Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΡ‹, ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ экстрСмумы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСньшС, Ρ‡Π΅ΠΌ Π² сосСдних Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌΠΎΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ большС, Ρ‡Π΅ΠΌ Π² сосСдних Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

Π’Π°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² этих Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… мСняСтся Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ двиТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: Ссли функция пСрСстаСт ΠΏΠ°Π΄Π°Ρ‚ΡŒ ΠΈ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ расти – это Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ – максимума.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ максимумы вмСстС ΠΈΠΌΠ΅Π½ΡƒΡŽΡ‚ экстрСмумами Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π˜Π½Ρ‹ΠΌΠΈ словами, всС ΠΏΡΡ‚ΡŒ Ρ‚ΠΎΡ‡Π΅ΠΊ, Π²Ρ‹Π΄Π΅Π»Π΅Π½Π½Ρ‹Ρ… Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ Π²Ρ‹ΡˆΠ΅, ΡΠ²Π»ΡΡŽΡ‚ΡΡ экстрСмумами.

Π’ Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… экстрСмумов (Ρ‚.Π΅. максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ²) производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ.

Благодаря этому Π½Π°ΠΉΡ‚ΠΈ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π΅ составляСт ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ, Π΄Π°ΠΆΠ΅ Ссли Ρƒ вас Π½Π΅Ρ‚ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅! Когда ΠΏΠΈΡˆΡƒΡ‚ экстрСмумы ΠΈΠ»ΠΈ максимумы/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈΠΌΠ΅ΡŽΡ‚ Π² Π²ΠΈΠ΄Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚.Π΅. \(y\). Когда ΠΏΠΈΡˆΡƒΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² ΠΈΠΌΠ΅ΡŽΡ‚ Π² Π²ΠΈΠ΄Ρƒ иксы Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ΡΡ максимумы/ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹. НапримСр, Π½Π° рисункС Π²Ρ‹ΡˆΠ΅, \(-5\) Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° (ΠΈΠ»ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° экстрСмума), Π° \(1\) – ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ (ΠΈΠ»ΠΈ экстрСмум).

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π”Π°Π²Π°ΠΉΡ‚Π΅ вмСстС Π½Π°ΠΉΠ΄Π΅ΠΌ количСство Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅! Если Π΄Π°Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ экстрСмумов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΌΡ‹ Π½Π΅ считаСм максимумы ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ! ΠœΡ‹ считаСм Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ обращаСтся Π² ноль (Ρ‚.Π΅. пСрСсСкаСт ось \(x\)).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠ§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ (7 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° этот вопрос, Π½ΡƒΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Π΅Ρ‰Π΅ Π΄Π²Π° Π²Π°ΠΆΠ½Ρ‹Ρ… ΠΏΡ€Π°Π²ΠΈΠ»:

— ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π° Ρ‚Π°ΠΌ, Π³Π΄Π΅ функция возрастаСт.
— ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° Ρ‚Π°ΠΌ, Π³Π΄Π΅ функция ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚.

Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ этих ΠΏΡ€Π°Π²ΠΈΠ» Π΄Π°Π²Π°ΠΉΡ‚Π΅ Π½Π°ΠΉΠ΄Π΅ΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΠ½ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΡ‹ ΠΈ максимумы Π½Π°Π΄ΠΎ ΠΈΡΠΊΠ°Ρ‚ΡŒ срСди Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмумов, Ρ‚.Π΅. срСди \(-13\), \(-11\), \(-9\),\(-7\) ΠΈ \(3\).

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡ‰Π΅ Π±Ρ‹Π»ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡Ρƒ расставим Π½Π° рисункС сначала Π·Π½Π°ΠΊΠΈ плюс ΠΈ минус, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. ΠŸΠΎΡ‚ΠΎΠΌ стрСлки – ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ возрастаниС, убывания Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

\(-11\): производная сначала ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°, Π·Π½Π°Ρ‡ΠΈΡ‚ функция возрастаСт, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚. ΠžΠΏΡΡ‚ΡŒ ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ это мыслСнно Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ ΠΈ Π²Π°ΠΌ станСт ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ \(-11\) – это ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ.

