Что значит относительная величина
27. Относительные величины и их значение
27. Относительные величины и их значение
Одних абсолютных статистических величин недостаточно для характеристики изучаемых объектов. Чтобы отразить состояние, рост, развитие явлений, соотношение их во времени и пространстве, в статистике широко пользуются относительными величинами.
Показатели, полученные в результате сравнения абсолютных величин, в статистике называют относительными величинами.
Относительные величины дают представление, во сколько раз одна абсолютная величина больше другой или какую часть одна абсолютная величина составляет от другой, или сколько единиц одной совокупности приходится на единицу другой.
Относительные величины – это показатель, который представляет собой частное от деления двух статистических величин и характеризует количественное соотношение между ними.
Для расчета относительных величин в числитель ставится сравниваемый показатель, который будет отражать изучаемое явление, а в знаменателе отражается показатель, с которым и будет производиться это сравнение, он является основанием или базой для сравнения. База сравнения – это своеобразный измеритель. Основание имеет результат отношения в зависимости от количественного (числового) значения, который выражается в: коэффициенте, процентах, промилле или децимилле.
Если база сравнения принимается за единицу, то относительная величина является коэффициентом и показывает, во сколько раз изучаемая величина больше основания. Если базу сравнения принять за 100%, то результат вычисления относительной величины будет выражен в процентах.
Если базу сравнения принимают за 1000, то результат сравнения выражается в промилле ( 0 /00). Относительные величины могут быть выражены и децимилле, если основание отношения равно 10 000.
Форма выражения зависит от: количественного соотношения сравниваемых величин; смыслового содержания полученного результата сравнения. Если сравниваемый показатель больше основания, тогда относительная величина выражается в коэффициенте или в проценте, но если сравниваемый показатель меньше основания, тогда относительную величину лучше выразить только в проценте.
Если показатели, которые сравниваются, являются сопоставимыми, то расчет относительных величин может быть правильным.
В зависимости от цели статистического исследования относительные величины подразделяются на следующие виды: выполнение договорных обязательств; относительные величины, характеризующие структуру совокупности; относительные величины динамики; сравнения; координации; относительные величины интенсивности.
Данный текст является ознакомительным фрагментом.
Продолжение на ЛитРес
Читайте также
III Определение величины оценочного обязательства
III Определение величины оценочного обязательства 15. Оценочное обязательство признается в бухгалтерском учете организации в величине, отражающей наиболее достоверную денежную оценку расходов, необходимых для расчетов по этому обязательству. Наиболее достоверная
19. Относительные показатели י движения рабочей силы
21. Абсолютные статистические величины
21. Абсолютные статистические величины Абсолютные показатели являются количествен–ным выражением признаков статистических явлений.Абсолютный показатель должен характеризовать размер изучаемого явления или процесса в данном месте и в данное время, он должен быть
22. Относительные статистические величины
22. Относительные статистические величины Относительные величины представляют собой обобщающие показатели, выражающие меру количе–ственных соотношений, присущих конкретным явле–ниям или статистическим объектам.Относительные величины исчисляются как отно–шение
4.2. Относительные показатели финансовой устойчивости и их анализ
4.2. Относительные показатели финансовой устойчивости и их анализ Относительные показатели финансовой устойчивости характеризуют степень зависимости предприятия от внешних инвесторов и кредиторов. Владельцы предприятия заинтересованы в оптимизации собственного
4. Регулирование величины валютного курса
4. Регулирование величины валютного курса Принято разделять рыночное и государственное регулирование величины валютного курса. Рыночное регулирование основано на действии законов стоимости, конкуренции, а также спроса и предложения. Оно осуществляется, как правило,
2. Абсолютные статистические величины
2. Абсолютные статистические величины Статистическое наблюдение независимо от его масштабов и целей всегда дает информацию о тех или иных социально-экономических явлениях и процессах в виде абсолютных показателей, т. е. показателей, представляющих собой количественную
3. Относительные статистические величины
