Π§ΡΠΎ Π·Π½Π°ΡΠΈΡ Π½Π°ΠΉΡΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ 9 ΠΊΠ»Π°ΡΡ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ (ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ). ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ
ΠΠ°ΡΠ°ΡΡΡΡ Π² ΡΠ°ΠΌΠΊΠ°Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½Π°ΠΌ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡΡ ΠΈΡΠΊΠ°ΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈΠ»ΠΈ ΠΎΡΡΠ΅Π·ΠΊΠ΅. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎ Π½ΡΠΆΠ½ΠΎ Π΄Π΅Π»Π°ΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΠ°Π·Π½ΡΡ ΡΠΈΠΏΠΎΠ² Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΎΡΠ΅Π½ΠΊΠ°Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄Ρ.
Π ΡΠ°ΠΌΠΊΠ°Ρ ΡΡΠΎΠ³ΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π° ΠΌΡ ΡΠ°ΡΡΠΊΠ°ΠΆΠ΅ΠΌ, ΡΡΠΎ ΠΈΠ· ΡΠ΅Π±Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΏΡΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Ρ, ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ, ΠΈ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ Π·Π°Π΄Π°ΡΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ. ΠΠ»Ρ Π½Π°Π³Π»ΡΠ΄Π½ΠΎΡΡΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΎΠΈΠ»Π»ΡΡΡΡΠΈΡΠΎΠ²Π°Π½Ρ Π³ΡΠ°ΡΠΈΠΊΠ°ΠΌΠΈ. ΠΡΠΎΡΠΈΡΠ°Π² ΡΡΡ ΡΡΠ°ΡΡΡ, Π²Ρ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΠΈΡΡΠ΅ΡΠΏΡΠ²Π°ΡΡΠ΅Π΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ± ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°ΡΠ½Π΅ΠΌ Ρ Π±Π°Π·ΠΎΠ²ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ.
ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΠΏΠΎΠ½ΡΡΠΈΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ Π²ΡΠ΅Π³Π΄Π° ΡΠΎΠΆΠ΄Π΅ΡΡΠ²Π΅Π½Π½ΠΎ ΠΎΠ±Π»Π°ΡΡΠΈ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. ΠΡΠΈ ΠΏΠΎΠ½ΡΡΠΈΡ Π±ΡΠ΄ΡΡ ΡΠ°Π²Π½ΠΎΠ·Π½Π°ΡΠ½Ρ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΎΠ²ΠΏΠ°Π΄Π΅Ρ Ρ ΠΎΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΈΠΆΠ΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡΡΡ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΡ, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ. Π‘ΠΈΠ½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ β ΡΡΠΎ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΡΠ°ΡΠ½ΡΠ΅ β Π°ΡΠΈΠΌΠΏΡΠΎΡΡ, ΡΡΠΆΠΈΠ΅ ΡΠΎΡΠΊΠΈ ΠΈ Π»ΠΈΠ½ΠΈΠΈ Π½Π° ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ β ΡΡΠΎ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠΎΠ·ΡΠΌΠ΅ΠΌ Π·Π°Π΄Π°ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΡΠΊΡΠΈΠ½ΡΡΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ΅, ΡΡΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, β ΡΡΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅.
ΠΠ»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΠ΅ΠΊ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π΄ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅ΡΡΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ:
ΠΠ°ΡΠ½Π΅ΠΌ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π΅. ΠΠΎΡΠ»Π΅ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π±ΡΠ΄Π΅Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΎΠ΄Π½ΠΎΡΡΠΎΡΠΎΠ½Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄Π΅Π»Ρ Π² ΠΊΠΎΠ½ΡΠ°Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»Π° ΠΈ/ΠΈΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π»Ρ Π½Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½Π°ΠΌ Π½Π°Π΄ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π·Π°Π΄Π°Π½Π½ΡΡ ΡΡΠ»ΠΎΠ²ΠΈΡΡ . ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Ρ Π½Π°Ρ Π΅ΡΡΡ Π²ΡΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΡΠ΅ Π΄Π°Π½Π½ΡΠ΅.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡΡΠ΅Π·ΠΊΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΈ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄ΡΡ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ ΠΎΡ ΠΌΠΈΠ½ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ Π΄ΠΎ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ ΠΏΡΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x ΠΎΡ Π½ΡΠ»Ρ Π΄ΠΎ ΠΏΠ»ΡΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ. ΠΠ½Π°ΡΠΈΡ, ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» β ΡΡΠΎ ΠΈ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°.
ΠΡΠ²Π΅Ρ: ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π» β ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠ°.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΡΡΠΎ x β Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. ΠΡΡΠΈΡΠ»ΠΈΠΌ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΠ΅ ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π΅Π΅ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π½ΠΈΡ ΠΈ ΡΠ±ΡΠ²Π°Π½ΠΈΡ:
ΠΠΎΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊ ΠΆΠ΅ Π²Π΅Π΄Π΅Ρ ΡΠ΅Π±Ρ ΡΡΠ½ΠΊΡΠΈΡ Π½Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ:
ΠΠ· Π·Π°ΠΏΠΈΡΠΈ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π±ΡΠ΄ΡΡ Π°ΡΠΈΠΌΠΏΡΠΎΡΠΈΡΠ΅ΡΠΊΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ 0.
ΠΠ° Π½Π΅ΠΌ Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΎΠ±Π»Π°ΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» E ( y ) = ( 0 ; 9 ]
ΠΡΠ²Π΅Ρ: E ( y ) = ( 0 ; 9 ]
Π ΠΊΠ°ΠΊ Π±ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΠ· ΡΠ΅Π±Ρ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½Π΅Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ²? Π’ΠΎΠ³Π΄Π° Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΡΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΎΠ² ΠΈ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ ΠΈΡ .
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ»Ρ ΠΎΡΠΊΡΡΡΠΎΠ³ΠΎ Π»ΡΡΠ° 2 ; + β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ ΡΠΎΡΠ½ΠΎ ΡΠ°ΠΊΠΈΠ΅ ΠΆΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΡ. Π€ΡΠ½ΠΊΡΠΈΡ Π½Π° Π½Π΅ΠΌ ΡΠ°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ:
ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ²ΠΈΠ΄Π΅ΡΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
ΠΡΠΎΠ±ΡΠΉ ΡΠ»ΡΡΠ°ΠΉ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠΎΠ²ΠΏΠ°Π΄Π°Π΅Ρ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΡΠΎΠΌ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ ΠΎΡΠ²Π΅ΡΠ°Π΅Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π‘ΠΈΠ½ΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΡΡ ΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Π΅Π³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 2 ΠΏΠΈ. ΠΠ΅ΡΠ΅ΠΌ ΠΎΡΡΠ΅Π·ΠΎΠΊ 0 ; 2 Ο ΠΈ ΡΠΌΠΎΡΡΠΈΠΌ, ΠΊΠ°ΠΊΠΈΠΌ Π±ΡΠ΄Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° Π½Π΅ΠΌ.
ΠΡΠ»ΠΈ Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ°ΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠ°ΠΊ ΡΡΠ΅ΠΏΠ΅Π½Π½Π°Ρ, ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»ΡΠ½Π°Ρ, Π»ΠΎΠ³Π°ΡΠΈΡΠΌΠΈΡΠ΅ΡΠΊΠ°Ρ, ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ, ΠΎΠ±ΡΠ°ΡΠ½Π°Ρ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ, ΡΠΎ ΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ Π²Π°ΠΌ ΠΏΠ΅ΡΠ΅ΡΠΈΡΠ°ΡΡ ΡΡΠ°ΡΡΡ ΠΎΠ± ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΡΡ . Π’Π΅ΠΎΡΠΈΡ, ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΠΌ Π·Π΄Π΅ΡΡ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΡΠΊΠ°Π·Π°Π½Π½ΡΠ΅ ΡΠ°ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΡ ΠΆΠ΅Π»Π°ΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΡΠΈΡΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°ΡΡΠΎ ΡΡΠ΅Π±ΡΡΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ. ΠΡΠ»ΠΈ Π²Ρ Π·Π½Π°Π΅ΡΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ, ΡΠΎ Π»Π΅Π³ΠΊΠΎ ΡΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΠΎΠ»ΡΡΠ΅Π½Ρ ΠΈΠ· ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΡΠ΅ ΠΎΠ΄ΠΈΠ½ ΠΏΡΠΈΠΌΠ΅Ρ Π·Π°ΠΏΠΈΡΠ΅ΠΌ Π±Π΅Π· ΠΏΠΎΡΡΠ½Π΅Π½ΠΈΠΉ, Ρ.ΠΊ. ΠΎΠ½ ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π°Π½Π°Π»ΠΎΠ³ΠΈΡΠ΅Π½ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΌΡ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π’Π΅ΠΏΠ΅ΡΡ ΡΠ°Π·Π±Π΅ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π°ΠΌ Π½Π°Π΄ΠΎ ΡΠ°Π·Π±ΠΈΡΡ Π²ΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π½Π° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ ΠΈ Π½Π°ΠΉΡΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π½ΠΈΡ , ΠΏΠΎΡΠ»Π΅ ΡΠ΅Π³ΠΎ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ ΡΠΎ, ΡΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠ»ΠΎΡΡ. Π§ΡΠΎΠ±Ρ Π»ΡΡΡΠ΅ ΠΏΠΎΠ½ΡΡΡ ΡΡΠΎ, ΡΠΎΠ²Π΅ΡΡΠ΅ΠΌ ΠΏΠΎΠ²ΡΠΎΡΠΈΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ Π²ΠΈΠ΄Ρ ΡΠΎΡΠ΅ΠΊ ΡΠ°Π·ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ.
Π Π΅ΡΠ΅Π½ΠΈΠ΅
Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅:
Π Π΅ΡΠ΅Π½ΠΈΠ΅
ΠΠ½Π° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° Π΄Π»Ρ Π²ΡΠ΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡΠΈΡ ΡΠΎΠ±ΠΎΠΉ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠΈΡΠ»Π°. ΠΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, Π² ΠΊΠ°ΠΊΠΈΡ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ°Ρ Π΄Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π±ΡΠ΄Π΅Ρ Π²ΠΎΠ·ΡΠ°ΡΡΠ°ΡΡ, Π° Π² ΠΊΠ°ΠΊΠΈΡ ΡΠ±ΡΠ²Π°ΡΡ:
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ:
ΠΠ»Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠ΅Π΄Π΅Π»Π° Π±ΡΠ»ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΎ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ ΠΠΎΠΏΠΈΡΠ°Π»Ρ. ΠΠ·ΠΎΠ±ΡΠ°Π·ΠΈΠΌ Ρ ΠΎΠ΄ Π½Π°ΡΠ΅Π³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΡΠΎΠΊ 1. ΠΠ»Π³Π΅Π±ΡΠ° 9 ΠΊΠ»Π°ΡΡ Π€ΠΠΠ‘
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «Π€ΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ»
ΠΠ°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ y ΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y, Π½Π°Π·ΡΠ²Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
Π ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΡΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ, Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΠ΅ΡΠ²ΡΠΉ Π³ΡΠ°ΡΠΈΠΊ. ΠΠΈΠ΄ΠΈΠΌ, ΡΡΠΎ ΠΎΠ΄Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x ΠΌΠΎΠΆΠ΅Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΎΠ²Π°ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ y. ΠΠ½Π°ΡΠΈΡ, Π΄Π°Π½Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
ΠΠ±ΡΠ°ΡΠΈΠΌΡΡ ΠΊΠΎ Π²ΡΠΎΡΠΎΠΌΡ ΡΠ»ΡΡΠ°Ρ. ΠΠ°ΠΊΠΈΠ΅ Π±Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΌΡ Π½Π΅ Π±ΡΠ°Π»ΠΈ, ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΈΠ· Π½ΠΈΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΡΡΠ° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ.
Π ΠΎΠ±ΡΠ΅ΠΌ Π²ΠΈΠ΄Π΅ Π»ΡΠ±ΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΠΊ:
ΠΠΎΠ½ΡΡΠ½ΠΎ, ΡΡΠΎ ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΠΈ ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°. ΠΠ°ΠΉΠ΄ΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΡΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°.
ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π² ΡΡΠΎΠΌ Π·Π°Π΄Π°Π½ΠΈΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·Π²Π°Π½Ρ ΡΠ°Π·Π½ΡΠΌΠΈ Π±ΡΠΊΠ²Π°ΠΌΠΈ. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ Π»ΡΠ±ΠΎΠΉ Π±ΡΠΊΠ²ΠΎΠΉ Π»Π°ΡΠΈΠ½ΡΠΊΠΎΠ³ΠΎ Π°Π»ΡΠ°Π²ΠΈΡΠ°.
Π Π°Π½Π΅Π΅ Π²Π°ΠΌΠΈ Π±ΡΠ»ΠΈ ΠΈΠ·ΡΡΠ΅Π½Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΠΈΡ .
Π‘Π΅ΠΉΡΠ°Ρ ΠΏΠΎΠΏΡΠΎΠ±ΡΠ΅ΠΌ Π²ΡΡΡΠ½ΠΈΡΡ, ΠΊΠ°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΈ Π΄Π°Π΄ΠΈΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΡΠΎΠΌΡ ΠΏΠΎΠ½ΡΡΠΈΡ.
ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π΅Ρ Π² ΡΠ°ΠΊΠΎΠΌ Π²ΠΈΠ΄Π΅:
ΠΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ, Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΠΊΠ°ΠΊ Π²Ρ ΠΏΠΎΠΌΠ½ΠΈΡΠ΅, ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ»Ρ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΡ ΠΏΡΡΠΌΠΎΠΉ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π²ΡΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΎΠ»ΡΡΠ°Π΅ΠΌ ΡΠΎΡΠΊΠΈ Ρ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ°ΠΌΠΈ (1;3) ΠΈ (-1;-11).
ΠΡΠΎΠ²Π΅Π΄ΡΠΌ ΠΏΡΡΠΌΡΡ ΡΠ΅ΡΠ΅Π· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ.
ΠΡ ΠΈΠ·ΠΎΠ±ΡΠ°Π·ΠΈΠ»ΠΈ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ, Π°Π±ΡΡΠΈΡΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ°Π²Π½Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΡ β Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Π·ΡΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, Ρ.Π΅. ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ x ΠΎΠ±ΡΠ°Π·ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, Ρ.Π΅. y, β ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ x ΠΈ y ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ Π»ΡΠ±ΡΠΌΠΈ ΡΠΈΡΠ»Π°ΠΌΠΈ, Ρ.Π΅. ΠΎΠ±Π»Π°ΡΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±Π»Π°ΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π».
ΠΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎ Π΅Ρ Π³ΡΠ°ΡΠΈΠΊΡ.
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΠΏΠΎ Π³ΡΠ°ΡΠΈΠΊΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½ΠΎ ΠΈ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠΉ Π·Π°Π΄Π°Π½Π° ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ
Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = f (x) Π΅ΡΡΡ Π΄Π²Π° ΡΠΈΠΏΠ° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ : Π·Π°Π²ΠΈΡΠΈΠΌΡΠ΅ ΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠ΅. ΠΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ Β«Ρ Β» ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ Π»ΡΠ±ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΡΠΎΠΌΠ΅ ΡΠ΅Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Β«ΠΏΡΠ΅Π²ΡΠ°ΡΠ°ΡΡΒ» ΡΡΠ½ΠΊΡΠΈΡ Π² ΠΏΡΡΡΠΎΠ΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ (ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΠ·Π±Π΅Π³Π°ΡΡ). ΠΠ½ΠΈ Π±ΡΠ²Π°ΡΡ Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΡΡΠ½ΠΈΡΡ Π²ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΠΏΠ°. Π Π½ΠΈΠΌ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅ ΡΠΏΠΎΡΠΎΠ±Ρ: Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΉ ΠΈ ΡΡΡΠ½ΠΎΠΉ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠ΅ΡΠ²ΡΠΌ ΠΏΠΎΠ΄ΡΠ°Π·ΡΠΌΠ΅Π²Π°Π΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΡΡ ΠΎΠ±ΠΎΠ»ΠΎΡΠ΅ΠΊ ΠΈ web-ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΠΉ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ Π½Π°ΠΉΡΠΈ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π»Π°ΠΉΠ½-ΠΊΠ°Π»ΡΠΊΡΠ»ΡΡΠΎΡ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π΄Π»Ρ ΡΠ΅Ρ , ΠΊΡΠΎ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅Ρ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΊΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΠΏΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠ΄ΡΠΊΡΠ°. ΠΡΠΎΠ³ΡΠ°ΠΌΠΌΠΈΡΡΡ Π·Π°Π½ΠΈΠΌΠ°ΡΡΡΡ ΠΏΠΎΠΈΡΠΊΠΎΠΌ Β«Π±Π°Π³ΠΎΠ²Β», ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π½Π΅ΠΊΠΎΡΡΠ΅ΠΊΡΠ½Π°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΡΠ»ΠΈ Π·Π°Π΄Π°Π½Ρ Π½Π΅Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ, ΡΠΎ ΠΏΡΠΎΠΈΠ·ΠΎΠΉΠ΄Π΅Ρ ΠΎΡΠΈΠ±ΠΊΠ°. ΠΡΠΎ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ, ΠΈ Π΅Π³ΠΎ Π²ΡΠ΅Π³Π΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΎΠ±ΡΠ°Π±Π°ΡΡΠ²Π°ΡΡ. ΠΡΠΈ ΠΏΡΠΎΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΡΡΡΡΠΎΠΉΡΡΠ² Π½ΡΠΆΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ ΡΠΌΠ΅ΡΡ Π½Π°Ρ ΠΎΠ΄ΠΈΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΏΠΎΠ½ΡΡΠΈΡ
Π ΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΡΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°ΡΡ Π²ΡΠ²ΠΎΠ΄: ΠΎΠ±Π»Π°ΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ Π²ΡΠ΅ Π΅Π΅ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ ΠΎΠ½Π° Π±ΡΠΊΠ²ΠΎΠΉ Β«EΒ», Ρ. Π΅. E (f) ΠΈΠ»ΠΈ E (y). ΠΠΎΠ³Π΄Π° y = f (x) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ (w = f (x, y, z)), ΡΠΎΠ³Π΄Π° ΠΌΠΎΠΆΠ½ΠΎ Π΅Π΅ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠΈΡΡ Β«E (w)Β».
ΠΠ΅Π·Π°Π²ΠΈΡΠΈΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ, ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡΠ°Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ. ΠΠ»Ρ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ. ΠΠΎΠΆΠ½ΠΎ ΡΡΠ°Π·Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ E (f), Π½ΠΎ Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΡΡΠ°ΡΠΈΡΡ Π½ΡΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ.
Π‘ΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΡΠ²Π΅ΡΠΆΠ΄Π°ΡΡ, ΡΡΠΎ Π²Π°ΠΆΠ½ΡΠΌ Π°ΡΠΏΠ΅ΠΊΡΠΎΠΌ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΠΏΠ° ΡΡΠ½ΠΊΡΠΈΠΈ. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΠΈΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°ΡΡ ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΠΈ Π½Π°Π·Π²Π°Π½ΠΈΡ.
Π’ΠΈΠΏΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡΠΈ Π²ΡΠ΅ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΡΠ½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ²ΠΎΠΉ ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΎΠΊ:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½ΠΎΠΌ ΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΠΈ, ΡΠΎ Π΄Π»Ρ Π½Π΅Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π» [m;+Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ). ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅ Β«mΒ» β Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»Π΅Π½Π°. ΠΠ° ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ (-Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΡ;n) ΡΠΈΡΠ»ΠΎ n β Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠ΅Π΅ Π΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅.
ΠΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ ΡΡΠΈΡΠ°Π΅ΡΡΡ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΈΠΌΠ΅ΡΠΎΠΌ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ ΡΡΠΈΡΠ°Π΅ΡΡΡ y = cos (2x) + 2cos (x). ΠΡΠΎΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΠΏΡΠΈ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ E (f) Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎΠ²Π°ΡΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ ΡΠ°Π±Π»ΠΈΡΠ½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ. ΠΡΠΈΡ Π΄Π°Π½Π½ΡΡ ΠΌΠ°Π»ΠΎ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½ΡΠΆΠ½ΠΎ ΡΠ°ΠΊΠΆΠ΅ Π·Π½Π°ΡΡ ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ ΠΈ ΡΠΏΠΎΡΠΎΠ±Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ E.
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°
ΠΠ»Ρ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½ΡΠΆΠ½ΠΎ Π·Π½Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ: ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ, Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΡ, ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ, ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ, ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. Π‘ΡΠ΅Π΄ΠΈ ΡΠ²ΠΎΠΉΡΡΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠ΄Π΅Π»ΠΈΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΡΡ :
ΠΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π΄Π²Π° ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡΡΡ Π΄Π»Ρ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΡΠΎΡΡΠΎΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΏΠ΅ΡΠ²ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ. ΠΡΠΈ ΡΡΠΎΠΌ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ Π΅Π΅ ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ. ΠΠ°Π΄Π°ΡΠ° ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠΏΡΠΎΡΠ°Π΅ΡΡΡ, ΠΊΠΎΠ³Π΄Π° ΡΠ΄Π°Π΅ΡΡΡ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° ΡΠ°ΠΊΠΆΠ΅ Π΅Π΅ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ. ΠΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΏΡΠΎΠ²Π΅ΡΡΡΡ ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ Π΅Π΅ ΡΠ²ΠΎΠΉΡΡΠ²Π°: Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΡΡΡ (ΠΏΡΠΈ ΡΠ°Π·ΡΡΠ²Π΅ Π½ΡΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π΅Π³ΠΎ ΡΠΎΡΠΊΡ ΠΈΠ»ΠΈ ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»), ΠΌΠΎΠ½ΠΎΡΠΎΠ½Π½ΠΎΡΡΡ, Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΡΠ΅ΠΌΠΎΡΡΡ, ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ, ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈΠ»ΠΈ Π½Π΅ΡΠ΅ΡΠ½ΠΎΡΡΡ ΠΈ Ρ. Π΄.
ΠΠ΅ΡΠΎΠ΄Ρ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΌΠ½ΠΎΠ³ΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΠ±Π»Π°ΡΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. ΠΠ΄Π½Π°ΠΊΠΎ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΠ΄Π±ΠΈΡΠ°ΡΡ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΠΈΠ·Π±Π΅Π³Π°ΡΡ Π»ΠΈΡΠ½ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΠΎΠΉ, ΡΠΎ Π½Π΅Ρ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΡΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠ΅:
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ. Π₯ΠΎΡΡ Π²ΡΡΡΠ΅ΡΠ°ΡΡΡΡ ΡΠ»ΡΡΠ°ΠΈ, ΠΊΠΎΠ³Π΄Π° ΡΠ΅Π»Π΅ΡΠΎΠΎΠ±ΡΠ°Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ Π΄Π²Π° ΠΏΡΠΎΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π°. ΠΡΠΆΠ½ΠΎ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎΠ²Π°ΡΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ ΠΈ Π·Π°ΡΡΠ°ΡΠ΅Π½Π½ΡΠΌ Π²ΡΠ΅ΠΌΠ΅Π½Π΅ΠΌ.
ΠΠ»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°
ΠΠ½ΠΎΠ³Π΄Π° Π² Π·Π°Π΄Π°ΡΠ°Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π½Π°ΠΉΡΠΈ E (f) ΠΏΡΠΈ ΡΡΠ»ΠΎΠ²ΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° ΡΡΠ½ΠΊΡΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ. ΠΡΠ΅Π½Ρ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ°Π·Π±ΠΈΠ΅Π½ΠΈΡ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΏΠΎΠ΄Π·Π°Π΄Π°ΡΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π΅ ΡΠΎΠ»ΡΠΊΠΎ Π² Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Π°Ρ Ρ ΡΠΈΠ·ΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠΊΠ»ΠΎΠ½ΠΎΠΌ, Π½ΠΎ Π² ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅, Π±ΠΈΠ·Π½Π΅ΡΠ΅ ΠΈ Π΄ΡΡΠ³ΠΈΡ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ . Π Π΅ΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ E (f) ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ»Π³ΠΎΡΠΈΡΠΌ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°ΠΊΠΎΠΉ Π²ΠΈΠ΄:
ΠΠ΄Π½Π°ΠΊΠΎ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎ ΠΎΡΠΈΠ΅Π½ΡΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΌΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π½ΡΠΆΠ½ΠΎ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ° Ρ Π΅Π³ΠΎ ΠΏΠΎΠΌΠΎΡΡΡ. ΠΠ°Π½Π° ΡΡΠ½ΠΊΡΠΈΡ y = log0.5 (4 β 2 * 3^x β 9^x). Π Π΅ΡΠ°Π΅ΡΡΡ Π·Π°Π΄Π°ΡΠ° ΡΠ°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΠ±ΡΠ°ΡΠΈΡΡ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π½Π° ΠΏΡΠ½ΠΊΡΡ 1, 3 ΠΈ 5. ΠΠ½ΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΡΠΌΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΡ Π½ΠΈΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ΅Π½Ρ Π²Π°ΠΆΠ½ΠΎ ΡΠΌΠ΅ΡΡ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°ΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π² 4 ΠΏΡΠ½ΠΊΡΠ΅.
ΠΡΠ΅Π½ΠΎΡΠ½ΡΠΉ ΡΠΏΠΎΡΠΎΠ±
ΠΡΠ΅ ΠΎΠ΄Π½ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ E (f) ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΏΠΎΡΠΎΠ± ΠΎΡΠ΅Π½ΠΊΠΈ. ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΠΎΡΠ΅Π½ΠΈΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π² Π½ΠΈΠΆΠ½Π΅ΠΌ ΠΈ Π²Π΅ΡΡ Π½Π΅ΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡΡ . ΠΡΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ Π΄ΠΎΡΡΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΈ Π²Π΅ΡΡ Π½Π΅ΠΉ Π³ΡΠ°Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠΉ ΡΠ΅Π»ΠΈ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΆΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌ. ΠΠ½ Π½Π΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ. Π‘ΡΡΡ Π΅Π³ΠΎ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ:
ΠΠ΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ y = cos (7x) + 5 * cos (x). Π‘Π»Π΅Π΄ΡΠ΅Ρ ΡΡΠΈΡΡΠ²Π°ΡΡ, ΡΡΠΎ ΠΈΠ·Π²Π΅ΡΡΠ΅Π½ ΡΠΎΠ»ΡΠΊΠΎ ΠΎΠ΄ΠΈΠ½ Π·Π½Π°ΠΊ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΡΠΎΡΠΎΠΉ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ ΠΎΡΠ΅Π½ΠΎΡΠ½ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ ΠΈΠΌΠ΅Π΅Ρ ΡΠ°ΠΊΠΎΠΉ Π²ΠΈΠ΄:
ΠΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ, min ΠΈ max
ΠΠ΄Π½ΠΈΠΌ ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ E (f) ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π·ΡΡΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠΎΠΆΠ½ΠΎ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°ΡΡ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΡΡ ΠΏΡΠΎΡΡΠ΅ΠΉΡΠΈΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ:
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° β ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ ΡΡΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π½ΡΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ E (arcsin (x)). Π Π΅ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠΏΠΎΠ»Π½ΡΠ΅ΡΡΡ ΠΏΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌ ΡΡΠ°ΠΏΠ°ΠΌ:
Π Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡΠ΅ΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΏΡΠ΅Π΄Π΅Π»Ρ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°ΡΡΡ Π·Π°Π΄Π°Ρ ΡΠ΅ΡΠ°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ. Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΡΠΉ ΡΠΈΠΏ Π·Π°Π΄Π°Ρ, Π² ΠΊΠΎΡΠΎΡΡΡ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ ΠΎΡΡΠ΅Π·ΠΎΠΊ ΡΠ²Π»ΡΠ΅ΡΡΡ E (f) ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ»Π΅Π΄ΡΠ΅Ρ Π²ΡΡΡΠ½ΠΈΡΡ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡΡ [-1;1] ΡΡΠ½ΠΊΡΠΈΠΈ sin (x). ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π²ΡΡΠ΅ΠΎΠΏΠΈΡΠ°Π½Π½ΡΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ:
ΠΡΡΠ΅Π·ΠΎΠΊ [-1;1] ΡΠ²Π»ΡΠ΅ΡΡΡ E (sin (x)). ΠΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄ β Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ E (f). Π ΡΡΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π·Π½Π°ΡΡ ΠΈ ΠΏΡΠΎΠ²Π΅ΡΠΈΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² Π½Π°Ρ ΠΎΠΆΠ΄Π΅Π½ΠΈΡ E (f), Π½ΠΎ Π²ΡΠ΅Π³Π΄Π° Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΠΌΠ΅ΡΠΎΠ΄, ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡΠΈΠΉ ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ. ΠΠ΅Ρ ΡΠΌΡΡΠ»Π° ΡΡΠ»ΠΎΠΆΠ½ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΠΎΠΏΡΠΈΠΌΠΈΠ·Π°ΡΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠΎΠ½ΡΡΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
Π€ΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ y ΠΎΡ x, Π³Π΄Π΅ x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π° y β Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
ΠΠ°Π΄Π°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π·Π½Π°ΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΠΎΡΠΎΡΡΠΌ ΠΏΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠ΅ Π΅Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΎΡ, ΠΊΠ°ΠΊΠΈΠΌΠΈ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°ΡΡ:
ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ , ΡΠΎ Π΅ΡΡΡ ΠΎΠ±Π»Π°ΡΡΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π·Π°ΠΏΠΈΡΠ°Π½ΠΎ Π² ΡΠΎΡΠΌΡΠ»Π΅.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ Π²ΠΈΠ΄Π° ΠΎΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ
ΠΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Ρ, ΡΠΎ Π΅ΡΡΡ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΡΠΈΠ½ΠΈΠΌΠ°ΡΡ ΡΡΠ½ΠΊΡΠΈΡ.
ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΅ΡΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ ΠΎΠ±Π»Π°ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ y = xΒ² β ΡΡΠΎ Π²ΡΠ΅ ΡΠΈΡΠ»Π° Π±ΠΎΠ»ΡΡΠ΅ Π»ΠΈΠ±ΠΎ ΡΠ°Π²Π½ΡΠ΅ Π½ΡΠ»Ρ. ΠΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π²ΠΎΡ ΡΠ°ΠΊ: Π (Ρ): Ρ β₯ 0.
ΠΠΎΠ½ΡΡΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΡΠ²ΡΠ·Π°Π½Ρ ΡΠΎΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠ΅ΠΌ y = f(x). Π‘Π°ΠΌΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ y = f(x) Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠΎΡΠ΅ΠΊ (x; y), Π³Π΄Π΅ x β ΡΡΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ, Π° y β Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ Π΄Π°Π½Π½ΠΎΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ.
ΠΡΠΎΡΠ΅ Π³ΠΎΠ²ΠΎΡΡ, Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ, ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΡ ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ, ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΠ΄ΡΡΠ°Π²ΠΈΠ² Π² ΡΡΠ½ΠΊΡΠΈΡ Π»ΡΠ±ΡΠ΅ ΡΠΈΡΠ»Π° Π²ΠΌΠ΅ΡΡΠΎ x.
ΠΠ»Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ° Π²ΠΎΠ·ΡΠΌΡΠΌ ΡΠ°ΠΌΡΡ ΠΏΡΠΎΡΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π°ΡΠ³ΡΠΌΠ΅Π½Ρ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎ Π΅ΡΡΡ y = x.
Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ Π½Π°ΠΌ Π½Π΅ ΠΏΡΠΈΠ΄ΡΡΡΡ Π²ΡΡΠΈΡΠ»ΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ, ΠΏΠΎΡΡΠΎΠΌΡ Ρ Π²ΡΠ΅Ρ ΡΠΎΡΠ΅ΠΊ Π½Π°ΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ° Π°Π±ΡΡΠΈΡΡΠ° Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½Π° ΠΎΡΠ΄ΠΈΠ½Π°ΡΠ΅.
ΠΡΠ»ΠΈ ΠΌΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΠΊ Π±ΠΎΠ»ΡΡΠ΅ΠΌΡ ΡΠΎΠ΅Π΄ΠΈΠ½ΠΈΠΌ ΠΎΡΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ ΡΠΎΡΠΊΠΈ, ΡΠΎ Ρ Π½Π°Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ. ΠΠ½Π°ΡΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y = x ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΡΠΌΠ°Ρ. ΠΠ° Π³ΡΠ°ΡΠΈΠΊΠ΅ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ:
ΠΠ°Π΄ΠΏΠΈΡΡ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ y = x β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ°. Π‘ΡΠ°Π²ΠΈΡΡ Π½Π°Π΄ΠΏΠΈΡΡ Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΡΠ΄ΠΎΠ±Π½ΠΎ, ΡΡΠΎΠ±Ρ Π½Π΅ Π·Π°ΠΏΡΡΠ°ΡΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ.
ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ ΠΏΡΡΠΌΠ°Ρ Π»ΠΈΠ½ΠΈΡ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½Π° Π² ΠΎΠ±Π΅ ΡΡΠΎΡΠΎΠ½Ρ. Π₯ΠΎΡΡ ΠΌΡ ΠΈ Π½Π°Π·ΡΠ²Π°Π΅ΠΌ ΡΠ°ΡΡΡ ΠΏΡΡΠΌΠΎΠΉ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅ Π½Π° ΡΠ΅ΡΡΠ΅ΠΆΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π° ΡΠΎΠ»ΡΠΊΠΎ ΠΌΠ°Π»Π°Ρ ΡΠ°ΡΡΡ Π³ΡΠ°ΡΠΈΠΊΠ°.
ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΠ°ΠΆΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ y = f(x):
Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΡΠΎΡΠΊΠΈ β ΡΠΎΡΠΊΠΈ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΠΈ f(x) ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ Π»ΠΈΠ±ΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ. Π‘ΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΡΠ΅ ΡΠΎΡΠΊΠΈ ΡΠ²Π»ΡΡΡΡΡ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΊΡΠΈΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΠΎΡΠ΅ΠΊ.
ΠΠΊΡΡΡΠ΅ΠΌΡΠΌ Π² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ β ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅. Π’ΠΎΡΠΊΠ°, Π² ΠΊΠΎΡΠΎΡΠΎΠΉ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ°. Π‘ΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ, Π΅ΡΠ»ΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΌΠΈΠ½ΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠ° ΡΠΊΡΡΡΠ΅ΠΌΡΠΌΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠΎΡΠΊΠΎΠΉ ΠΌΠΈΠ½ΠΈΠΌΡΠΌΠ°, Π° Π΅ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌ β ΡΠΎΡΠΊΠΎΠΉ ΠΌΠ°ΠΊΡΠΈΠΌΡΠΌΠ°.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ β ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°, ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΡΡ ΡΡΠ½ΠΊΡΠΈΡ ΡΠ°Π²Π½Π° Π½ΡΠ»Ρ.
ΠΡΠΈΠΌΠΏΡΠΎΡΠ° β ΠΏΡΡΠΌΠ°Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎΠΌ, ΡΡΠΎ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΎΡ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎ ΡΡΠΎΠΉ ΠΏΡΡΠΌΠΎΠΉ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π½ΡΠ»Ρ ΠΏΡΠΈ Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΌ ΡΠ΄Π°Π»Π΅Π½ΠΈΠΈ ΡΠΎΡΠΊΠΈ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΡ Π½Π°ΡΠ°Π»Π° ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ. ΠΠΎ ΡΠΏΠΎΡΠΎΠ±Π°ΠΌ ΠΈΡ ΠΎΡΡΡΠΊΠ°Π½ΠΈΡ Π²ΡΠ΄Π΅Π»ΡΡΡ ΡΡΠΈ Π²ΠΈΠ΄Π° Π°ΡΠΈΠΌΠΏΡΠΎΡ: Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅, Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½ΡΠ΅, Π½Π°ΠΊΠ»ΠΎΠ½Π½ΡΠ΅.
Π€ΡΠ½ΠΊΡΠΈΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½Π° Π² ΡΠΎΡΠΊΠ΅ k, Π΅ΡΠ»ΠΈ ΠΏΡΠ΅Π΄Π΅Π» ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΡΠ°Π²Π΅Π½ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅:
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΡ f(x) Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΉ Π² ΡΠΎΡΠΊΠ΅ x = a, ΡΠΎ Π³ΠΎΠ²ΠΎΡΡΡ, ΡΡΠΎ f(x) ΠΈΠΌΠ΅Π΅Ρ ΡΠ°Π·ΡΡΠ² Π² ΡΡΠΎΠΉ ΡΠΎΡΠΊΠ΅.
ΠΡΠ»ΠΈ Π½Π°ΠΌ Π½ΡΠΆΠ½ΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° Π·Π°ΡΠ°Π½Π΅Π΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²ΠΈΡΡ Π²ΠΈΠ΄ Π³ΡΠ°ΡΠΈΠΊΠ°, ΠΏΠΎΠ»Π΅Π·Π½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΡ Π΅ΠΌΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ²ΠΎΠΉΡΡΠ² ΡΡΠ½ΠΊΡΠΈΠΈ. ΠΠ½Π° ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ ΡΠΎΡΡΠ°Π²ΠΈΡΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ΅ ΠΈ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎ ΡΠΎΡΠΊΠ°ΠΌ.
Π‘Ρ Π΅ΠΌΠ° ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ:
Π£ Π½Π°Ρ Π΅ΡΡΡ ΠΎΡΠ»ΠΈΡΠ½ΡΠ΅ ΠΊΡΡΡΡ ΠΏΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ΅ Π΄Π»Ρ ΡΡΠ΅Π½ΠΈΠΊΠΎΠ² Ρ 1 ΠΏΠΎ 11 ΠΊΠ»Π°ΡΡΡ!
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π³ΡΠ°ΡΠΈΠΊΠ° ΡΡΠ½ΠΊΡΠΈΠΈ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ½ΡΡΡ, ΠΊΠ°ΠΊ ΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ, ΠΏΠΎΡΡΠ΅Π½ΠΈΡΡΠ΅ΠΌΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ°Ρ .
ΠΠ°Π΄Π°ΡΠ° 1. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
Π£ΠΏΡΠΎΡΡΠΈΠΌ ΡΠΎΡΠΌΡΠ»Ρ ΡΡΠ½ΠΊΡΠΈΠΈ:
ΠΠ°Π΄Π°ΡΠ° 2. ΠΠΎΡΡΡΠΎΠΈΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»ΠΈΠΌ Π² ΡΠΎΡΠΌΡΠ»Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ:
ΠΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ β Π³ΠΈΠΏΠ΅ΡΠ±ΠΎΠ»Π°, ΡΠ΄Π²ΠΈΠ½ΡΡΠ°Ρ Π½Π° 3 Π²ΠΏΡΠ°Π²ΠΎ ΠΏΠΎ x ΠΈ Π½Π° 2 Π²Π²Π΅ΡΡ
ΠΏΠΎ y ΠΈ ΡΠ°ΡΡΡΠ½ΡΡΠ°Ρ Π² 10 ΡΠ°Π· ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π³ΡΠ°ΡΠΈΠΊΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅Π»ΠΎΠΉ ΡΠ°ΡΡΠΈ β ΠΏΠΎΠ»Π΅Π·Π½ΡΠΉ ΠΏΡΠΈΠ΅ΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π½Π΅ΡΠ°Π²Π΅Π½ΡΡΠ², ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΈ ΠΎΡΠ΅Π½ΠΊΠ΅ ΡΠ΅Π»ΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½.
ΠΠ°Π΄Π°ΡΠ° 3. ΠΠΎ Π²ΠΈΠ΄Ρ Π³ΡΠ°ΡΠΈΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π·Π½Π°ΠΊΠΈ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² ΠΎΠ±ΡΠ΅Π³ΠΎ Π²ΠΈΠ΄Π° ΡΡΠ½ΠΊΡΠΈΠΈ y = ax2 + bx + c.
ΠΡΠΏΠΎΠΌΠ½ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΡ a, b ΠΈ c ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°Π±ΠΎΠ»Ρ.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
Π’ΠΎΡΠΊΠ° ΠΏΠ΅ΡΠ΅ΡΠ΅ΡΠ΅Π½ΠΈΡ Ρ ΠΎΡΡΡ Oy β c = 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b > 0.
ΠΠ΅ΡΠ²ΠΈ Π²Π½ΠΈΠ·, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, a 0.
ΠΠΎΠΎΡΠ΄ΠΈΠ½Π°ΡΠ° Π²Π΅ΡΡΠΈΠ½Ρ , Ρ.ΠΊ. Π½Π΅ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ Π΄Π°Π΅Ρ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, b
x | y |
0 | -1 |
1 | 2 |
x | y |
0 | 2 |
1 | 1 |
x | y |
0 | 0 |
1 | 2 |
k = 2 > 0 β ΡΠ³ΠΎΠ» Π½Π°ΠΊΠ»ΠΎΠ½Π° ΠΊ ΠΎΡΠΈ Ox ΠΎΡΡΡΡΠΉ, B = 0 β Π³ΡΠ°ΡΠΈΠΊ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°ΡΠ°Π»ΠΎ ΠΊΠΎΠΎΡΠ΄ΠΈΠ½Π°Ρ.
ΠΠ°Π΄Π°ΡΠ° 5. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠΎ Π΄ΡΠΎΠ±Π½ΠΎ-ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ. ΠΠ±Π»Π°ΡΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΈ D(y): x β 4; x β 0.
ΠΡΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ: 3, 2, 6.
ΠΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠΈ Π·Π½Π°ΠΊΠΎΠΏΠΎΡΡΠΎΡΠ½ΡΡΠ²Π° ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΈΠ½ΡΠ΅ΡΠ²Π°Π»ΠΎΠ².
ΠΠ΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠ΅ Π°ΡΠΈΠΌΠΏΡΠΎΡΡ: x = 0, x = 4.
ΠΡΠ»ΠΈ x ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎΡΡΠΈ, ΡΠΎ Ρ ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΊ 1. ΠΠ½Π°ΡΠΈΡ, y = 1 β Π³ΠΎΡΠΈΠ·ΠΎΠ½ΡΠ°Π»ΡΠ½Π°Ρ Π°ΡΠΈΠΌΠΏΡΠΎΡΠ°.
ΠΠΎΡ ΡΠ°ΠΊ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π³ΡΠ°ΡΠΈΠΊ:
ΠΠ°Π΄Π°ΡΠ° 6. ΠΠΎΡΡΡΠΎΠΈΡΡ Π³ΡΠ°ΡΠΈΠΊΠΈ ΡΡΠ½ΠΊΡΠΈΠΉ:
Π±)
Π³)
Π΄)
ΠΠΎΠ³Π΄Π° ΡΠ»ΠΎΠΆΠ½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΈΠ· ΠΏΡΠΎΡΡΠ΅ΠΉΡΠ΅ΠΉ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³ΡΠ°ΡΠΈΠΊΠΎΠ² ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ Ρ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠΎΠΌ.
Π°)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ° f(x) + a.
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 1:
Π±)
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²ΠΏΡΠ°Π²ΠΎ Π½Π° 1:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π²Π΅ΡΡ Π½Π° 2:
Π³)
ΠΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΈΠΏΠ°
Π Π°ΡΡΡΠ³ΠΈΠ²Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² 2 ΡΠ°Π·Π° ΠΎΡ ΠΎΡΠΈ ΠΎΡΠ΄ΠΈΠ½Π°Ρ Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π΄)
Π§ΡΠΎΠ±Ρ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ, ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° ΠΏΠΎΡΡΠ΄ΠΎΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ: ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌ, Π·Π°ΡΠ΅ΠΌ ΡΠΊΠ»Π°Π΄ΡΠ²Π°Π΅ΠΌ, Π° ΡΠΆΠ΅ ΠΏΠΎΡΠΎΠΌ ΠΌΠ΅Π½ΡΠ΅ΠΌ Π·Π½Π°ΠΊ. Π§ΡΠΎΠ±Ρ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΊΠΎ Π²ΡΠ΅ΠΌΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ ΠΌΠΎΠ΄ΡΠ»Ρ Π² ΡΠ΅Π»ΠΎΠΌ, Π²ΡΠ½Π΅ΡΠ΅ΠΌ Π΄Π²ΠΎΠΉΠΊΡ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ Π² ΠΌΠΎΠ΄ΡΠ»Π΅.
Π‘ΠΆΠΈΠΌΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π² Π΄Π²Π° ΡΠ°Π·Π° Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
Π‘Π΄Π²ΠΈΠ³Π°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ Π²Π»Π΅Π²ΠΎ Π½Π° 1/2 Π²Π΄ΠΎΠ»Ρ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ:
ΠΡΡΠ°ΠΆΠ°Π΅ΠΌ Π³ΡΠ°ΡΠΈΠΊ ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΎΡΠΈ Π°Π±ΡΡΠΈΡΡ: