Π§ΡΠΎ Π·Π½Π°ΡΠΈΡ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΊΡΠΈΠΌΡΠΌΡ, ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΈΠ½ΠΈΠΌΡΠΌΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΊΡ Π½Π° ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
ΠΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΊΡ Π½Π° ΡΡΠ½ΠΊΡΠΈΠΈ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Π² ΡΠΎΡΠ΅Π΄Π½ΠΈΡ ΡΠΎΡΠΊΠ°Ρ .
Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Π² ΡΡΠΈΡ ΡΠΎΡΠΊΠ°Ρ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ: Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π΅Ρ ΠΏΠ°Π΄Π°ΡΡ ΠΈ Π½Π°ΡΠΈΠ½Π°Π΅Ρ ΡΠ°ΡΡΠΈ β ΡΡΠΎ ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π½Π°ΠΎΠ±ΠΎΡΠΎΡ β ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ Π²ΠΌΠ΅ΡΡΠ΅ ΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π²ΡΠ΅ ΠΏΡΡΡ ΡΠΎΡΠ΅ΠΊ, Π²ΡΠ΄Π΅Π»Π΅Π½Π½ΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ Π²ΡΡΠ΅, ΡΠ²Π»ΡΡΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ.
Π ΡΠΎΡΠΊΠ°Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² (Ρ.Π΅. ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ²) ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΠ»Π°Π³ΠΎΠ΄Π°ΡΡ ΡΡΠΎΠΌΡ Π½Π°ΠΉΡΠΈ ΡΡΠΈ ΡΠΎΡΠΊΠΈ Π½Π΅ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΏΡΠΎΠ±Π»Π΅ΠΌ, Π΄Π°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Ρ Π²Π°Ρ Π½Π΅Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! ΠΠΎΠ³Π΄Π° ΠΏΠΈΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΠΈΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ.Π΅. \(y\). ΠΠΎΠ³Π΄Π° ΠΏΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΠΈΠ»ΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ²/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΠΈΠΌΠ΅ΡΡ Π² Π²ΠΈΠ΄Ρ ΠΈΠΊΡΡ Π² ΠΊΠΎΡΠΎΡΡΡ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ/ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π²ΡΡΠ΅, \(-5\) ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° (ΠΈΠ»ΠΈ ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°), Π° \(1\) β ΠΌΠΈΠ½ΠΈΠΌΡΠΌ (ΠΈΠ»ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
ΠΠ°Π²Π°ΠΉΡΠ΅ Π²ΠΌΠ΅ΡΡΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅:
ΠΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅! ΠΡΠ»ΠΈ Π΄Π°Π½ Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΌΡ Π½Π΅ ΡΡΠΈΡΠ°Π΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ! ΠΡ ΡΡΠΈΡΠ°Π΅ΠΌ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠ±ΡΠ°ΡΠ°Π΅ΡΡΡ Π² Π½ΠΎΠ»Ρ (Ρ.Π΅. ΠΏΠ΅ΡΠ΅ΡΠ΅ΠΊΠ°Π΅Ρ ΠΎΡΡ \(x\)).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
Π§ΡΠΎΠ±Ρ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, Π½ΡΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ Π΅ΡΠ΅ Π΄Π²Π° Π²Π°ΠΆΠ½ΡΡ ΠΏΡΠ°Π²ΠΈΠ»:
— ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π° ΡΠ°ΠΌ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ.
— ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΡΠ°ΠΌ, Π³Π΄Π΅ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ±ΡΠ²Π°Π΅Ρ.
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΈΡ ΠΏΡΠ°Π²ΠΈΠ» Π΄Π°Π²Π°ΠΉΡΠ΅ Π½Π°ΠΉΠ΄Π΅ΠΌ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΡ Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°ΡΡ ΡΡΠ΅Π΄ΠΈ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ², Ρ.Π΅. ΡΡΠ΅Π΄ΠΈ \(-13\), \(-11\), \(-9\),\(-7\) ΠΈ \(3\).
Π§ΡΠΎΠ±Ρ ΠΏΡΠΎΡΠ΅ Π±ΡΠ»ΠΎ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΡ ΡΠ°ΡΡΡΠ°Π²ΠΈΠΌ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ ΡΠ½Π°ΡΠ°Π»Π° Π·Π½Π°ΠΊΠΈ ΠΏΠ»ΡΡ ΠΈ ΠΌΠΈΠ½ΡΡ, ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠΈΠ΅ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠΎΡΠΎΠΌ ΡΡΡΠ΅Π»ΠΊΠΈ β ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΠΈΠ΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅, ΡΠ±ΡΠ²Π°Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
\(-11\): ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ½Π°ΡΠ°Π»Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Π° ΠΏΠΎΡΠΎΠΌ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π°, Π·Π½Π°ΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΠΏΡΡΡ ΠΏΠΎΠΏΡΠΎΠ±ΡΠΉΡΠ΅ ΡΡΠΎ ΠΌΡΡΠ»Π΅Π½Π½ΠΎ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΈ Π²Π°ΠΌ ΡΡΠ°Π½Π΅Ρ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ \(-11\) β ΡΡΠΎ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
\(- 9\): ΡΡΠ½ΠΊΡΠΈΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, Π° ΠΏΠΎΡΠΎΠΌ ΡΠ±ΡΠ²Π°Π΅Ρ β ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ.
ΠΡΠ΅ Π²ΡΡΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠ±ΡΠΈΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π²ΡΠ²ΠΎΠ΄Π°ΠΌΠΈ:
— Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΡΠ°ΠΌ, Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΏΠ»ΡΡΠ° Π½Π° ΠΌΠΈΠ½ΡΡ.
— Π€ΡΠ½ΠΊΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΠ°ΠΌ, Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ ΠΈ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ ΠΌΠΈΠ½ΡΡΠ° Π½Π° ΠΏΠ»ΡΡ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² Π΅ΡΠ»ΠΈ ΠΈΠ·Π²Π΅ΡΡΠ½Π° ΡΠΎΡΠΌΡΠ»Π° ΡΡΠ½ΠΊΡΠΈΠΈ (12 Π·Π°Π΄Π°Π½ΠΈΠ΅ ΠΠΠ)?
Π§ΡΠΎΠ±Ρ ΠΎΡΠ²Π΅ΡΠΈΡΡ Π½Π° ΡΡΠΎΡ Π²ΠΎΠΏΡΠΎΡ, Π½ΡΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ Π²ΡΠ΅ ΡΠΎ ΠΆΠ΅, ΡΡΠΎ ΠΈ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌ ΠΏΡΠ½ΠΊΡΠ΅: Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π³Π΄Π΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°, Π³Π΄Π΅ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½Π° ΠΈ Π³Π΄Π΅ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ. Π§ΡΠΎΠ±Ρ Π±ΡΠ»ΠΎ ΠΏΠΎΠ½ΡΡΠ½Π΅Π΅ Π½Π°ΠΏΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ Ρ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΡ:
ΠΡΡ! Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠ² ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² Π½Π°ΠΉΠ΄Π΅Π½Ρ.
ΠΠ·ΠΎΠ±ΡΠ°ΠΆΠ°Ρ Π½Π° ΠΎΡΠΈ ΡΠΎΡΠΊΠΈ Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ β ΠΌΠ°ΡΡΡΠ°Π± ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ ΡΡΠΈΡΡΠ²Π°ΡΡ. ΠΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ°ΠΊ, ΠΊΠ°ΠΊ ΡΡΠΎ ΡΠ΄Π΅Π»Π°Π½ΠΎ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅ Π½ΠΈΠΆΠ΅. Π’Π°ΠΊ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ΅Π²ΠΈΠ΄Π½Π΅Π΅ Π³Π΄Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, Π° Π³Π΄Π΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ.
ΠΡΠΈΠΌΠ΅Ρ(ΠΠΠ). ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ \(y=3x^5-20x^3-54\).
Π Π΅ΡΠ΅Π½ΠΈΠ΅:
1. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ: \(y’=15x^4-60x^2\).
2. ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Ρ ΠΊ Π½ΡΠ»Ρ ΠΈ ΡΠ΅ΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅:
3. β 6. ΠΠ°Π½Π΅ΡΠ΅ΠΌ ΡΠΎΡΠΊΠΈ Π½Π° ΡΠΈΡΠ»ΠΎΠ²ΡΡ ΠΎΡΡ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΊΠ°ΠΊ Π΄Π²ΠΈΠΆΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ:
Π’Π΅ΠΏΠ΅ΡΡ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ \(-2\).
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ?
ΠΠ»ΠΎΠ±Π°Π»ΡΠ½ΡΠΉ ΠΈ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ
ΠΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π΅ΡΠ»ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΎΠ² ΠΈΠ½ΡΠ΅ΡΠ΅ΡΡΠ΅Ρ Π³Π»ΠΎΠ±Π°Π»ΡΠ½ΠΎ ΡΠ°ΠΌΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ f(x), ΡΠΎ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅, Π½Π΅ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ². ΠΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΎΠ±ΡΡΠ½ΠΎ ΡΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²Π°Π½Ρ ΡΡΠ°Π·ΠΎΠΉ «Π½Π°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅». ΠΠ΄Π΅ΡΡ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅ΡΡΡ, ΡΡΠΎ Π½Π°Π΄ΠΎ Π²ΡΡΠ²ΠΈΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΎΠ½Π° Π½Π΅ ΠΌΠ΅Π½ΡΡΠ΅, ΡΠ΅ΠΌ Π½Π° Π²ΡΡΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΠΎΠΌ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅. ΠΠΎΠΈΡΠΊ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· ΡΠ°Π³ΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ°ΠΊΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ.
ΠΠ°Π½ΠΎ y = f(x). Π’ΡΠ΅Π±ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅. f(x) ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡ Π΅Π³ΠΎ Π² ΡΠΎΡΠΊΠ΅:
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅
ΠΠΈΠΊ f(x) Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΈΠ»ΠΈ Π² ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΠΏΡΡΡΠΌ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ»Π°Π½ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ (ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅):
Π’Π΅ΠΏΠ΅ΡΡ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ ΠΊΠ°ΠΆΠ΄ΡΠΉ ΡΠ°Π³ ΠΈ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ.
ΠΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ²
ΠΡΠΈΠΌΠΏΡΠΎΡΡ
ΠΡΠ»ΠΈ Π½Π° ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΈΠΌΠ΅Π΅ΡΡΡ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°, ΠΎΠΊΠΎΠ»ΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ ΡΡΡΠ΅ΠΌΠΈΡΡΡ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ Ρ ΠΏΠ»ΡΡΠΎΠΌ, ΡΠΎ ΠΏΠΈΠΊ f(x) Π½Π° Π·Π΄Π΅ΡΡ Π½Π΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΡΡΡ. Π Π΅ΡΠ»ΠΈ Π±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΡΡ, ΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, ΡΠΎΠ²ΠΏΠ°Π» Π±Ρ Ρ ΡΠΎΡΠΊΠΎΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ ΠΈ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ².
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ
ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΏΠΎΠ΄ ΠΊΠ°ΠΊΠΈΠΌ ΡΠ³Π»ΠΎΠΌ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π²ΡΠ±ΡΠ°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅. ΠΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ Π·Π΄Π΅ΡΡ ΡΠ±ΡΠ²Π°Π΅Ρ. ΠΠ½Π°Π»ΠΎΠ³ΠΈΡΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠΈ f(x). ΠΡΡΡΠ΄Π° ΠΏΠΎΡΠ²Π»ΡΡΡΡΡ Π΄Π²Π° ΡΡΠ»ΠΎΠ²ΠΈΡ.
1) ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π² ΡΠΎΡΠΊΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π»ΠΈΠ±ΠΎ Π½ΡΠ»Π΅Π²Π°Ρ, Π»ΠΈΠ±ΠΎ Π½Π΅ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½Π°Ρ. ΠΡΠΎ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΠ΅, Π½ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ. ΠΡΠΎΠ΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌ y = x^3, ΠΏΠΎΠ»ΡΡΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: y = 3*x^2. ΠΠΎΠ΄ΡΡΠ°Π²ΠΈΠΌ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½Π΅Π΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ «0», ΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΠ±ΡΠ°ΡΠΈΡΡΡ Π² Π½ΡΠ»Ρ. ΠΠ΄Π½Π°ΠΊΠΎ, ΡΡΠΎ Π½Π΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ Π΄Π»Ρ y = x^3. Π£ Π½Π΅Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ², ΠΎΠ½Π° ΡΠ±ΡΠ²Π°Π΅Ρ Π½Π° Π²ΡΠ΅ΠΉ ΠΎΡΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠ².
ΠΠΎΡΠ»Π΅ ΡΠΎΠ³ΠΎ ΠΊΠ°ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Π΄Π»Ρ Π»ΠΎΠΊΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π±ΡΠ»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ ΠΈΡ Π½Π°Π΄ΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΡΡ Π² ΠΈΡΡ ΠΎΠ΄Π½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ f(x).
ΠΠΎΠ½ΡΡ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ²
ΠΡΠΈ ΠΏΠΎΠΈΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΎΡΡΠ΅Π·ΠΊΠ°. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ y = 1/x Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [1; 7] ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ Π±ΡΠ΄Π΅Ρ Π² ΡΠΎΡΠΊΠ΅ x = 1. ΠΠ°ΠΆΠ΅ Π΅ΡΠ»ΠΈ Π²Π½ΡΡΡΠΈ ΠΎΡΡΠ΅Π·ΠΊΠ° Π΅ΡΡΡ Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ, Π½Π΅Ρ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ Π³Π°ΡΠ°Π½ΡΠΈΠΈ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΊΠΎΠ½ΡΠΎΠ² ΠΎΡΡΠ΅Π·ΠΊΠ° Π½Π΅ Π±ΡΠ΄Π΅Ρ Π±ΠΎΠ»ΡΡΠ΅ ΡΡΠΎΠ³ΠΎ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
Π’Π΅ΠΏΠ΅ΡΡ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠ°Π²Π½ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·ΡΡΠ²Π° (Π΅ΡΠ»ΠΈ f(x) Π·Π΄Π΅ΡΡ Π½Π΅ ΡΡΡΠ΅ΠΌΠΈΡΡΡ Π² Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ), Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈΠ· ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΈ Π±ΡΠ΄Π΅Ρ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ°ΡΡΠΊΠ΅ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠ»Ρ Π·Π°Π΄Π°ΡΠΈ Ρ ΡΠΎΡΠΌΡΠ»ΠΈΡΠΎΠ²ΠΊΠΎΠΉ «ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ» Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΈΠ· Π»ΠΎΠΊΠ°Π»ΡΠ½ΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠΎΠ² ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠΎΠ½ΡΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠ°Π·ΡΡΠ²Π°.
ΠΠΈΠ΄Π΅ΠΎ
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 11 ΠΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅
ΠΠ°Π΄Π°Π½ΠΈΠ΅ 11 ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΡΡΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ΅ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΠΎΡ ΠΊΠ°ΠΊΠΈΠ΅ ΡΠΈΠΏΡ Π·Π°Π΄Π°Ρ ΠΌΠΎΠ³ΡΡ Π²ΡΡΡΠ΅ΡΠΈΡΡΡΡ Π² ΡΡΠΎΠΌ Π·Π°Π΄Π°Π½ΠΈΠΈ:
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ΅ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΡΠΎΡΠ΅ΠΊ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΉ
1. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΊ Π½ΡΠ»Ρ. ΠΠΎΠ»ΡΡΠΈΠΌ:
ΠΡΡΠ»Π΅Π΄ΡΠ΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΏΠ»ΡΡΠ°Β» Π½Π° Β«ΠΌΠΈΠ½ΡΡΒ». ΠΠ½Π°ΡΠΈΡ, β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
2. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΊ Π½ΡΠ»Ρ.
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
Π ΡΠΎΡΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΌΠ΅Π½ΡΠ΅Ρ Π·Π½Π°ΠΊ Ρ Β«ΠΌΠΈΠ½ΡΡΠ°Β» Π½Π° Β«ΠΏΠ»ΡΡΒ». ΠΠ½Π°ΡΠΈΡ, β ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ»ΠΎΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ
3. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ΅ΡΠ΅Π΄ Π½Π°ΠΌΠΈ ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Ρ Π·Π½Π°Π΅ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎ Π²ΠΎΠΎΠ±ΡΠ΅-ΡΠΎ ΠΈΡ ΠΈΠ·ΡΡΠ°ΡΡ Π½Π° ΠΏΠ΅ΡΠ²ΠΎΠΌ ΠΊΡΡΡΠ΅ Π²ΡΠ·Π°, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ ΡΠ΅ΡΠΈΠΌ Π·Π°Π΄Π°ΡΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ.
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΠΈ Π±Π΅Π· ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Π° Π²Π΅ΡΠ²ΡΠΌΠΈ Π²Π½ΠΈΠ·, ΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ Π² Π²Π΅ΡΡΠΈΠ½Π΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ
4. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π°Π±ΡΡΠΈΡΡΡ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π°Π±ΡΡΠΈΡΡΠ° β ΡΡΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° ΠΏΠΎ
Π‘Π½ΠΎΠ²Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ ΡΠΎΡ ΠΆΠ΅ ΠΏΡΠΈΠ΅ΠΌ, ΡΡΠΎ ΠΈ Π² ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ Π·Π°Π΄Π°ΡΠ΅.
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ, ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π²Π΅ΡΡΠΈΠ½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½ΠΎΠΉ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ
ΠΠ°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
5. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΡ ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π΄ΠΎΡΡΠΈΠ³Π°ΡΡΡΡ Π»ΠΈΠ±ΠΎ Π² ΡΠΎΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½ΡΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠ°. ΠΡΠΈ ΡΠ»ΡΡΠ°ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ Π½Π° ΡΠΈΡΡΠ½ΠΊΠ΅.
ΠΡΠ΄Π΅ΠΌ ΠΈΡΠΊΠ°ΡΡ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΈ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π΅ ΠΊ Π½ΡΠ»Ρ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
6. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π΅ ΠΊ Π½ΡΠ»Ρ.
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.
ΠΈ
ΠΠ½Π°ΡΠΈΡ, Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΏΡΠΈ ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
7. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ½ΠΎΠ³Π΄Π° ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π²Π·ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ, ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΡΠΏΡΠΎΡΡΠΈΡΡ.
ΠΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ° ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ. ΠΏΡΠΈ
ΠΡΠ»ΠΈ ΡΠΎ
ΠΡΠ»ΠΈ
, ΡΠΎ
8. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΠΊ Π½ΡΠ»Ρ:
ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΡΠΈ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ Β«ΠΏΠ»ΡΡΠ°Β» Π½Π° Β«ΠΌΠΈΠ½ΡΡΒ». ΠΠ½Π°ΡΠΈΡ, β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡ Π½Π°ΡΠ»ΠΈ ΡΠΎΡΠΊΡ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, Π½ΠΎ ΡΡΠΎ Π΅ΡΠ΅ Π½Π΅ Π²ΡΠ΅. Π‘ΡΠ°Π²Π½ΠΈΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ Π½Π° ΠΊΠΎΠ½ΡΠ΅ ΠΎΡΡΠ΅Π·ΠΊΠ°, ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΈ ΠΈ
ΠΠ°ΠΌΠ΅ΡΠΈΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π²Π°ΠΌ ΠΏΠΎΠΏΠ°Π΄Π΅ΡΡΡ ΡΠ°ΠΊΠ°Ρ Π·Π°Π΄Π°ΡΠ° Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅, ΡΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ Π½Π΅ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ. ΠΠ°ΠΊ ΠΌΡ Π²ΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ β ΡΠΈΡΠ»ΠΎ ΠΈΡΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅. Π Π² ΠΏΠ΅ΡΠ²ΠΎΠΉ ΡΠ°ΡΡΠΈ ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ ΠΎΡΠ²Π΅ΡΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΈΠ»ΠΈ ΠΊΠΎΠ½Π΅ΡΠ½Π°Ρ Π΄Π΅ΡΡΡΠΈΡΠ½Π°Ρ Π΄ΡΠΎΠ±Ρ.
9. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅ [0;2].
Π‘Π½ΠΎΠ²Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠΎΠ»Π΅Π·Π½ΡΠ΅ ΡΠΎΡΠΌΡΠ»Ρ:
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΈ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Ρ Β«ΠΌΠΈΠ½ΡΡΠ°Β» Π½Π° Β«ΠΏΠ»ΡΡΒ». ΠΠ½Π°ΡΠΈΡ, β ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
10. ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ°ΠΊ Π²ΡΠ΅Π³Π΄Π°, Π²ΠΎΠ·ΡΠΌΠ΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π΅ ΠΊ Π½ΡΠ»Ρ.
11.ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΡΡΠ΅Π·ΠΊΠ΅
ΠΠ°ΠΉΠ΄Π΅ΠΌ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΈ ΠΏΡΠΈΡΠ°Π²Π½ΡΠ΅ΠΌ Π΅Π΅ ΠΊ Π½ΡΠ»Ρ. β Π½Π΅Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ.
Π§ΡΠΎ ΡΡΠΎ Π·Π½Π°ΡΠΈΡ? ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π½ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΉ ΡΠΎΡΠΊΠ΅. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² Π»ΡΠ±ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ², Π° ΡΡΠ½ΠΊΡΠΈΡ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΠΉ.
ΠΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½ΠΈΠΌΡΠΌ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½ΠΈΠΌΡΠΌΠΎΠΌ ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°ΠΌΠΈ, Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠ΅Π½ΡΠ΅Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΠΈ (Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ Π½Π° ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΠΈ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ). ΠΠ°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ, ΡΡΠΎ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠΎ Π½Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ±ΠΎΠ·Π½Π°ΡΠ°ΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
Π’ΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, ΠΌΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠΈΠ½ΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° \(x_0\)
ΠΡΡΠΎΡΠΎΠΆΠ½ΠΎ! ΠΡΠ»ΠΈ ΠΏΡΠ΅ΠΏΠΎΠ΄Π°Π²Π°ΡΠ΅Π»Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΡ ΠΏΠ»Π°Π³ΠΈΠ°Ρ Π² ΡΠ°Π±ΠΎΡΠ΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ ΠΊΡΡΠΏΠ½ΡΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡΡ Π΄ΠΎ ΠΎΡΡΠΈΡΠ»Π΅Π½ΠΈΡ). ΠΡΠ»ΠΈ Π½Π΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π½Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΌΠΎΠΌΡ, Π·Π°ΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΡ.
ΠΡΠΎΡΡΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠΎΡΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° β ΡΡΠΎ ΡΠ°, Π³Π΄Π΅ ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅.
Π’ΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΊΡΠΈΠΌΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ΅ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° \(x_0\)
ΠΡΠΎΡΡΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° β ΡΡΠΎ ΡΠ°, Π³Π΄Π΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅.
Π’ΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ
Π’Π΅ΠΎΡΠ΅ΠΌΠ°. ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΡΠΎΡΠΊΠ΅ \(x=x_0,\) ΡΠΎ Π² Π½Π΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½Π° 0, Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠ»Π³ΠΎΡΠΈΡΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:
ΠΠ°ΠΉΡΠΈ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ β D(y).
ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ β f ‘(x).
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅Ρ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ f (x) ΠΈ Π·Π½Π°ΠΊ f ‘(x) Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ , Π½Π° ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°ΠΉΠ΄Π΅Π½Π½ΡΠ΅ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ Π΄Π΅Π»ΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ (ΠΏΡΠΈ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΌ Π·Π½Π°ΠΊΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ±ΡΠ²Π°Π΅Ρ, ΠΏΡΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠΌ β Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ).
ΠΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΎΡΠΊΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ, ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ ΠΎΠ½Π° ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° (Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π° ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ β ΡΠΎΡΠΊΠ° ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°, ΡΠ±ΡΠ²Π°Π½ΠΈΠ΅ Π½Π° Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΠ΅ β ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°) ΠΈΠ»ΠΈ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° (ΡΠΎ Π΅ΡΡΡ, ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π»ΠΈ Π·Π½Π°ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡΠΈ ΠΏΠ΅ΡΠ΅Ρ ΠΎΠ΄Π΅ ΡΠ΅ΡΠ΅Π· ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ ΡΠΎΡΠΊΡ).
ΠΡΡΠΈΡΠ»ΠΈΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΠΎΡΠΊΠ°Ρ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°.
ΠΡΠΈΠΌΠ΅ΡΡ Π·Π°Π΄Π°Ρ
ΠΠ°Π΄Π°ΡΠ° 1
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ Π½Π° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΡ ΡΡΠ½ΠΊΡΠΈΡ \(f(x)=x^3-3x^2.\)
Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΏΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ:
3) ΠΠ· ΠΏΡΠ½ΠΊΡΠ° 1 ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ Π½Π΅Ρ. ΠΠ°ΠΉΠ΄Π΅ΠΌ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅:
5) ΠΠ°ΠΉΠ΄Π΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΠ° 2
ΠΠ°Π΄Π°ΡΠ° 3
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ \(f(x)=x^5+2x^3-4\) Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π΅Ρ Π½Π° Π²ΡΠ΅Ρ ΡΠΈΡΠ»ΠΎΠ²ΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ.
ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π’Π΅ΠΎΡΠΈΡ ΠΊ Π·Π°Π΄Π°Π½ΠΈΡ 12 ΠΈΠ· ΠΠΠ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ (ΠΏΡΠΎΡΠΈΠ»ΡΠ½ΠΎΠΉ)
ΠΠ°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ (Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅) Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΡΠ°ΠΌΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ (ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅) ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ Π½Π° ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅.
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈΠ»ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
Π§ΡΠΎΠ±Ρ Π½Π°ΠΉΡΠΈ ΡΠΎΡΠΊΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ° ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ:
Π’Π°Π±Π»ΠΈΡΠ° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π€ΡΠ½ΠΊΡΠΈΡ | ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ |
$c$ | $0$ |
$x$ | $1$ |
$x^n, nβN$ | $nx^ |
$<1>/ | $-<1>/ |
$<1>/x<^n>, nβN$ | $- |
$β^n | $<1>/ |
$sinx$ | $cosx$ |
$cosx$ | $-sinx$ |
$tgx$ | $<1>/ |
$ctgx$ | $-<1>/ |
$cos^2x$ | $-sin2x$ |
$sin^2x$ | $sin2x$ |
$e^x$ | $e^x$ |
$a^x$ | $a^xlna$ |
$lnx$ | $<1>/ |
$log_x$ | $<1>/ |
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΡΠ°Π²ΠΈΠ»Π° Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ
1. ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠΌΠΌΡ ΠΈ ΡΠ°Π·Π½ΠΎΡΡΠΈ ΡΠ°Π²Π½Π° ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ³ΠΎ