3. Относительные статистические величины Наряду с абсолютными величинами одной из важнейших форм обобщающих показателей в статистике являются относительные величины. В современной жизни мы часто сталкиваемся с необходимостью сравнивать и сопоставлять какие-либо
59. Относительные и средние величины
59. Относительные и средние величины Экономический анализ начинается по своей сути с исчисления величины относительной. Относительные величины незаменимы при анализе явлений динамики. Понятно, что эти явления можно выразить и в абсолютных величинах, но доходчивость,
66. Абсолютные и относительные разницы
66. Абсолютные и относительные разницы Абсолютные отклонения (разницы) определяют по изучаемым факторам и результативному показателю (отклонения от плана или данных прошлого периода). Если результативный показатель равен произведению факторов, эти отклонения по
26. Абсолютные величины, их основные виды
26. Абсолютные величины, их основные виды Статистические данные, полученные при наблюдении, в результате сводки, группировки, почти всегда являются абсолютными величинами, т. е. величинами, которые выражены в натуральных единицах и получены в результате счета или
2.4.7. Относительные размеры инвестиций в НИОКР
2.4.7. Относительные размеры инвестиций в НИОКР Относительные размеры инвестиций в исследования и разработки имеют важные организационные последствия. Высокая доля расходов на НИОКР характерна для технологически интенсивных отраслей и производств, таких, как
2. Абсолютные величины, их основные виды
2. Абсолютные величины, их основные виды Статистические данные, полученные при наблюдении, в результате сводки, группировки, почти всегда являются абсолютными величинами, т. е. величинами, которые выражены в натуральных единицах и получены в результате счета или
3. Относительные величины, их значение и основные виды
3. Относительные величины, их значение и основные виды Одних абсолютных статистических величин недостаточно для характеристики изучаемых объектов. Чтобы отразить состояние рост, развитие явлений, соотношение их во времени и пространстве в статистике широко пользуются
ЛЕКЦИЯ № 7. Средние величины
ЛЕКЦИЯ № 7. Средние величины 1. Общая характеристика В целях анализа и получения статистических выводов по результатом сводки и группировки исчисляют обобщающие показатели – средние и относительные величины.Задача средних величин – охарактеризовать все единицы
39. Определение величины разрыва в характеристиках
39. Определение величины разрыва в характеристиках ИнструментНасколько близко к совершенству вы хотите подойти?При применении предыдущего инструмента вы представили, каким может быть идеальный участник на вашем рынке через три– пять лет. Вы выявили характеристики,
Абсолютные и относительные статистические величины
Понятие абсолютных величин
Абсолютные величины — это результаты статистических наблюдений. В статистике в отличие от математики все абсолютные величины имеют размерность (единицу измерения), а также могут быть положительными и отрицательными.
Единицы измерения абсолютных величин отражают свойства единиц статистической совокупности и могут быть простыми, отражая 1 свойство (например, масса груза измеряется в тоннах) или сложными, отражая несколько взаимосвязанных свойств (например, тонно-километр или киловатт-час).
Единицы измерения абсолютных величин могут быть 3 видов:
Абсолютные величины могут быть моментными или интервальными. Моментные абсолютные величины показывают уровень изучаемого явления или процесса на определенный момент времени или дату (например, количество денег в кармане или стоимость основных фондов на первое число месяца). Интервальные абсолютные величины — это итоговый накопленный результат за определенный период (интервал) времени (например, зарплата за месяц, квартал или год). Интервальные абсолютные величины, в отличие от моментных, допускают последующее суммирование.
Абсолютная статистическая величина обозначается X, а их общее число в статистической совокупности — N.
Количество величин с одинаковым значением признака обозначается f и называется частота (повторяемость, встречаемость).
Cами по себе абсолютные статистические величины не дают полного представления об изучаемом явлении, так как не показывают его динамику, структуру, соотношение между частями. Для этих целей служат относительные статистические величины.
Понятие и виды относительных величин
Относительная статистическая величина — это результат соотношения двух абсолютных статистических величин.
Если соотносятся абсолютные величины с одинаковой размерностью, то получаемая относительная величина будет безразмерной (размерность сократится) и носит название коэффициент.