\(- 9\): функция возрастаСт, Π° ΠΏΠΎΡ‚ΠΎΠΌ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ – максимум.

ВсС Π²Ρ‹ΡˆΠ΅ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΠΎΠ±Ρ‰ΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ Π²Ρ‹Π²ΠΎΠ΄Π°ΠΌΠΈ:

— Ѐункция ΠΈΠΌΠ΅Π΅Ρ‚ максимум Ρ‚Π°ΠΌ, Π³Π΄Π΅ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ мСняСт Π·Π½Π°ΠΊ с плюса Π½Π° минус.
— Ѐункция ΠΈΠΌΠ΅Π΅Ρ‚ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ Ρ‚Π°ΠΌ, Π³Π΄Π΅ производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ ΠΈ мСняСт Π·Π½Π°ΠΊ с минуса Π½Π° плюс.

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Ссли извСстна Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (12 Π·Π°Π΄Π°Π½ΠΈΠ΅ Π•Π“Π­)?

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° этот вопрос, Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ всС Ρ‚ΠΎ ΠΆΠ΅, Ρ‡Ρ‚ΠΎ ΠΈ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌ ΠΏΡƒΠ½ΠΊΡ‚Π΅: Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π³Π΄Π΅ производная ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π³Π΄Π΅ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π° ΠΈ Π³Π΄Π΅ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ. Π§Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ понятнСС Π½Π°ΠΏΠΈΡˆΡƒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ с ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Всё! Π’ΠΎΡ‡ΠΊΠΈ максимумов ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² Π½Π°ΠΉΠ΄Π΅Π½Ρ‹.

Π˜Π·ΠΎΠ±Ρ€Π°ΠΆΠ°Ρ Π½Π° оси Ρ‚ΠΎΡ‡ΠΊΠΈ Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… производная Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ – ΠΌΠ°ΡΡˆΡ‚Π°Π± ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ. ПовСдСниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ это сдСлано Π½Π° рисункС Π½ΠΈΠΆΠ΅. Π’Π°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½Π΅Π΅ Π³Π΄Π΅ максимум, Π° Π³Π΄Π΅ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈΠΌΠ΅Ρ€(Π•Π“Π­). НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \(y=3x^5-20x^3-54\).
РСшСниС:
1. НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ: \(y’=15x^4-60x^2\).
2. ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ Π΅Ρ‘ ΠΊ Π½ΡƒΠ»ΡŽ ΠΈ Ρ€Π΅ΡˆΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

3. – 6. НанСсСм Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° Ρ‡ΠΈΡΠ»ΠΎΠ²ΡƒΡŽ ось ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, ΠΊΠ°ΠΊ мСняСтся Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΊΠ°ΠΊ двиТСтся функция:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума являСтся \(-2\).

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ?

Π“Π»ΠΎΠ±Π°Π»ΡŒΠ½Ρ‹ΠΉ ΠΈ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ максимум

Как ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, Ссли ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΎΠ² интСрСсуСт глобально самоС большоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ f(x), Ρ‚ΠΎ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, Π½Π΅ Π½Π° всСй оси Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ². ΠŸΠΎΠ΄ΠΎΠ±Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠ±Ρ‹Ρ‡Π½ΠΎ сформулированы Ρ„Ρ€Π°Π·ΠΎΠΉ «Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅». Π—Π΄Π΅ΡΡŒ подразумСваСтся, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ΠΎ Π²Ρ‹ΡΠ²ΠΈΡ‚ΡŒ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΠ½Π° Π½Π΅ мСньшС, Ρ‡Π΅ΠΌ Π½Π° всём ΠΎΡΡ‚Π°Π»ΡŒΠ½ΠΎΠΌ ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Поиск локального экстрСмума являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· шагов Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ‚Π°ΠΊΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ.

