Что значит перевести в десятичную систему счисления
Перевод чисел из одной системы счисления в другую онлайн
С помощю этого онлайн калькулятора можно перевести целые и дробные числа из одной системы счисления в другую. Дается подробное решение с пояснениями. Для перевода введите исходное число, задайте основание сисемы счисления исходного числа, задайте основание системы счисления, в которую нужно перевести число и нажмите на кнопку «Перевести». Теоретическую часть и численные примеры смотрите ниже.
Предупреждение
Перевод целых и дробных чисел из одной системы счисления в любую другую − теория, примеры и решения
Существуют позиционные и не позиционные системы счисления. Арабская система счисления, которым мы пользуемся в повседневной жизни, является позиционной, а римская − нет. В позиционных системах счисления позиция числа однозначно определяет величину числа. Рассмотрим это на примере числа 6372 в десятичном системе счисления. Пронумеруем это число справа налево начиная с нуля:
число | 6 | 3 | 7 | 2 |
позиция | 3 | 2 | 1 | 0 |
Тогда число 6372 можно представить в следующем виде:
Число 10 определяет систему счисления (в данном случае это 10). В качестве степеней взяты значения позиции данного числа.
Рассмотрим вещественное десятичное число 1287.923. Пронумеруем его начиная с нуля позиции числа от десятичной точки влево и вправо:
число | 1 | 2 | 8 | 7 | . | 9 | 2 | 3 |
позиция | 3 | 2 | 1 | 0 | -1 | -2 | -3 |
Тогда число 1287.923 можно представить в виде:
В общем случае формулу можно представить в следующем виде:
В таблице Таб.1 представлены числа в разных системах счисления.
Таблица 1 | |||
---|---|---|---|
Система счисления | |||
10 | 2 | 8 | 16 |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Перевод чисел из одной системы счисления в другую
Для перевода чисел с одной системы счисления в другую, проще всего сначала перевести число в десятичную систему счисления, а затем, из десятичной системы счисления перевести в требуемую систему счисления.
Перевод чисел из любой системы счисления в десятичную систему счисления
С помощью формулы (1) можно перевести числа из любой системы счисления в десятичную систему счисления.
Пример 1. Переводить число 1011101.001 из двоичной системы счисления (СС) в десятичную СС. Решение:
Пример 2. Переводить число 1011101.001 из восьмеричной системы счисления (СС) в десятичную СС. Решение:
Пример 3. Переводить число AB572.CDF из шестнадцатеричной системы счисления в десятичную СС. Решение:
Перевод чисел из десятичной системы счисления в другую систему счисления
Для перевода чисел из десятичной системы счисления в другую систему счисления нужно переводить отдельно целую часть числа и дробную часть числа.
Пример 4. Переведем число 159 из десятичной СС в двоичную СС:
159 | 2 | ||
158 | 79 | 2 | |
1 | 78 | 39 | 2 |
1 | 38 | 19 | 2 |
1 | 18 | 9 | 2 |
1 | 8 | 4 | 2 |
1 | 4 | 2 | 2 |
0 | 2 | 1 | |
0 |
Как видно из Рис. 1, число 159 при делении на 2 дает частное 79 и остаток 1. Далее число 79 при делении на 2 дает частное 39 и остаток 1 и т.д. В результате построив число из остатков деления (справа налево) получим число в двоичной СС: 10011111. Следовательно можно записать:
Пример 5. Переведем число 615 из десятичной СС в восьмеричную СС.
615 | 8 | ||
608 | 76 | 8 | |
7 | 72 | 9 | 8 |
4 | 8 | 1 | |
1 |
При приведении числа из десятичной СС в восьмеричную СС, нужно последовательно делить число на 8, пока не получится целый остаток меньшее, чем 8. В результате построив число из остатков деления (справа налево) получим число в восьмеричной СС: 1147(см. Рис. 2). Следовательно можно записать:
Пример 6. Переведем число 19673 из десятичной системы счисления в шестнадцатеричную СС.
19673 | 16 | ||
19664 | 1229 | 16 | |
9 | 1216 | 76 | 16 |
13 | 64 | 4 | |
12 |
Далее рассмотрим перевод правильных десятичных дробей в двоичную СС, в восьмеричную СС, в шестнадцатеричную СС и т.д.
Для перевода правильных десятичных дробей (вещественное число с нулевой целой частью) в систему счисления с основанием s необходимо данное число последовательно умножить на s до тех пор, пока в дробной части не получится чистый нуль, или же не получим требуемое количество разрядов. Если при умножении получится число с целой частью, отличное от нуля, то эту целую часть не учитывать (они последовательно зачисливаются в результат).
Рассмотрим вышеизложенное на примерах.
Пример 7. Переведем число 0.214 из десятичной системы счисления в двоичную СС.
0.214 | |
x | 2 |
0 | 0.428 |
x | 2 |
0 | 0.856 |
x | 2 |
1 | 0.712 |
x | 2 |
1 | 0.424 |
x | 2 |
0 | 0.848 |
x | 2 |
1 | 0.696 |
x | 2 |
1 | 0.392 |
Как видно из Рис.4, число 0.214 последовательно умножается на 2. Если в результате умножения получится число с целой частью, отличное от нуля, то целая часть записывается отдельно (слева от числа), а число записывается с нулевой целой частью. Если же при умножении получиться число с нулевой целой частью, то слева от нее записывается нуль. Процесс умножения продолжается до тех пор, пока в дробной части не получится чистый нуль или же не получим требуемое количество разрядов. Записывая жирные числа (Рис.4) сверху вниз получим требуемое число в двоичной системе счисления: 0. 0011011.
Следовательно можно записать:
Пример 8. Переведем число 0.125 из десятичной системы счисления в двоичную СС.
0.125 | |
x | 2 |
0 | 0.25 |
x | 2 |
0 | 0.5 |
x | 2 |
1 | 0.0 |
Для приведения числа 0.125 из десятичной СС в двоичную, данное число последовательно умножается на 2. В третьем этапе получилось 0. Следовательно, получился следующий результат:
Пример 9. Переведем число 0.214 из десятичной системы счисления в шестнадцатеричную СС.
0.214 | |
x | 16 |
3 | 0.424 |
x | 16 |
6 | 0.784 |
x | 16 |
12 | 0.544 |
x | 16 |
8 | 0.704 |
x | 16 |
11 | 0.264 |
x | 16 |
4 | 0.224 |
Следуя примерам 4 и 5 получаем числа 3, 6, 12, 8, 11, 4. Но в шестнадцатеричной СС числам 12 и 11 соответствуют числа C и B. Следовательно имеем:
Пример 10. Переведем число 0.512 из десятичной системы счисления в восьмеричную СС.
0.512 | |
x | 8 |
4 | 0.096 |
x | 8 |
0 | 0.768 |
x | 8 |
6 | 0.144 |
x | 8 |
1 | 0.152 |
x | 8 |
1 | 0.216 |
x | 8 |
1 | 0.728 |
Пример 11. Переведем число 159.125 из десятичной системы счисления в двоичную СС. Для этого переведем отдельно целую часть числа (Пример 4) и дробную часть числа (Пример 8). Далее объединяя эти результаты получим:
Пример 12. Переведем число 19673.214 из десятичной системы счисления в шестнадцатеричную СС. Для этого переведем отдельно целую часть числа (Пример 6) и дробную часть числа (Пример 9). Далее объединяя эти результаты получим:
Перевод из двоичной системы счисления в десятичную
Перевести двоичное число в десятичное достаточно просто, для этого необходимо воспользоваться формулой. Важное замечание состоит в том, что для перевода целого и дробного двоичного числа используются разные, хоть и схожие, формулы.
Алгоритм перевода целого двоичного числа в десятичную систему счисления
Для перевода целого двоичного числа в десятичное, обратимся к развернутой форме записи числа для позиционной системы счисления:
где A — число, q — основание системы счисления, а n — количество разрядов числа.
Зная основание системы счисления (2), выведем формулу перевода:
Пример 1: Перевести число 1010 из двоичной системы в десятичную
Применив выведенную формулу, получим:
10102=1 ∙ 2 3 + 0 ∙ 2 2 + 1 ∙ 2 1 + 0 ∙ 2 0 = 1 ∙ 8 + 0 ∙ 4 + 1 ∙ 2 + 0 ∙ 1 = 8 + 0 + 2 + 0 = 1010
Алгоритм перевода двоичной дроби в десятичную систему счисления
Как и в предыдущем случае, для перевода двоичной дроби в десятичную систему, воспользуемся развернутой формой представления дробей в позиционных системах:
где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа. Зная основание системы счисления (2), выведем формулу перевода:
Пример 2: Перевести число 0,1010 из двоичной системы в десятичную
Применив выведенную формулу, получим:
Пример 3: Перевести число 1010,1010 из двоичной системы в десятичную
Перевод из любой системы счисления в десятичную
Перевести любое число позиционной системы счисления в десятичное достаточно просто, для этого необходимо воспользоваться формулой. Важное замечание состоит в том, что для перевода целого и дробного q-ичного числа используются разные, хоть и схожие, формулы.
Таблица соответствия популярных систем счисления
Перед тем как перейти к алгоритму перевода, вспомним таблицу соответствия:
Десятичная система | Двоичная система | Восьмеричная система | Шестнадцатеричная система |
---|---|---|---|
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | A |
11 | 1011 | 13 | B |
12 | 1100 | 14 | C |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Алгоритм перевода целого q-ичного числа в десятичную систему счисления
Для перевода целого числа с основанием q в десятичное, обратимся к развернутой форме записи числа для позиционной системы счисления:
где A — число, q — основание системы счисления, а n — количество разрядов числа.
Пример 1: Перевести число 10011 из двоичной системы в десятичную
Применив развернутую форму записи числа, получим:
100112=1 ∙ 2 4 + 0 ∙ 2 3 + 0 ∙ 2 2 + 1 ∙ 2 1 + 1 ∙ 2 0 = 1 ∙ 16 + 0 ∙ 8 + 0 ∙ 4 + 1 ∙ 2 + 1 ∙ 1 = 16 + 0 + 0 + 2 + 1 = 1910
Пример 2: Перевести число 17 из восьмеричной системы в десятичную
Аналогично предыдущему примеру, применив развернутую форму записи числа, получим:
178=1 ∙ 8 1 + 7 ∙ 8 0 = 1 ∙ 8 + 7 ∙ 1 = 8 + 7 = 1510
Ответ можно сравнить с таблицей соответствия и убедиться, что 178 = 1510.
Пример 3: Перевести число 20341 из пятеричной системы в десятичную
203415=2 ∙ 5 4 + 0 ∙ 5 3 + 3 ∙ 5 2 + 4 ∙ 5 1 + 1 ∙ 5 0 = 2 ∙ 625 + 0 ∙ 125 + 3 ∙ 25 + 4 ∙ 5 + 1 ∙ 1 = 1250 + 0 + 75 + 20 + 1 = 134610
Алгоритм перевода q-ичной дроби в десятичную систему счисления
Как и в предыдущем случае, для перевода q-ичной дроби в десятичную систему, воспользуемся развернутой формой представления дробей в позиционных системах:
где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа.
Пример 4: Перевести число 0,F3D0 из шестнадцатеричной системы в десятичную
Применив развернутую форму записи дробного числа, получим:
Ответ: 0.F3D016 = 0.95239257812510
Урок 32. Перевод чисел между системами счисления
Общие сведения:
При программировании мы часто сталкиваемся с необходимостью перевода чисел между системами счисления, по основанию: 2, 4, 8, 16 и 10.
Основание системы счисления указывает какое количество цифр используется в этой системе для написания чисел:
Можно использовать любую систему счисления, например по основанию 12 (счет дюжинами), но наиболее популярными при программировании, являются: десятичная, шестнадцатеричная и двоичная, системы счисления.
Все выше перечисленные системы счисления относятся к позиционным системам. Значение числа зависит не только от того из каких цифр оно состоит, но и в какой последовательности они записаны. Например число 1234 не равно числу 4321.
Методы представления чисел в разных системах счисления:
Перевод чисел в десятичную систему счисления:
Для перевода числа из любой системы счисления в десятичную нужно сложить все цифры этого числа, предварительно умножив каждое из них на основание системы счисления, из которой производится перевод, возведя её в степень соответствующую позиции цифры в числе:
Σ(цифра_числа * основание_системы позиция_цифры )
Примеры перевода чисел в десятичную систему счисления:
Перевод чисел из десятичной системы счисления:
Для перевода чисел из десятичной системы счисления в любую другую, необходимо целочисленно делить переводимое число на основание той системы, в которую мы хотим его перевести, до тех пор пока результат целочисленного деления не станет равен 0. Результатом перевода будут цифры остатка от каждого деления, в обратном порядке.
Примеры перевода чисел из десятичной системы счисления:
Простой метод перевода:
Легче всего переводить числа через двоичную систему счисления. О том как это сделать рассказано в нашем видеоуроке.
Перевод чисел из одной системы счисления в другую
Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.
Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.
Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816
Кратко об основных системах счисления
Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.
Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.
Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.
Перевод в десятичную систему счисления
Перевод из десятичной системы счисления в другие
Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.
Переведем число 37510 в восьмеричную систему:
Перевод из двоичной системы в восьмеричную
Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:
Перевод из двоичной системы в шестнадцатеричную
Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
Перевод из восьмеричной системы в двоичную
Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.
Используем таблицу триад:
Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.
Перевод из шестнадцатеричной системы в двоичную
Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.
Используем таблицу тетрад:
Цифра | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Тетрада | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.
Перевод из восьмеричной системы в шестнадцатеричную и наоборот
Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.