Часто применяется искусственная размерность коэффициентов. Она получается путем их умножения:
Искусственная размерность коэффициентов применяется, как правило, в разговорной речи и при формулировании результатов, а в самих расчетах она не используется. Чаще всего применяются проценты, в которых принято выражать полученные значения относительных величин.
Чаще вместо названия относительная статистическая величина используется более краткий термин-синоним — индекс (от лат. index — показатель, коэффициент).
В зависимости от видов соотносимых абсолютных величин при расчете относительных величин, получаются разные виды индексов: динамики, планового задания, выполнения плана, структуры, координации, сравнения, интенсивности.
Индекс динамики
Индекс динамики (коэффициент роста, темп роста) показывает во сколько раз изменилось изучаемое явление или процесс во времени. Рассчитывается как отношение значения абсолютной величины в отчетный (анализируемый) период или момент времени к базисному (предыдущему):
.
Здесь и далее подиндексы означают: 1 — отчетный (анализируемый) период, 0 — базисный (прошлый) период.
Индекс планового задания
Индекс планового задания – это отношение планового значения абсолютной величины к базисному:
Например, автосалон в январе продал 100 автомобилей, а на февраль запланировал продать 120 автомобилей. Тогда индекс планового задания составит i пз = 120/100 = 1,2, что означает планирование роста продаж в 1,2 раза или на 20%
Индекс выполнения плана
Индекс выполнения плана – это отношение фактически полученного значения абсолютной величины в отчетном периоде к запланированному:
Например, автосалон в феврале продал 110 автомобилей, хотя на февраль было запланировано продать 120 автомобилей. Тогда индекс выполнения плана составит i вп = 110/120 = 0,917, что означает выполнение плана на 91,7%, то есть план недовыполнен на (100%-91,7%) = 8,3%.
Перемножая индексы планового задания и выполнения плана, получим индекс динамики:
В рассмотренном ранее примере про автосалон, если перемножим полученные значения индексов планового задания и выполнения плана, то получим значение индекса динамики: 1,2*0,917 = 1,1.
Индекс структуры
Индекс структуры показывает, какую долю составляет отдельная часть совокупности от всей совокупности.
Например, если в рассматриваемой группе студентов 20 девушек и 10 молодых людей, тогда индекс стурктуры (доля) девушек будет равен 20/(20+10) = 0,667, то есть доля девушек в группе составляет 66,7%.
Индекс координации
Индекс координации показывает, во сколько раз больше или сколько процентов составляет одна часть статистической совокупности по сравнению с другой ее частью, принятой за базу сравнения.
Например, если в группе студентов из 20 девушек и 10 молодых людей, принять за базу сравнения численность девушек, тогда индекс координации численности молодых людей составит 10/20 = 0,5, то есть численность молодых людей составляет 50% от численности девушек в группе.
Индекс сравнения
где А, Б — признаки сравниваемых объектов или территорий.
Индекс интенсивности
Например, хлебный магазин продал 500 буханок хлеба и заработал на этом 10000 руб., тогда индекс интенсивности составит 10000/500 = 20 [руб./бух.хлеба], то есть цена продажи хлеба составила 20 руб. за буханку.
Большинство величин с дробной размерностью представляют собой индексы интенсивности.
8.2. Относительные величины (показатели)
Относительная величина (показатель) представляет собой результат деления одного абсолютного показателя на другой и выражает соотношение между количественными характеристиками социально-экономических процессов и явлений. Относительными величинами в статистике называются обобщающие показатели. В статистике относительные показатели используют в сравнительном анализе, в обобщении. Ниже в данной теме представлены примеры вычисления всех относительных величин.
По отношению к абсолютным показателям, относительные показатели или показатели в форме относительных величин являются производными, вторичными.
Без относительных показателей невозможно измерить интенсивность развития изучаемого явления во времени, оценить уровень развития одного явления на фоне других взаимосвязанных с ним явлений, осуществить пространственно-территориальные сравнения, в том числе и на международном уровне.
Относительные показатели могут выражаться в коэффициентах, процентах, милле, промилле, продецимилле или быть именованными числами. Если база сравнения принимается за 1, то относительный показатель выражается в коэффициентах, если база принимается за 100, 1000, то относительный показатель соответственно выражается в процентах (%), промилле (‰) и т.д.
Все используемые на практике относительные статистические показатели можно подразделить на следующие виды:
1. Относительный показатель динамики (ОПД);
2. Относительный показатель плана (ОПП);
3. Относительный показатель реализации плана (ОПРП);
4. Относительный показатель структуры (ОПС);
5. Относительный показатель координации (ОПК);
6. Относительный показатель интенсивности (ОПИ);
7. Относительный показатель сравнения (ОПСр).
Рассмотрим ниже формулы и примеры выше обозначенных относительных величин.
1) Относительный показатель динамики (ОПД) представляет собой отношение уровня исследуемого процесса или явления за данный период времени (по состоянию на данный момент времени) к уровню этого же процесса или явления в прошлом (формула 8.1):
Решение. В этом случае относительный показатель динамики (ОПД) представляющий собой отношение текущего уровня к предшествующему или базе сравнения составит (3,8/3,0=1,27 х 100 =126,7 %)
Все субъекты финансово-хозяйственной деятельности, от небольших индивидуальных частных предприятий и до крупных корпораций, в той или иной степени осуществляют как оперативное, так и стратегическое планирование, а также сравнивают реально достигнутые результаты с ранее намеченными.
Для этой цели используются относительные показатели плана (ОПП) и относительные показатели реализации плана (ОПРП) (формулы 8.2 и 8.3):
2) Относительный показатель плана ( ОПП) характеризует относительную высоту планового уровня, т.е. во сколько раз, намечаемый объемный показатель превысит достигнутый уровень или сколько процентов от этого уровня составит:
3) Относительный показатель реализации плана (ОПРП) отражает фактический объем производства или реализации в процентах или коэффициентах по сравнению с плановым уровнем :
Фактический оборот фирмы за 2018 г. составил 3,8 млн. руб. Тогда относительный показатель реализации плана, определяемый как отношение фактически достигнутой величины к ранее запланированной, составит (3,8/3,6=1,056 х 100 = 105,6%).
4) Относительный показатель структуры (ОПС) представляет собой соотношение структурных частей изучаемого объекта и их целого :
Таблица 8.1 ‑ Структура валового внутреннего продукта РФ в 2018 г. (цифры условные)
– чистые налоги на продукты
Рассчитанные в последней графе данной таблицы проценты представляют собой относительные показатели структуры (ОПС) (в данном случае ‑ удельные веса). Сумма всех удельных весов всегда должна быть строго равна 100% или 1.
5) Относительный показатель координации (ОПК) представляет собой отношение одной части совокупности к другой части этой же совокупности:
При этом в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической, социальной или какой-либо другой точки зрения. В результате получают, во сколько раз данная часть больше базисной или сколько процентов от нее составляет, или сколько единиц данной структурной части приходится на 1 единицу (иногда ‑ на 100, 1000 и т.д. единиц) базисной структурной части.
Пример вычисления ( относительный показатель координации (ОПК)). На основе данных приведенной выше таблице 8.1 мы можем вычислить (ОПК), т.е. на каждый рубль произведенных товаров приходится 4,84 руб. произведенных услуг (59417/32928,6) и 0,35 руб. чистых налогов на продукты (11530,2/32928,6).
6) Относительный показатель интенсивности (ОПИ) характеризует степень распространения изучаемого процесса или явления и представляет собой отношение исследуемого показателя к размеру присущей ему среды:
Данный показатель получают сопоставлением уровней двух взаимосвязанных в своем развитии явлении. Поэтому, наиболее часто он представляет собой именованную величину, но может быть выражен и в процентах, промилле, продецимилле.
Обычно относительный показатель интенсивности рассчитывается в тех случаях, когда абсолютная величина оказывается недостаточной для формулировки обоснованных выводов о масштабах, явления, его размерах, насыщенности, плотности распределения. Так, например, для определения уровня обеспеченности населения легковыми автомобилями рассчитывается число автомашин, приходящихся на 100 семей, для определения плотности населения рассчитывается число людей, приходящихся на 1 кв. км.