Π”Π°Π½ΠΎ y = f(x). ВрСбуСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. f(x) ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒ Π΅Π³ΠΎ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅:

ИсслСдованиС

Пик f(x) Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΈΠ»ΠΈ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ находится ΠΏΡƒΡ‚Ρ‘ΠΌ исслСдования Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. План исслСдования для нахоТдСния максимума Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ (ΠΈΠ»ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅):

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ шаг ΠΈ рассмотрим Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹.

ΠžΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²

Асимптоты

Если Π½Π° исслСдуСмом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ имССтся Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Π°Ρ асимптота, ΠΎΠΊΠΎΠ»ΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ функция стрСмится Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ с плюсом, Ρ‚ΠΎ ΠΏΠΈΠΊ f(x) Π½Π° здСсь Π½Π΅ опрСдСляСтся. А Ссли Π±Ρ‹ опрСдСлялся, Ρ‚ΠΎ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ достигаСтся максимум, совпал Π±Ρ‹ с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ пСрСсСчСния асимптоты ΠΈ оси Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ².

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΠΈ экстрСмумы

Π—Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ΄ ΠΊΠ°ΠΊΠΈΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΊΠ°ΡΠ°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π²Ρ‹Π±Ρ€Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. ΠžΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ функция здСсь ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚. Аналогично ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ производная Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ возрастании f(x). ΠžΡ‚ΡΡŽΠ΄Π° ΠΏΠΎΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΄Π²Π° условия.

1) ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ экстрСмума Π»ΠΈΠ±ΠΎ нулСвая, Π»ΠΈΠ±ΠΎ нСопрСдСлСнная. Π­Ρ‚ΠΎ условиС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅, Π½ΠΎ нСдостаточно. ΠŸΡ€ΠΎΠ΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌ y = x^3, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ: y = 3*x^2. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ Π² послСднСС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ «0», ΠΈ производная обратится Π² Π½ΡƒΠ»ΡŒ. Однако, это Π½Π΅ экстрСмум для y = x^3. Π£ Π½Π΅Ρ‘ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ экстрСмумов, ΠΎΠ½Π° ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ Π½Π° всСй оси Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ².

ПослС Ρ‚ΠΎΠ³ΠΎ ΠΊΠ°ΠΊ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ для локального максимума Π±Ρ‹Π»ΠΈ Π½Π°ΠΉΠ΄Π΅Π½Ρ‹ ΠΈΡ… Π½Π°Π΄ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² исходноС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ максимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ f(x).

ΠšΠΎΠ½Ρ†Ρ‹ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ сравнСниС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ²

ΠŸΡ€ΠΈ поискС максимума Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°. НапримСр, для y = 1/x Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [1; 7] максимум Π±ΡƒΠ΄Π΅Ρ‚ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ x = 1. Π”Π°ΠΆΠ΅ Ссли Π²Π½ΡƒΡ‚Ρ€ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π΅ΡΡ‚ΡŒ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ максимум, Π½Π΅Ρ‚ Π½ΠΈΠΊΠ°ΠΊΠΎΠΉ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΠΈ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΊΠΎΠ½Ρ†ΠΎΠ² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ большС этого максимума.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΡΡ€Π°Π²Π½ΠΈΡ‚ΡŒ значСния Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²Π° (Ссли f(x) здСсь Π½Π΅ стрСмится Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ), Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… исслСдуСмого ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ экстрСмум Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НаибольшСС ΠΈΠ· этих Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ максимумом Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ участкС прямой.

Для Π·Π°Π΄Π°Ρ‡ΠΈ с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΎΠΉ «ΠΠ°ΠΉΠ΄ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ» Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ наимСньшСС ΠΈΠ· Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠ² ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ€Π°Π·Ρ€Ρ‹Π²Π°.

Π’ΠΈΠ΄Π΅ΠΎ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π—Π°Π΄Π°Π½ΠΈΠ΅ 11 ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅

Π—Π°Π΄Π°Π½ΠΈΠ΅ 11 ΠΏΠ΅Ρ€Π²ΠΎΠΉ части ΠŸΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ β€” это Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Ρ‚ΠΎΡ‡Π΅ΠΊ максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π’ΠΎΡ‚ ΠΊΠ°ΠΊΠΈΠ΅ Ρ‚ΠΈΠΏΡ‹ Π·Π°Π΄Π°Ρ‡ ΠΌΠΎΠ³ΡƒΡ‚ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒΡΡ Π² этом Π·Π°Π΄Π°Π½ΠΈΠΈ:

НахоТдСниС Ρ‚ΠΎΡ‡Π΅ΠΊ максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

ИсслСдованиС слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

НахоТдСниС Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

НахоТдСниС Ρ‚ΠΎΡ‡Π΅ΠΊ максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

1. НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊ Π½ΡƒΠ»ΡŽ. ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π˜ΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ Ρ‚ΠΎΡ‡ΠΊΠ΅ производная мСняСт Π·Π½Π°ΠΊ с «плюса» Π½Π° «минус». Π—Π½Π°Ρ‡ΠΈΡ‚, β€” Ρ‚ΠΎΡ‡ΠΊΠ° максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

2. НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊ Π½ΡƒΠ»ΡŽ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ Ρ‚ΠΎΡ‡ΠΊΠ΅ производная мСняСт Π·Π½Π°ΠΊ с «минуса» Π½Π° «плюс». Π—Π½Π°Ρ‡ΠΈΡ‚, β€” Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ИсслСдованиС слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

3. НайдитС Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠ΅Ρ€Π΅Π΄ Π½Π°ΠΌΠΈ слоТная функция Π’ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Но Π²ΠΎΠΎΠ±Ρ‰Π΅-Ρ‚ΠΎ ΠΈΡ… ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ Π½Π° ΠΏΠ΅Ρ€Π²ΠΎΠΌ курсС Π²ΡƒΠ·Π°, поэтому ΠΌΡ‹ Ρ€Π΅ΡˆΠΈΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ Π±ΠΎΠ»Π΅Π΅ простым способом.

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΈ Π±Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° вСтвями Π²Π½ΠΈΠ·, ΠΈ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ достигаСтся Π² Π²Π΅Ρ€ΡˆΠΈΠ½Π΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ

4. НайдитС абсциссу Ρ‚ΠΎΡ‡ΠΊΠΈ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Напомним, Ρ‡Ρ‚ΠΎ абсцисса β€” это ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΏΠΎ

Π‘Π½ΠΎΠ²Π° слоТная функция. ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ‚ΠΎΡ‚ ΠΆΠ΅ ΠΏΡ€ΠΈΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΈ Π² ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΉ Π·Π°Π΄Π°Ρ‡Π΅.

Π’Π°ΠΊ ΠΊΠ°ΠΊ функция ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт, Ρ‚ΠΎΡ‡ΠΊΠ° максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π­Ρ‚ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

НахоТдСниС Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

5. НайдитС наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

ΠœΡ‹ ΠΏΠΎΠΌΠ½ΠΈΠΌ, Ρ‡Ρ‚ΠΎ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π»ΠΈΠ±ΠΎ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ максимума, Π»ΠΈΠ±ΠΎ Π½Π° ΠΊΠΎΠ½Ρ†Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°. Π­Ρ‚ΠΈ случаи ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π° рисункС.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΊΠ°Ρ‚ΡŒ Ρ‚ΠΎΡ‡ΠΊΡƒ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ. НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΈ приравняСм Π΅Π΅ ΠΊ Π½ΡƒΠ»ΡŽ.

НайдСм Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

6. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ приравняСм Π΅Π΅ ΠΊ Π½ΡƒΠ»ΡŽ.

НайдСм Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π—Π½Π°Ρ‡ΠΈΡ‚, наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ достигаСтся ΠΏΡ€ΠΈ НайдСм это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

7. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Иногда ΠΏΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ Π²Π·ΡΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ, Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΡƒΠΏΡ€ΠΎΡΡ‚ΠΈΡ‚ΡŒ.

