Главная > Учебные материалы > Математика: Стереометрия. Страница 1
1. Основные фигуры стереометрии
Аксиомы планиметрии описывают свойства простейших геометрических фигур на плоскости. Так как стереометрия изучает фигуры в пространстве и в пространстве может быть великое множество плоскостей, то аксиомы стереометрии состоят из аксиом планиметрии с уточнением «на» или «в заданной плоскости» и 3-х дополнительных аксиом.
2. Группа дополнительных аксиом стереометрии
1. Для любой плоскости в пространстве, существуют точки принадлежащие данной плоскости и точки не принадлежащие ей.
2. Две различные плоскости, имеющие одну общую точку, пересекаются по прямой, проходящей через эту точку.
3. Через две различные прямые, имеющие общую точку, можно провести только одну плоскость.
Рис. 1. Аксиомы стереометрии.
Пример
Даны три попарно пересекающиеся плоскости. Две прямые пересечения из них пересекаются. Доказать, что три прямые пересечения этих плоскостей пересекаются в одной точке.
Пусть даны три попарно пересекающиеся плоскости α, β и γ. Плоскость α пересекает плоскость β по прямой а. А плоскость β пересекает плоскость γ по прямой с (Рис. 2 а).
точка Е ∈ а,с (прямые пересекаются в точке Е по условию задачи)
Тогда плоскости α и γ пересекаются по прямой b.
Отсюда следует, что, т.к. прямые b,с ∈ γ, то они либо параллельны, либо пересекаются в какой-то точке Е1.
Если они параллельны, то у них нет общих точек, а следовательно, плоскости α и β пересекаются по прямой а, параллельной b и с (Рис. 2 б). А это противоречит условию задачи. Следовательно, прямые b и с пересекаются в какой-то точке Е1.
Отсюда можно сделать вывод, что точка Е1 принадлежит трем плоскостям α,β,γ и, следовательно, она лежит одновременно на трех прямых а, b и с. А это возможно только, если три прямые пересекаются в одной точке. И, следовательно, прямая b пересекает прямую с в точке Е1, которая является точкой пересечения прямых а и с. Таким образом, точки Е и Е1 совпадают.
Рис.2. Даны три попарно пересекающиеся плоскости.
3. Плоскость, проходящая через данную прямую и точку
Теорема: Через прямую и не лежащую на ней точку можно провести только одну плоскость.
Доказательство.
Пусть АВ данная прямая и Е не принадлежащая ей точка. (Рис.3) Проведем через точки А и Е прямую. Тогда прямые АВ и АЕ пересекаются в точке А. Согласно аксиоме: через две пересекающиеся прямые можно провести только одну плоскость, плоскость α, проведенная через эти прямые, единственная. Т.к. точка Е принадлежит прямой АЕ, то она принадлежит плоскости α.
Если допустить, что существует еще одна плоскость α’, проходящая через прямую АВ и точку Е, то эта плоскость пересекает плоскость α по прямой, на которой лежат точки А, В, и Е согласно аксиоме 2. А это противоречит условию, т.к. точки А, В, и Е не лежат на одной прямой. Следовательно, плоскость α единственная.
Рис. 3 Плоскость, проходящая через данную прямую и точку.
4. Пересечение прямой с плоскостью
Теорема: Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит данной плоскости.
Доказательство.
Проведем через прямую а и точку С плоскость β. Тогда, если плоскости α и β совпадают, то прямая а принадлежит плоскости α, что и утверждает данная теорема. Если плоскости α и β не совпадают, то они пересекаются по прямой а’. Таким образом, имеем:
точки А и В ∈ а, α прямая а ∈ β следовательно, точки А и В ∈β
Отсюда следует, что две точки А и В принадлежат двум плоскостям: α и β. И, согласно аксиоме, они могут лежать только на прямой а’, которая является прямой пересечения этих плоскостей. Т.к. через две точки можно провести только одну прямую, и по условию теоремы эта прямая есть а, то следовательно, она и является прямой пересечения двух плоскостей. Т.е. прямые а и а’ совпадают. А следовательно, прямая а принадлежит плоскости α.
Из данной теоремы следует, что плоскость и не принадлежащая ей прямая, либо не пересекаются, либо пересекаются в одной точке.
Рис. 4 Пересечение прямой с плоскостью.
5. Существование плоскости, проходящей через три данные точки
Теорема. Через три точки, не лежащие на данной прямой, можно провести только одну плоскость. Рис.5
Доказательство. Пусть А, В, С три точки, не лежащие на одной прямой. Проведем через точки А,С и В,С прямые. Тогда они пересекаются в точке С. Согласно аксиоме: через две пересекающиеся прямые можно провести только одну плоскость, плоскость, проведенная через эти прямые, единственная. По теореме о пересечении прямой с плоскостью, обе прямые целиком принадлежат данной плоскости.
Рис. 5 Существование плоскости, проходящей через три данные точки.
6.Пример 1
Докажите, что все прямые, пересекающие данную прямую и проходящие через данную точку вне прямой, лежат в одной плоскости.
Доказательство:
Пусть дана данная прямая а и точка О, не принадлежащая прямой а. И даны пересекающие ее прямые b, c, d в точках B, C, D, которые пересекаются в точке О. Проведем через прямую а и точку О плоскость α (Рис.6).
По теореме о пересечении прямой и плоскости, если провести прямую b, проходящую через точку О и точку В прямой а, то она целиком будет принадлежать плоскости α, так как две точки прямой b принадлежат плоскости α.
Если допустить, что прямая b не принадлежит плоскости α, то в этом случае мы можем провести плоскость α’, проходящую через точки В и О. Тогда плоскости α и α’ пересекаются по прямой b’, проходящей через точки В и О. А так как через две точки можно провести только одну прямую, то прямые b и b’ совпадают. Следовательно, прямая b целиком принадлежит плоскости α.
Точно так же доказывается, что прямые с и d принадлежат плоскости α. Отсюда можно сделать вывод, что все прямые, пересекающие данную прямую и проходящие через данную точку вне прямой, лежат в одной плоскости.
Рис.6 Задача. Докажите, что все прямые, пересекающие данную прямую.
Пример 2
Даны две непересекающиеся плоскости. Докажите, что прямая, пересекающая одну из этих плоскостей, пересекает и другую.
Доказательство:
Пусть даны две непересекающиеся плоскости α и α’. И прямая а, которая пересекает плоскость α в точке В (Рис.7). Необходимо доказать, что прямая а пересекает плоскость α’ в точке В’.
Возьмем на плоскости α’ точку А и проведем через нее и прямую а плоскость β. Тогда плоскость β будет пересекать плоскости α и α’ по параллельным прямым b и b’. Точка В принадлежит прямой b, так как она принадлежит плоскости α и лежит на прямой а. И следовательно, она принадлежит двум плоскостям α и β.
Таким образом получается, что на плоскости β лежат две параллельные прямые b и b’. Одну из них пересекает прямая а в точке В. Следовательно, прямая а пересекает и вторую прямую b’. Так как согласно аксеоме, через точку В, не лежащей на данной прямой b’, можно провести только одну, параллельную прямой b’, прямую b. Отсюда следует, что прямая а не параллельна прямой b’, она ее пересекает в точке B’.
Рис.7 Задача. Даны две непересекающиеся плоскости.
Пример 3
Даны две плоскости, пересекающиеся по прямой а. И прямая b, которая лежит в одной из этих плоскостей и пересекает другую. Докажите, что прямые а и b пересекаются.
Доказательство:
Пусть даны две пересекающиеся плоскости α и β. Прямая а, является их прямой пересечения. Прямая b лежит в плоскости β и пересекает плоскость α в точке А (Рис.8). Необходимо доказать, что прямая b пересекает прямую а.
По условию задачи, прямая b лежит в плоскости β и пересекает плоскость α в точке А. Следовательно, точка А принадлежит двум плоскостям α и β.
Согласно аксиоме стереометрии, если две плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Отсюда следует, что, так как точка А принадлежит двум плоскостям, то она лежит на прямой а, потому что прямая а является прямой пересечения двух плоскостей α и β.
Таким образом, точка А принадлежит двум прямым а и b. А следовательно, эти прямые пересекаются.
Рис.8 Задача. Даны две плоскости, пересекающиеся по прямой а.
Пример 4
Точки А, В, С лежат в каждой из двух различных плоскостей. Докажите, что эти точки лежат на одной прямой.
Доказательство:
Пусть даны две пересекающиеся плоскости α и β. Прямая а, является их прямой пересечения. Точки А, В, С одновременно принадлежат двум плоскостям α и β (Рис.9). Необходимо доказать, что все три точки принадлежат прямой а.
Согласно аксиоме стереометрии, если две плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Отсюда следует, что все три точки А, В и С лежат на прямой пересечения двух плоскостей, т.е. прямой а, так как они принадлежат обоим плоскостям α и β.
Пусть дана точка D, принадлежащая только плоскости β. Тогда она не может лежать на прямой а, так как она не принадлежит плоскости α. Точно так же точка Е не может принадлежать прямой а, так как она принадлежит только плоскости α. Точка F не принадлежит плоскостям α и β, а следовательно, и прямой а.
Рис.9 Задача. Точки А, В, С лежат в каждой из двух различных плоскостей.
Пример 5
Даны четыре точки. Известно, что прямая, проходящая через любые две из этих точек, не пересекается с прямой, проходящей через другие две точки. Докажите, что данные четыре точки не лежат в одной плоскости.
Доказательство:
Пусть даны четыре точки А, В, С, D. Допустим, что все четыре точки лежат в одной плоскости α.
Прямая АВ не пересекается с прямой CD. Прямая АС также не пересекается с прямой BD. Если провести прямую AD, то точки В и С окажутся в разных полуплоскостях. Следовательно, прямая AD пересекается с прямой ВС в точке О (Рис.10 а).
Допустим, что прямая AB не пересекает прямую DС (Рис.10 б). АD не пересекает прямую BC. Тогда, если провести прямую АС, то точки B и D окажутся в разных полуплоскостях. И прямая АС будет пересекать прямую BD в точке О.
Теперь допустим, что прямая AC не пересекает прямую ВD (Рис.10 в). АD не пересекает прямую ВC. Тогда, если провести прямую АВ, то точки D и C окажутся в разны полуплоскостях. А следовательно, прямая АВ будет пересекать прямую СD в точке О.
Отсюда можно сделать вывод, для того, чтобы выполнялось условие, при котором прямые АВ, АС, АD, одновременно не пересекали бы прямые CD, BD, BC, необходимо чтобы четыре точки А, В, С и D лежали в разных плоскостях.
Рис.10 Задача. Даны четыре точки. Известно, что прямая.
Плоскость и прямая в пространстве с примерами решения
Содержание:
Плоскость в пространстве
Общее уравнение плоскости
Определение: Уравнение вида
Определение: Порядок поверхности определяется по высшему показателю степени переменных х, у и z или по сумме показателей степени в произведении этих величин.
Определение: Уравнение вида Ax+By+Cz+D=O называется общим уравнением плоскости.
Рассмотрим частные случаи приведенного уравнения:
1. D = 0; Ах + By + Сz = 0. Из этого уравнения видно, что точка О(0; 0; 0) удов- летворяет этому уравнению, следовательно, это уравнение описывает плоскость, проходящую через начало координат (Рис. 36).
Рис. 36. Плоскость, проходящая через начало координат.
2. С = 0; Ах + Ву + D = 0. Этому уравнению удовлетворяет любое значение переменной z, поэтому данное уравнение описывает плоскость, которая параллельна оси аппликат (Oz) (Рис. 37).
Рис. 37. Плоскость, проходящая параллельно оси аппликат.
Замечание: При отсутствии в уравнении плоскости одной из переменных величин говорит о том, что плоскость параллельна соответствующей координатной оси.
Рис. 38. Плоскость, проходящая через начало координат параллельно оси аппликат.
4. — плоскость проходит через точку параллельно плоскости (Pис. 39).
Рис. 39. Плоскость, проходящая параллельно координатной плоскости
Рис. 40. Координатная плоскость .
Другие уравнения плоскости
1. Уравнение плоскости в отрезках. Пусть в уравнении коэффициент тогда выполним следующие преобразования
Введем следующие обозначения тогда уравнение примет вид которое называется уравнением плоскости в отрезках. Найдем точки пересечения плоскости с координатными осями:
Откладывая на координатных осях точки М, N и Р, соединяя их прямыми лучим изображение данной плоскости (для определенности принято, что параметры а, b, с положительные) (Рис. 41):
Рис. 41. Отрезки, отсекаемые плоскостью на координатных осях.
Из рисунка видно, что числа а, b, с показывают отрезки, отсекаемые плоскостью на координатных осях, считая от начала координат.
2. Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданному вектору. Пусть задана точка через которую проходит плоскость перпендикулярно к заданному вектору ОЗ. Вектор называется нормальным вектором плоскости, если он перпендикулярен любой паре неколлинеарных векторов, лежащих на плоскости.
Возьмем на плоскости произвольную точку и образуем вектор соединяющий точку с точкой М (Рис. 42). Тогда
Рис. 42. Плоскость, проходящая через заданную точку перпендикулярно к нормальному вектору.
В силу того, вектор лежит в плоскости, то он перпендикулярен нормальному вектору Используя условие перпендикулярности векторов в проекциях перемножаемых векторов, получим уравнение плоскости, проходящая через заданную точку перпендикулярно к нормальному вектору:
Пример:
Составить уравнение плоскости, проходящей через т. параллельно плоскости
Решение:
Так как искомая плоскость параллельна плоскости (Q), то нормальный вектор этой плоскости (см. коэффициенты при переменных величинах х, у и z в уравнении плоскости ) перпендикулярен к искомой плоскости и может быть взят в качестве нормального вектора этой плоскости. Используя уравнение плоскости, проходящей через заданную точку перпендикулярно к данному вектору, получаем:
Пример:
Решение:
Построим на искомой плоскости вектор и вычислим нормальный вектор как векторное произведение векторов
Уравнение плоскости, проходящей через заданную точку перпендикулярно к заданному вектору имеет вид:
Отметим, что при выборе точки, через которую проходит искомая плоскость из точек брать как точку, через которую проходит искомая плоскость.
3. Уравнение плоскости, проходящей через три заданные точки. Пусть плоскость проходит через 3 известные точки Возьмем произвольную точку плоскости М(х; у; z) и образуем векторы
Рис. 43. Плоскость, проходящая через три заданные точки.
Вектора компланарные, используя условие компланарности векторов получим уравнение плоскости, проходящей через 3 известные точки:
Замечание: Полученный определитель третьего порядка раскрывается по элементам первой строки.
Пример:
Составить уравнение плоскости, проходящей через три заданные точки
Решение:
Основные задачи о плоскости в пространстве
1. Угол между пересекающимися плоскостями. Пусть даны две пересекающиеся плоскости которые имеют нормальные векторы
Пусть линия пересечения плоскостей определяется прямой (l). Из одной точки этой прямой проведем два перпендикулярных к прямой вектора Меньший угол между этими векторами определяет угол между плоскостями (Рис.44):
Рис.44. Угол между плоскостями.
В силу того, что то угол между нормальными векторами равен углу между векторами Из векторной алгебры известно, что угол между векторами определяется формулой:
Следствие: Если плоскости перпендикулярны (), то условием перпендикулярности плоскостей является равенство: .
Следствие: Если плоскости параллельны, то нормальные вектора коллинеарны, следовательно, условие параллельности плоскостей:
2. Расстояние от данной точки до заданной плоскости. Расстояние от данной точки до заданной плоскости определяется по формуле:
Пример:
На каком расстоянии от плоскости находится точка
Решение:
Воспользуемся приведенной формулой:
Прямая в пространстве
Общее уравнение прямой
Прямая в пространстве может быть задана как пересечение двух плоскостей:
Определение: Геометрическое место точек пространства, удовлетворяющих системе уравнений (1), называется прямой в пространстве, а система уравнений (1) называется общим уравнением прямой.
Замечание: Для того чтобы система уравнений (1) определяла прямую в пространстве необходимо и достаточно, чтобы нормальные вектора плоскостей, определяющих прямую, были неколлинеарными, т.е. выполняется одно из неравенств:
Пусть прямая проходит через точку параллельно вектору который называется направляющим вектором прямой (см. Лекцию Ле 7), тогда ее уравнение называется каноническими имеет вид:
Замечание: Если в уравнении (2) одна из проекций направляющего вектора равна 0, то это означает, что прямая перпендикулярна соответствующей координатной оси.
Пример:
Как расположена прямая относительно координатных осей.
Решение:
Согласно замечанию эта прямая будет перпендикулярна осям абсцисс и ординат (параллельна оси аппликат) и будет проходить через точку Приравняв каждую дробь уравнения (2) параметру t, получим параметрическое уравнение прямой:
Пример:
Записать уравнение прямой в параметрическом виде.
Решение:
Приравняем каждую дробь к параметру t: Если прямая проходит через две известные точки то ее уравнение имеет вид: и называется уравнением прямой, проходящей через две заданные точки.
Пример:
Решение:
Составим каноническое уравнение прямой линии, проходящей через точки
Перейдём к параметрическому уравнению или Составим каноническое уравнение прямой линии, проходящей через точки
Перейдём к параметрическому уравнению прямой
Основные задачи о прямой в пространстве
1. Переход от общего уравнения прямой к каноническому. Пусть прямая задана общим уравнением Для того, чтобы перейти от этого уравнения прямой к каноническому, поступают следующим образом:
Пример:
Записать уравнение прямой в каноническом и параметрическом виде.
Решение:
Запишем каноническое и параметрическое уравнения прямой:
Угол между пересекающимися прямыми
Угол между двумя пересекающимися прямыми определяется как угол между их направляющими векторами. Если прямые имеют направляющие вектора
соответственно, то угол между прямыми определяется по формуле:
Следствие: Если прямые перпендикулярны (), то условием перпендикулярности прямых является равенство:
Следствие: Если прямые параллельны, то направляющие вектора коллинеарны, следовательно, условие параллельности прямых:
Координаты точки пересечения прямой и плоскости
Пусть прямая (L) задана общим уравнением а плоскость (Q) уравнением Ax+By+Cz+D=0. Так как точка пересечения прямой и плоскости принадлежит одновременно обоим этим объектам, то ее координаты находят из системы уравнений: Если прямая (L) задана каноническим уравнениема плоскость (Q)
Рассмотрим возможные случаи:
Пример:
Найти координаты точки пересечения прямой (L), заданной уравнением и плоскости (Q): 2x-y+3z-4=0.
Решение:
Перепишем уравнение прямой (L) в параметрическом виде Подставим найденные величины в уравнение плоскости (Q)? получим
Найденное значение параметра подставим в параметрическое уравнение прямой Таким образом, прямая пересекает заданную плоскость в точке
Угол между прямой и плоскостью
Пусть дана плоскость (Q) с нормальным вектором и пересекающая ее прямая (L) с направляющим вектором (Рис.45).
Рис. 45. Угол между прямой и плоскостью.
Угол является углом между прямой (L) и плоскостью (Q). Угол между нормальным вектором плоскости и прямой обозначим через Из рисунка видно, что Следовательно,
Следствие: Если прямая перпендикулярна плоскости (), то условие перпендикулярности прямой и плоскостиимеет вид:
Следствие: Если прямая параллельна плоскости (), то направляющий вектор прямой и нормальный вектор плоскости перпендикулярны (), следовательно, условие параллельности прямой и плоскости:.
Плоскость и прямая в пространстве
Всякое уравнение первой степени относительно координат задает плоскость, и наоборот: всякая плоскость может быть представлена уравнением (3.1), которое называется уравнением плоскости.
Вектор ортогональный плоскости, называется нормальным вектором плоскости. В уравнении (3.1) коэффициенты А, В, С одновременно не равны 0.
Особые случаи уравнения (3.1):
Уравнения координатных плоскостей:
Прямая в пространстве может быть задана:
Тогда прямая определяется уравнениями:
Уравнения (3.4) называются каноническими уравнениями прямой.
Вектор называется направляющим вектором прямой.
Параметрические уравнения прямой получим, приравняв каждое из отношений (3.4) параметру t: Решая систему (3.2) как систему линейных уравнений относительно неизвестных х и у, приходим к уравнениям прямой в проекциях или к приведенным уравнениям прямой.
От уравнений (3.6) можно перейти к каноническим уравнениям, находя z из каждого уравнения и приравнивая полученные значения:
От общих уравнений (3.2) можно переходить к каноническим и другим способом, если найти какую-либо точку этой прямой и ее направляющий вектор — нормальные векторы заданных плоскостей. Если один из знаменателей в уравнениях (3.4) окажется равным нулю, то числитель соответствующей дроби надо положить равным нулю, т.е. система равносильна системе такая прямая перпендикулярна к оси Ох. Система равносильна системе прямая параллельна оси Oz.
Пример:
Составьте уравнение плоскости, зная, что точка А(1,-1,3) служит основанием перпендикуляра, проведенного из начала координат к этой плоскости.
Решение:
По условию задачи вектор является нормальным вектором плоскости, тогда ее уравнение можно записать в виде Подставив координаты точки А(1,-1,3), принадлежащей плоскости, найдем D: Итак,
Пример:
Составьте уравнение плоскости, проходящей через ось Oz и образующей с плоскостью
Решение:
Плоскость, проходящая через ось Oz, задается уравнениемодновременно не обращаются в нуль. Пусть В не равно 0, По формуле косинуса угла В между двумя плоскостями
Решая квадратное уравнение находим его корни откуда получаем две плоскости
Пример:
Составьте канонические уравнения прямой:
Решение:
Канонические уравнения прямой имеют вид:
Канонические уравнения прямой имеют вид:
Пример:
В пучке, определяемом плоскостями найти две перпендикулярные плоскости, одна из которых проходит через точку М (1,0,1).
Решение:
Уравнение пучка, определяемого данными плоскостями, имеет вид где не обращаются в нуль одновременно. Перепишем уравнение пучка следующим образом:
Для того, чтобы из пучка выделить плоскость, проходящую через точку М, подставим координаты точки М в уравнение пучка. Получим:
Тогда уравнение плоскости, содержащей М, найдем, подставив в уравнение пучка:
Т.к. и (иначе v=0, а это противоречит определению пучка), то имеем уравнение плоскости Вторая плоскость, принадлежащая пучку, должна быть ей перпендикулярна. Запишем условие ортогональности плоскостей:
Значит, уравнение второй плоскости имеет вид: или
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.