Примеры вычисления (относительный показатель интенсивности)
Пример 1 (ОПИ). Так, по данным социальной статистики на конец 2008 г. общая численность зарегистрированных безработных в РФ составляла 1,552 млн. чел., а экономически активное население – 75,892 млн. чел.
Отсюда следует, что уровень безработицы (ОПИ) составлял (1552/75892 х 100=2,05% ).
Разновидностью относительных показателей интенсивности являются относительные показатели уровня экономического развития, характеризующие производство продукции в расчете на душу населения и играющие важную роль в оценке развития экономики государства или региона. Так как объемные показатели производства продукции по своей природе являются интервальными, а показатель численности населения ‑ моментным, в расчетах используют среднюю за период численность населения (предположим, среднегодовую).
Пример 2 (ОПИ).Рассматривая лишь абсолютный размер ВВП России (в текущих ценах) на конец 2008 года (41668034 млн. руб.), трудно оценить эту величину. Для того, чтобы на основе данной цифры сделать вывод об уровне развития экономики, необходимо сопоставить ее со среднегодовой численностью населения страны (142,1 млн.чел), которая в простейшем случае рассчитывается как полусумма численности населения на начало и на конец года. В результате годовой размер ВВП на душу населения (ОПИ)составит:
(293,2 тыс.руб. = 41668034 млн. руб./142,1 млн.чел.
7) Относительный показатель сравнения (ОПСр) представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты (предприятия, фирмы, районы, области, страны и т.п.):
Для выражения данного показателя могут использоваться как коэффициенты, так и проценты.
Пример вычисления (относительный показатель сравнения (ОПСр).
Согласно официальным статистическим данным, инвестиции в основной капитал в РФ в 2002 г. за счет средств федерального бюджета составили 81,6 млрд. руб., бюджетов субъектов Федерации и местных бюджетов ‑ 184,5 млрд. руб., средств предприятий ‑ 653,1 млрд. руб. Вычислим ОПСр (653,1/81,6=8 и 653,1/184,5=3,5).
Вывод: инвестиции за счет средств предприятий в 8 раз превышали инвестиции из средств федерального бюджета и в 3,5 раза превышали инвестиции из бюджетов субъектов Федерации и местных бюджетов.
Абсолютные и относительные величины
Статистика изучает количественную сторону массовых явлений и процессов с помощью статистических величин, которые делятся на абсолютные и относительные величины.
Абсолютные величины характеризуют размеры в конкретных условиях времени и места. Они дают характеристику всей совокупности.
Единицы измерения абсолютных величин:
2) условно‑натуральные (используются с целью суммирования разной по форме продукции потребительского назначения);
4) стоимостные (денежные). Устраняют недостатки предыдущих единиц измерения, позволяют оценить разнородную продукцию.
Однако абсолютные величины не дают всеобъемлющей характеристики исследуемых явлений и процессов и не всегда пригодны для сравнения. Это вызывает необходимость использования относительных величин, которые используются при сопоставлениях, сравнениях и исполняют роль меры соотношения.
Относительные величины – это отвлеченные статистические величины, выражающие количественное соотношение двух величин.
Виды относительных величин: 1) относительные величины динамики – это отношение фактической величины показателя в отчетном периоде (у1) к фактической его величине в базисном, предшествующем периоде (у0):
ОВД = Y 1 / Y 0 × 100 %.