ΠœΡ‹ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° произвСдСния. ΠΏΡ€ΠΈ

Если Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Если Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

8. НайдитС наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈΡ€Π°Π²Π½ΡΠ΅ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ ΠΊ Π½ΡƒΠ»ΡŽ:

НайдСм Π·Π½Π°ΠΊΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΡ€ΠΈ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ мСняСтся с «плюса» Π½Π° «минус». Π—Π½Π°Ρ‡ΠΈΡ‚, β€” Ρ‚ΠΎΡ‡ΠΊΠ° максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΡ‹ нашли Ρ‚ΠΎΡ‡ΠΊΡƒ максимума, Π½ΠΎ это Π΅Ρ‰Π΅ Π½Π΅ всС. Π‘Ρ€Π°Π²Π½ΠΈΠΌ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ максимума ΠΈ Π½Π° ΠΊΠΎΠ½Ρ†Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΏΡ€ΠΈ ΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Ссли Π²Π°ΠΌ попадСтся такая Π·Π°Π΄Π°Ρ‡Π° Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ части Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅, Ρ‚ΠΎ Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ Π½Π΅ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ. Как ΠΌΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ β€” число ΠΈΡ€Ρ€Π°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ΅. А Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ части Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ ΠΎΡ‚Π²Π΅Ρ‚ΠΎΠΌ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ†Π΅Π»ΠΎΠ΅ число ΠΈΠ»ΠΈ конСчная дСсятичная Π΄Ρ€ΠΎΠ±ΡŒ.

9. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [0;2].

Π‘Π½ΠΎΠ²Π° слоТная функция. Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΠΏΠΎΠ»Π΅Π·Π½Ρ‹Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹:

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠŸΡ€ΠΈ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ мСняСтся с «минуса» Π½Π° «плюс». Π—Π½Π°Ρ‡ΠΈΡ‚, β€” Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

10. НайдитС наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Как всСгда, возьмСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ приравняСм Π΅Π΅ ΠΊ Π½ΡƒΠ»ΡŽ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

11.НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

НайдСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ приравняСм Π΅Π΅ ΠΊ Π½ΡƒΠ»ΡŽ. Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π½Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ.

Π§Ρ‚ΠΎ это Π·Π½Π°Ρ‡ΠΈΡ‚? ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ Π½ΠΈ Π² ΠΊΠ°ΠΊΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. Π­Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚, Ρ‡Ρ‚ΠΎ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π² любой Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ², Π° функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ экстрСмумов ΠΈ являСтся ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΠΉ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΈ максимум Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ ΠΈ максимумом Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами экстрСмумами, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… функция мСняСт Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ монотонности (с возрастания Π½Π° ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ ΠΈ Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚). Π’Π°ΠΆΠ½ΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ экстрСмумы это Π½Π΅ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

Π’ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°, ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠΈΠ½ΠΈΠΌΡƒΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° \(x_0\)

ΠžΡΡ‚ΠΎΡ€ΠΎΠΆΠ½ΠΎ! Если ΠΏΡ€Π΅ΠΏΠΎΠ΄Π°Π²Π°Ρ‚Π΅Π»ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΡ‚ ΠΏΠ»Π°Π³ΠΈΠ°Ρ‚ Π² Ρ€Π°Π±ΠΎΡ‚Π΅, Π½Π΅ ΠΈΠ·Π±Π΅ΠΆΠ°Ρ‚ΡŒ ΠΊΡ€ΡƒΠΏΠ½Ρ‹Ρ… ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ (Π²ΠΏΠ»ΠΎΡ‚ΡŒ Π΄ΠΎ отчислСния). Если Π½Π΅Ρ‚ возмоТности Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ самому, Π·Π°ΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‚ΡƒΡ‚.

ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° β€” это Ρ‚Π°, Π³Π΄Π΅ ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° возрастаниС.

Π’ΠΎΡ‡ΠΊΠ° максимума, максимум Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠœΠ°ΠΊΡΠΈΠΌΡƒΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ максимума \(x_0\)

ΠŸΡ€ΠΎΡΡ‚Ρ‹ΠΌΠΈ словами, Ρ‚ΠΎΡ‡ΠΊΠ° максимума β€” это Ρ‚Π°, Π³Π΄Π΅ возрастаниС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅.

Π’ΠΎΡ‡ΠΊΠΈ максимума ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ИсслСдованиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° экстрСмумы

Π’Π΅ΠΎΡ€Π΅ΠΌΠ°. Если функция f(x) ΠΈΠΌΠ΅Π΅Ρ‚ экстрСмум Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ \(x=x_0,\) Ρ‚ΠΎ Π² Π½Π΅ΠΉ производная Π»ΠΈΠ±ΠΎ Ρ€Π°Π²Π½Π° 0, Π»ΠΈΠ±ΠΎ Π½Π΅ сущСствуСт.

Алгоритм нахоТдСния экстрСмумов с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ:

Найти ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” D(y).

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ β€” f ‘(x).

Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ измСнСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f (x) ΠΈ Π·Π½Π°ΠΊ f ‘(x) Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°Ρ…, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π°ΠΉΠ΄Π΅Π½Π½Ρ‹Π΅ критичСскиС Ρ‚ΠΎΡ‡ΠΊΠΈ дСлят ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния (ΠΏΡ€ΠΈ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π·Π½Π°ΠΊΠ΅ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ функция ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚, ΠΏΡ€ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ β€” возрастаСт).

ΠžΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ критичСской Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, являСтся Π»ΠΈ ΠΎΠ½Π° Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума, ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° (возрастаниС мСняСтся Π½Π° ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ β€” Ρ‚ΠΎΡ‡ΠΊΠ° максимума, ΡƒΠ±Ρ‹Π²Π°Π½ΠΈΠ΅ Π½Π° возрастаниС β€” ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°) ΠΈΠ»ΠΈ Π½Π΅ являСтся Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ экстрСмума (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ, мСняСтся Π»ΠΈ Π·Π½Π°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π΅ Ρ‡Π΅Ρ€Π΅Π· ΠΈΡΡΠ»Π΅Π΄ΡƒΠ΅ΠΌΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ).

Π’Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… экстрСмума.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π·Π°Π΄Π°Ρ‡

Π—Π°Π΄Π°Ρ‡Π° 1

Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° экстрСмумы Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ \(f(x)=x^3-3x^2.\)

РСшСниС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΠΎ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΡƒ:

3) Из ΠΏΡƒΠ½ΠΊΡ‚Π° 1 слСдуСт, Ρ‡Ρ‚ΠΎ критичСских Ρ‚ΠΎΡ‡Π΅ΠΊ Π½Π΅Ρ‚. НайдСм стационарныС:

5) НайдСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ экстрСмумов Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‡Π° 2

Π—Π°Π΄Π°Ρ‡Π° 3

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ функция \(f(x)=x^5+2x^3-4\) возрастаСт Π½Π° всСх числовой прямой.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ВСория ΠΊ заданию 12 ΠΈΠ· Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ (ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠΉ)

НаибольшСС (наимСньшСС) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – это самоС большоС (малСнькоС) ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π½Π° рассматриваСмом ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ наибольшСС ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΠΈ максимума ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ:

Π’Π°Π±Π»ΠΈΡ†Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ:

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ
$c$$0$
$x$$1$
$x^n, n∈N$$nx^, n∈N$
$<1>/$$-<1>/$
$<1>/x<^n>, n∈N$$-/>, n∈N$
$√^n, n∈N$$<1>/>, n∈N$
$sinx$$cosx$
$cosx$$-sinx$
$tgx$$<1>/$
$ctgx$$-<1>/$
$cos^2x$$-sin2x$
$sin^2x$$sin2x$
$e^x$$e^x$
$a^x$$a^xlna$
$lnx$$<1>/$
$log_x$$<1>/$

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ ΠΏΡ€Π°Π²ΠΈΠ»Π° диффСрСнцирования

1. ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы ΠΈ разности Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ слагаСмого

ΠŸΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ суммы ΠΈ разности Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ слагаСмого

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *