1888 году Дюбуа-Реймон, однако первые задачи с интегральными уравнениями решались и ранее. Например, в 1811 году Фурье решил задачу об обращении интеграла, которая теперь носит его имя.
Формула обращения Фурье
Задача состоит в нахождении неизвестной функции f(y) по известной функции g(x) :
Фурье получил выражение для функции f(y) :
Сведение задачи Коши к интегральному уравнению
К нелинейным интегральным уравнениям Вольтерра приводит задача Коши для обыкновенных дифференциальных уравнений:
В самом деле, это уравнение можно проинтегрировать по t от a до t :
Решение начальной задачи для линейных дифференциальных уравнений приводит к линейным интегральным уравнениям Вольтерра 2-го рода. Этим еще в 1837 году воспользовался Лиувилль. Пусть, например, поставлена задача:
Для уравнения с постоянными коэффициентами с теми же начальными условиями:
решение может быть найдено методом вариации постоянных и представлено в виде:
Тогда для исходного уравнения получается:
— интегральное уравнение Вольтерра 2-го рода.
также может быть сведено к интегральному уравнению Вольтерра 2-го рода.
Задача Абеля
Исторически считается, что первой задачей, которая привела к необходимости рассмотрения интегральных уравнений, является задача Абеля. В 1823 году Абель, занимаясь обобщением задачи о таутохроне, пришёл к уравнению:
где f(x) — заданная функция, а — искомая. Это уравнение есть частный случай линейного интегрального уравнения Вольтерра 1-го рода. Уравнение Абеля интересно тем, что к нему непосредственно приводит постановка той или иной конкретной задачи механики или физики (минуя дифференциальные уравнения).
У Абеля формулировка задачи выглядела примерно так:
Если обозначить угол между касательной к траектории и осью Oξ как β и применить законы Ньютона, можно прийти к следующему уравнению:
См. также
Литература
Полезное
Смотреть что такое «Интегральные уравнения» в других словарях:
Интегральные уравнения — уравнения, содержащие неизвестные функции под знаком интеграла. Многочисленные задачи физики и математической физики приводят к И. у. различных типов. Пусть, например, требуется с помощью некоторого оптического прибора получить… … Большая советская энциклопедия
ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ — ур ния, содержащие неизвестные ф ции под знаком интеграла. К И. у. приводятся мн. задачи естествознания и техники, например задача о колебаниях, задача о рассеянии лучистой энергии и т. д … Большой энциклопедический политехнический словарь
Сингулярные интегральные уравнения — Интегральные уравнения с ядрами, обращающимися в бесконечность в области интегрирования так, что соответствующий несобственный интеграл, содержащий неизвестную функцию, расходится и заменяется своим главным значением по Коши. Примером С.… … Большая советская энциклопедия
УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ — дифференциальные уравнения с частными производными, интегральные уравнения, к которым приводит математический анализ физических явлений. См., напр., Волновое уравнение, Лапласа уравнение, Теплопроводности уравнение … Большой Энциклопедический словарь
уравнения фаддеева — Интегральные уравнения движения квантовомеханической системы трех взаимодействующих частиц … Политехнический терминологический толковый словарь
Уравнения математической физики — дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро дифференциальные и т.д.), к которым приводит математический анализ физических явлений. Для теории У. м. ф.… … Большая советская энциклопедия
уравнения математической физики — дифференциальные уравнения с частными производными, интегральные уравнения, к которым приводит математический анализ физических явлений. См., например, Волновое уравнение, уравнение Лапласа, уравнение теплопроводности. * * * УРАВНЕНИЯ… … Энциклопедический словарь
УРАВНЕНИЯ — Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера
Интегральные преобразования — Одним из наиболее мощных средств решения дифференциальных уравнений, как обыкновенных, так, особенно, в частных производных, является метод интегральных преобразований. Преобразования Фурье, Лапласа, Ганкеля и другие применяются для решения задач … Википедия
УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ — дифференциальные ур ния с частными производными, интегральные ур ния, к к рым приводит матем. анализ физ. явлений. См., напр., Волновое уравнение, Лапласа уравнение, Теплопроводности уравнение … Естествознание. Энциклопедический словарь
Интегральное уравнение
Интегра́льное уравне́ние — функциональное уравнение, содержащее интегральное преобразование над неизвестной функцией. Если интегральное уравнение содержит также производные от неизвестной функции, то говорят об интегро-дифференциальном уравнении.
Содержание
Классификация интегральных уравнений
Линейные интегральные уравнения
Это интегральные уравнения, в которые неизвестная функция входит линейно:
где — искомая функция,
,
— известные функции,
— параметр. Функция
называется ядром интегрального уравнения. В зависимости от вида ядра и свободного члена линейные уравнения можно разделить еще на несколько видов.
Уравнения Фредгольма
Уравнения Фредгольма 2-го рода
Уравнения Фредгольма 2-го рода — это уравнения вида:
Пределы интегрирования могут быть как конечными, так и бесконечными. Переменные удовлетворяют неравенству: , а ядро и свободный член должны быть непрерывными:
, либо удовлетворять условиям:
Ядра, удовлетворяющие последнему условию, называют фредгольмовыми. Если на
, то уравнение называется однородным, иначе оно называется неоднородным интегральным уравнением.
Уравнения Фредгольма 1-го рода
Уравнения Фредгольма 1-го рода выглядят так же, как и уравнение Фредгольма 2-го рода, только в них отсутствует часть, содержащая неизвестную функцию вне интеграла:
при этом ядро и свободный член удовлетворяют условиям, сформулированным для уравнений Фредгольма 2-го рода.
Уравнения Вольтерра
Уравнения Вольтерра 2-го рода
Уравнения Вольтерра отличаются от уравнений Фредгольма тем, что один из пределов интегрирования в них является переменным:
Уравнения Вольтерра 1-го рода
Также, как и для уравнений Фредгольма, в уравнениях Вольтерра 1-го рода отсутствует неизвестная функция вне интеграла:
В принципе, уравнения Вольтерра можно рассматривать как частный случай уравнений Фредгольма, если переопределить ядро:
Однако некоторые свойства уравнений Вольтерра не могут быть применены к уравнениям Фредгольма.
Нелинейные уравнения
Можно придумать немыслимое многообразие нелинейных уравнений, поэтому дать им полную классификацию не представляется возможным. Вот лишь их некоторые типы, имеющие большое теоретическое и прикладное значение.
Уравнения Урысона
Постоянная — это некоторое положительное число, которое заранее не всегда может быть определено.
Уравнения Гаммерштейна
Уравнения Гаммерштейна являются важным частным случаем уравнения Урысона:
где — фредгольмово ядро.
Уравнения Ляпунова — Лихтенштейна
Именами Ляпунова — Лихтенштейна принято называть уравнения, содержащие существенно нелинейные операторы, например, уравнение вида:
Нелинейное уравнение Вольтерра
где функция непрерывна по совокупности своих переменных.
Методы решения
Прежде, чем рассмотреть некоторые методы решения интегральных уравнений, следует заметить, что для них, как и для дифференциальных уравнений не всегда удается получить точное аналитическое решение. Выбор метода решения зависит от вида уравнения. Здесь будут рассмотрены несколько методов для решения линейных интегральных уравнений.
Преобразование Лапласа
Метод преобразования Лапласа может быть применён к интегральному уравнению, если входящий в него интеграл имеет вид свёртки двух функций:
то есть, когда ядро является функцией разности двух переменных:
Например, дано такое уравнение:
Применим преобразование Лапласа к обеим частям уравнения:
Применяя обратное преобразование Лапласа, получим:
Метод последовательных приближений
Метод последовательных приближений применяется для уравнений Фредгольма 2-го рода, если выполняется условие:
Это условие необходимо для сходимости ряда Лиувилля — Неймана:
который и является решением уравнения. —
-ая степень интегрального оператора
:
Впрочем, такое решение является хорошим приближением лишь при достаточно малых .
Метод резольвент
Метод резольвент является не самым быстрым решением интегрального уравнения Фредгольма второго рода, однако иногда нельзя указать других путей решения задачи.
Если ввести следующие обозначения:
то повторными ядрами ядра будут ядра
:
Ряд, составленный из повторных ядер,
называется резольвентой ядра и является регулярно сходящимся при
,
и вышеупомянутому условию сходимости ряда Лиувилля — Неймана. Решение интегрального уравнения представляется по формуле:
Например, для интегрального уравнения
повторными будут следующие ядра:
а резольвентой — функция
Тогда решение уравнения находится по формуле:
Метод сведения к алгебраическому уравнению
В случае, если ядро интегрального уравнения Фредгольма является вырожденным, то есть , само интегральное уравнение можно свести к системе алгебраических уравнений. Действительно, в этом случае уравнение можно переписать так:
где . Умножив предыдущее равенство на
и проинтегрировав его по
на отрезке
, приходим к системе алгебраических уравнений для неизвестных чисел
:
где и
— числовые коэффициенты.
Приложения
Термин «интегральное уравнение» ввёл в 1888 году Дюбуа-Реймон, однако первые задачи с интегральными уравнениями решались и ранее. Например, в 1811 году Фурье решил задачу об обращении интеграла, которая теперь носит его имя.
Формула обращения Фурье
Задача состоит в нахождении неизвестной функции по известной функции
:
Фурье получил выражение для функции :
Сведение задачи Коши к интегральному уравнению
К нелинейным интегральным уравнениям Вольтерра приводит задача Коши для обыкновенных дифференциальных уравнений:
В самом деле, это уравнение можно проинтегрировать по от
до
:
Решение начальной задачи для линейных дифференциальных уравнений приводит к линейным интегральным уравнениям Вольтерра 2-го рода. Этим еще в 1837 году воспользовался Лиувилль. Пусть, например, поставлена задача:
Для уравнения с постоянными коэффициентами с теми же начальными условиями:
решение может быть найдено методом вариации постоянных и представлено в виде:
Тогда для исходного уравнения получается:
— интегральное уравнение Вольтерра 2-го рода.
Линейное дифференциальное уравнение -го порядка
a,» border=»0″ />
также может быть сведено к интегральному уравнению Вольтерра 2-го рода.
Задача Абеля
Исторически считается, что первой задачей, которая привела к необходимости рассмотрения интегральных уравнений, является задача Абеля. В 1823 году Абель, занимаясь обобщением задачи о таутохроне, пришёл к уравнению:
где — заданная функция, а
— искомая. Это уравнение есть частный случай линейного интегрального уравнения Вольтерра 1-го рода. Уравнение Абеля интересно тем, что к нему непосредственно приводит постановка той или иной конкретной задачи механики или физики (минуя дифференциальные уравнения).
У Абеля формулировка задачи выглядела примерно так:
Материальная точка под действием силы тяжести движется в вертикальной плоскости
по некоторой кривой. Требуется определить эту кривую так, чтобы материальная точка, начав свое движение без начальной скорости в точке кривой с ординатой
, достигла оси
за время
, где
— заданная функция.
Если обозначить угол между касательной к траектории и осью как
и применить законы Ньютона, можно прийти к следующему уравнению:
См. также
Литература
Полезное
Смотреть что такое «Интегральное уравнение» в других словарях:
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ — уравнение, содержащее искомую функцию под знаком интеграла. И. у. делятся на два основных класса: линейные И. у. и нелинейные И. у. Линейные И. у. имеют вид где А, К, f заданные функции, из которых Аназ. коэффициентом, К ядром, f свободным членом … Математическая энциклопедия
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ — воспроиз ва населения, матем. уравнение, устанавливающее связь между числ. и возрастной структурой нас., с одной стороны, и возрастными интенсивностями рождаемости и смертности с другой. Введено А. Дж. Лоткой в серии работ 1907 39. И. у. имеет… … Демографический энциклопедический словарь
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ — ур ние, содержащее неизвестную ф цию под знаком интеграла. Их принято разделять на две большие группы: линейные и нелинейные И. у. Линейным И. у. наз. ур ние вида где А, К, f заданные ф ции, j неизвестная ф ция, D область евклидова пространства.… … Физическая энциклопедия
интегральное уравнение — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN integral equation … Справочник технического переводчика
интегральное уравнение — уравнение, содержащее неизвестную функцию под знаком интеграла. * * * ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ, уравнение, содержащее неизвестную функцию под знаком интеграла … Энциклопедический словарь
интегральное уравнение — integralinė lygtis statusas T sritis automatika atitikmenys: angl. integral equation vok. Integralgleichung, f rus. интегральное уравнение, n pranc. équation intégrale, f … Automatikos terminų žodynas
интегральное уравнение — integralinė lygtis statusas T sritis fizika atitikmenys: angl. integral equation vok. Integralgleichung, f rus. интегральное уравнение, n pranc. équation intégrale, f … Fizikos terminų žodynas
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ — численные методы решения, методы нахождения приближенных решений И. у. Требуется найти решение ф (х)одномерного уравнения Фредгольма 2 го рода где f(x)непрерывна на [ а, b], X числовой параметр, К( х, s )непрерывна на Пусть lне является… … Математическая энциклопедия
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ — ур ние, содержащее неизвестную функцию под знаком интеграла … Естествознание. Энциклопедический словарь
ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ТИПА СВЕРТКИ — интегральное уравнение, содержащее искомую функцию под знаком интегрального преобразования свертки (см. Интегральный оператор). Особенностью И. у. т. с. является то, что ядра таких уравнений зависят от разности аргументов. Простейший пример… … Математическая энциклопедия