Относительные величины динамики характеризуют изменение явления во времени. В статистике эти показатели называются темпами роста; 2) относительные величины выполнения плана – это отношение фактической величины показателя (у1) к плановой его величине (упл) того же периода:
Эта относительная величина показывает степень выполнения плана в процентах; 3) относительная величина выполнения планового задания – это отношение планируемой величины показателя (уПЛ) к фактически достигнутой величине в предшествующем периоде, т. е. в базисном (у0):
Показывает, на сколько процентов плановое задание выше (ниже) фактически достигнутого в базисном периоде. Эту величину называют плановым темпом роста;
4) относительная величина структуры – показывает состав явления, выраженный в форме доли или удельного веса. Доля (d) – это отношение части к целому, т. е. отношение составных частей совокупности к ее общему объему. Удельный вес – это доля, выраженная в процентах. Относительные величины структуры используются в статистике для характеристики структурных сдвигов;
5) относительная величина координации – показывает соотношение частей целого, т. е. отношение последовательно всех частей к одной из них, взятой за базу. За базу принимают наименьшее значение. Относительная величина координации показывает, сколько единиц данной части целого приходится на другую ее часть, принятую за базу сравнения;
6) относительная величина интенсивности – это отношение двух разноименных величин, связанных между собой. Характеризует степень развития какого‑либо явления в определенной среде;
7) относительная величина сравнения – это отношение одноименных величин, характеризующих разные объекты изучения за один и тот же период. Показывает, во сколько раз числитель больше (меньше) знаменателя.
Сущность средних величин. Виды и формы средних величин. Варианты и частоты
Метод средних величин является одним из наиболее важных методов в статистике, потому что средние величины широко используются в анализе, на практике, при установлении закономерностей, тенденций, связей и для множества других целей. Суть средних величин состоит в том, что они одним числом характеризуют уровень исследуемого признака. Отличительной особенностью средних величин является то, что они представляют собой обобщающие показатели.
Средняя величина – это обобщающий показатель, выражающий типичный уровень (размер) варьирующего признака в расчете на единицу совокупности (качественно однородной).
Средняя величина отражает то общее, что скрывается в каждой единице совокупности. Она улавливает общие черты, общие закономерности, которые проявляются в силу закона больших чисел. Говоря о средних величинах, имеют в виду, что они характеризуют всю совокупность в целом, однако, наряду со средней необходимо приводить данные об отдельных единицах совокупности.
Задачи, решаемые с помощью метода средних величин:
1) характеристика уровня развития исследуемого явления;
2) сравнение двух или нескольких уровней исследуемых совокупностей;
3) характеристика изменения уровня явления во времени;
4) выявление и характеристика связей между исслеуемыми совокупностями.
П ринципы построения средних величин:
1) средние величины могут быть рассчитаны только лишь для качественно однородных совокупностей;
2) средние величины не должны быть абстрактными, т. е. только количественными показателями. Они должны давать качественно‑количественную характеристику исследуемому явлению. Поэтому в статистике средняя величина представляет собой не абстрактное, отвлеченное число, а вполне конкретный показатель, относимый к какому‑либо явлению, месту, времени;
3) выбор единицы совокупности, по отношению к которой рассчитывается средняя величина, должен быть теоретически обоснован.
Выделяются следующие основные виды средних величин: средняя арифметическая; средняя гармоническая; средняя квадратическая; средняя геометрическая.
Для правильного расчета средних величин необходимо ввести такие понятия, как варианты и частоты.
Ряды распределения характеризуют распределение единиц совокупности по какому‑либо одному признаку, разновидности которого упорядочены определенным образом. Различают два вида рядов распределения – атрибутивные и вариационные ряды.
Атрибутивные ряды образуются в результате группировки данных по качественным признакам (например, распределение населения по полу). В этих рядах столько групп, сколько вариантов качественного признака.
Вариационный ряд – это упорядоченный ряд значений варьирующего количественного признака и численности единиц, имеющих данное значение признака (например, распределение рабочих по заработной плате).
В вариационном ряду распределения выделяют следующие элементы:
1) варианты (х или х1, х2 … хn) – это ряд числовых значений количественного признака (например, стаж, заработная плата, возраст). Варианты могут быть как абсолютными, так и относительными величинами;
2) частоты (m: m1, m2 … mn) – это числа, показывающие, сколько раз повторяются соответствующие варианты (например, число рабочих). Частоты, как правило, обозначаются абсолютным числом; если по условию частоты выражены в виде процентов к итогу или долей, то их называют относительными частотами (или) частотами f: