Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ГрафичСскиС ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Π½Π°ΠΈΠ±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡŒΡˆΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°Ρ… ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°Ρ….

Π­Ρ‚Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π° области опрСдСлСния ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. НаибольшСго значСния Π½Π΅Ρ‚, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π΅Ρ‘ Π²Π΅Ρ‚Π²ΠΈ уходят Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ.

На ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [a;b] Π΅ΡΡ‚ΡŒ ΠΈ наибольшСС, ΠΈ наимСньшСС значСния. Π’ этом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ достигаСтся Π²ΠΎ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΈ совпадаСт с экстрСмумом (ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠΎΠΌ) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, наибольшСС β€” Π½Π° ΠΎΠ΄Π½ΠΎΠΌ ΠΈΠ· ΠΊΠΎΠ½Ρ†ΠΎΠ² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°. Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС это y = f(b).

Ѐункция рассматриваСтся Π½Π° ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a;b). Π’ этом случаС ΠΊΡ€Π°Π΅Π²Ρ‹Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ a ΠΈ b Π½Π΅ входят Π² ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° оси Ox, ΠΈ, соотвСтствСнно, Π½Π΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(a) ΠΈ f(b) Π½Π° оси Oy. Однако, ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ сколь ΡƒΠ³ΠΎΠ΄Π½ΠΎ Π±Π»ΠΈΠ·ΠΊΠΈΠ΅ ΠΊ Π½ΠΈΠΌ значСния. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π² этом ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ функция ΠΈΠΌΠ΅Π΅Ρ‚ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, Π½ΠΎ Π½Π΅ достигаСт наибольшСго, Π΅Π³ΠΎ Π½Π΅Ρ‚.

На этом ΠΏΠΎΠ»ΡƒΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ (a;b] Π΅ΡΡ‚ΡŒ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π½ΠΎ наимСньшСго Π½Π΅Ρ‚.

ΠšΡƒΠ±ΠΈΡ‡Π΅ΡΠΊΠ°Ρ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° Π½Π° области опрСдСлСния ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π° экстрСмума, Π½ΠΎ наимСньшСго ΠΈ наибольшСго Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ достигаСт: Π΅Ρ‘ Π²Π΅Ρ‚Π²ΠΈ уходят Π² Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ. E(f) = (βˆ’βˆž; +∞) β€” ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ кубичСской ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹.

Π—Π΄Π΅ΡΡŒ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [a;b] наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ достигаСтся Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ максимума, Π° наимСньшСС Π² ΠΊΡ€Π°Π΅Π²ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°.

Если вмСсто ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° [a;b] рассматриваСм ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» (a;b) с Ρ‚Π΅ΠΌΠΈ ΠΆΠ΅ ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ, Ρ‚ΠΎ наимСньшСго значСния Π½Π΅Ρ‚.

НСпрСрывная функция, заданная Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, всСгда ΠΈΠΌΠ΅Π΅Ρ‚ наибольшСС ΠΈ наимСньшСС значСния. Но, Ссли функция ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π°Π·Ρ€Ρ‹Π²Ρ‹, Ρ‚ΠΎ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹, ΠΊΠ°ΠΊ для ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠ², Ρ‚Π°ΠΊ ΠΈ для ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ². ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΡ‚Π΅ Π½Π° этот Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [βˆ’2;3]. Π—Π΄Π΅ΡΡŒ функция Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ наибольшСго значСния: ΠΏΠ΅Ρ€Π΅Π΄ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Ρ€Π°Π·Ρ€Ρ‹Π²Π° ΠΎΠ½Π° возрастаСт ΠΈ достигаСт Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π±ΠΎΠ»ΡŒΡˆΠΈΡ…, Ρ‡Π΅ΠΌ Π² Π΄Ρ€ΡƒΠ³ΠΈΡ… частях ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Π½ΠΎ наибольшСго Π½Π΅ достигаСт, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π² ΠΏΡ€Π΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π΅ΠΌΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ максимума x = 2 ΠΎΠ½Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ, Π½Π΅ Ρƒ = 2, Π° y = βˆ’1.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΠ½Ρ€Π°Π²ΠΈΠ»ΠΈΡΡŒ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ сайта? Π£Π·Π½Π°ΠΉΡ‚Π΅, ΠΊΠ°ΠΊ ΠΏΠΎΠ΄Π΄Π΅Ρ€ΠΆΠ°Ρ‚ΡŒ сайт ΠΈ ΠΏΠΎΠΌΠΎΡ‡ΡŒ Π΅Π³ΠΎ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΡŽ.

Π’Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Β©mathematichka. ΠŸΡ€ΡΠΌΠΎΠ΅ ΠΊΠΎΠΏΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»ΠΎΠ² Π½Π° Π΄Ρ€ΡƒΠ³ΠΈΡ… сайтах Π·Π°ΠΏΡ€Π΅Ρ‰Π΅Π½ΠΎ. Π‘Ρ‚Π°Π²ΡŒΡ‚Π΅ ссылки.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Как Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ B15 Π±Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…

Иногда Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… B15 ΠΏΠΎΠΏΠ°Π΄Π°ΡŽΡ‚ΡΡ Β«ΠΏΠ»ΠΎΡ…ΠΈΠ΅Β» Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… слоТно Π½Π°ΠΉΡ‚ΠΈ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. РаньшС Ρ‚Π°ΠΊΠΎΠ΅ Π±Ρ‹Π»ΠΎ лишь Π½Π° ΠΏΡ€ΠΎΠ±Π½ΠΈΠΊΠ°Ρ…, Π½ΠΎ сСйчас эти Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ распространСны, Ρ‡Ρ‚ΠΎ ΡƒΠΆΠ΅ Π½Π΅ ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΠ³Π½ΠΎΡ€ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΊ настоящСму Π•Π“Π­.

Π’ этом случаС Ρ€Π°Π±ΠΎΡ‚Π°ΡŽΡ‚ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΡ€ΠΈΠ΅ΠΌΡ‹, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… β€” ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ.

Ѐункция f ( x ) называСтся Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Ссли для Π»ΡŽΠ±Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° выполняСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Ѐункция f ( x ) называСтся Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ Ссли для Π»ΡŽΠ±Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° выполняСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, для Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Для ΡƒΠ±Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ всС Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚:

НапримСр, Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт, Ссли основаниС ΠΈ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚, Ссли НС Π·Π°Π±Ρ‹Π²Π°ΠΉΡ‚Π΅ ΠΏΡ€ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°:

f ( x ) = log a x ( a > 0; a β‰  1; x > 0)

АрифмСтичСский ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ (ΠΈ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ) ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт Π½Π° всСй области опрСдСлСния:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠŸΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция Π²Π΅Π΄Π΅Ρ‚ сСбя Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΡƒ: растСт ΠΈ ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ Но Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ функция ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх чисСл, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ

НаконСц, стСпСни с ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΌ. МоТно Π·Π°ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΠΈΡ… ΠΊΠ°ΠΊ Π΄Ρ€ΠΎΠ±ΡŒ. Π˜ΠΌΠ΅ΡŽΡ‚ Ρ‚ΠΎΡ‡ΠΊΡƒ Ρ€Π°Π·Ρ€Ρ‹Π²Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ Π½Π°Ρ€ΡƒΡˆΠ°Π΅Ρ‚ΡΡ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ВсС эти Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ Π² чистом Π²ΠΈΠ΄Π΅. Π’ Π½ΠΈΡ… Π΄ΠΎΠ±Π°Π²Π»ΡΡŽΡ‚ ΠΌΠ½ΠΎΠ³ΠΎΡ‡Π»Π΅Π½Ρ‹, Π΄Ρ€ΠΎΠ±ΠΈ ΠΈ ΠΏΡ€ΠΎΡ‡ΠΈΠΉ Π±Ρ€Π΅Π΄, становится тяТСло ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ. Π§Ρ‚ΠΎ ΠΏΡ€ΠΈ этом происходит β€” сСйчас Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π§Π°Ρ‰Π΅ всСго Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ замСняСтся Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½ Π²ΠΈΠ΄Π° Π•Π³ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ β€” стандартная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ нас ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‚:

Наибольший интСрСс прСдставляСт ΠΈΠΌΠ΅Π½Π½ΠΎ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, абсцисса ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ рассчитываСтся ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Ρ‚Π°ΠΊ, ΠΌΡ‹ нашли Ρ‚ΠΎΡ‡ΠΊΡƒ экстрСмума ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Но Ссли исходная функция ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Π°, для Π½Π΅Π΅ Ρ‚ΠΎΠΆΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ экстрСмума. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, сформулируСм ΠΊΠ»ΡŽΡ‡Π΅Π²ΠΎΠ΅ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ:

Π’ΠΎΡ‡ΠΊΠΈ экстрСмума ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π° ΠΈ слоТной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΠ½ Π²Ρ…ΠΎΠ΄ΠΈΡ‚, ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΠΌΠΎΠΆΠ½ΠΎ для ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½Π°, Π° Π½Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ β€” Π·Π°Π±ΠΈΡ‚ΡŒ.

Из ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… рассуТдСний остаСтся нСпонятным, ΠΊΠ°ΠΊΡƒΡŽ ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚ΠΎΡ‡ΠΊΡƒ ΠΌΡ‹ ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ: максимума ΠΈΠ»ΠΈ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ°. Однако Π·Π°Π΄Π°Ρ‡ΠΈ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ΡΡ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ это Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ значСния. Π‘ΡƒΠ΄ΠΈΡ‚Π΅ сами:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Ρ€Π΅Π·ΠΊΠΎ упрощаСтся ΠΈ сводится всСго ΠΊ Π΄Π²ΡƒΠΌ шагам:

На ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ взгляд, этот Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΈ Π΅Π³ΠΎ обоснованиС ΠΌΠΎΠ³ΡƒΡ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ слоТными. Π― Π½Π°ΠΌΠ΅Ρ€Π΅Π½Π½ΠΎ Π½Π΅ Π²Ρ‹ΠΊΠ»Π°Π΄Ρ‹Π²Π°ΡŽ Β«Π³ΠΎΠ»ΡƒΡŽΒ» схСму Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π±Π΅Π·Π΄ΡƒΠΌΠ½ΠΎΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€Π°Π²ΠΈΠ» Ρ‡Ρ€Π΅Π²Π°Ρ‚ΠΎ ошибками.

Рассмотрим настоящиС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈΠ· ΠΏΡ€ΠΎΠ±Π½ΠΎΠ³ΠΎ Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ β€” ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ‚Π°ΠΌ Π΄Π°Π½Π½Ρ‹ΠΉ ΠΏΡ€ΠΈΠ΅ΠΌ встрСчаСтся Ρ‡Π°Ρ‰Π΅ всСго. Π—Π°ΠΎΠ΄Π½ΠΎ убСдимся, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ B15 становятся ΠΏΠΎΡ‡Ρ‚ΠΈ устными.

Π—Π°Π΄Π°Ρ‡Π°. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Под ΠΊΠΎΡ€Π½Π΅ΠΌ стоит квадратичная функция Π“Ρ€Π°Ρ„ΠΈΠΊ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ βˆ’ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° вСтвями Π²Π²Π΅Ρ€Ρ…, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ коэффициСнт

x 0 = βˆ’ b /(2 a ) = βˆ’6/(2 Β· 1) = βˆ’6/2 = βˆ’3

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π²Π²Π΅Ρ€Ρ…, Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

ΠšΠΎΡ€Π΅Π½ΡŒ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎ возрастаСт, Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° всСй Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ИмССм:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π°Π΄Π°Ρ‡Π°. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Под Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ снова квадратичная функция: Π“Ρ€Π°Ρ„ΠΈΠΊ β€” ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° вСтвями Π²Π²Π΅Ρ€Ρ…,

x 0 = βˆ’ b /(2 a ) = βˆ’2/(2 Β· 1) = βˆ’2/2 = βˆ’1

Π˜Ρ‚Π°ΠΊ, Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ квадратичная функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Но функция монотонная, поэтому:

Π—Π°Π΄Π°Ρ‡Π°. НайдитС наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ стоит квадратичная функция ΠŸΠ΅Ρ€Π΅ΠΏΠΈΡˆΠ΅ΠΌ Π΅Π΅ Π² Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌ Π²ΠΈΠ΄Π΅:

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π²Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ· ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π²Π΅Ρ€ΡˆΠΈΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ максимума:

Π˜ΡΡ…ΠΎΠ΄Π½Π°Ρ функция β€” ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ, ΠΎΠ½Π° ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Π°, поэтому наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π±ΡƒΠ΄Π΅Ρ‚ Π² Π½Π°ΠΉΠ΄Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π½ΠΈΠΌΠ°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ‡ΠΈΡ‚Π°Ρ‚Π΅Π»ΡŒ навСрняка Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Π½Π΅ выписывали ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ корня ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°. Но этого ΠΈ Π½Π΅ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ: Π²Π½ΡƒΡ‚Ρ€ΠΈ стоят Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, значСния ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… всСгда ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹.

БлСдствия ΠΈΠ· области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Иногда для Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ΠΈ B15 нСдостаточно просто Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. ИскомоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΊΠΎΠ½Ρ†Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, Π° вовсС Π½Π΅ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ экстрСмума. Если Π² Π·Π°Π΄Π°Ρ‡Π΅ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π½Π΅ ΡƒΠΊΠ°Π·Π°Π½ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, смотрим Π½Π° ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. А ΠΈΠΌΠ΅Π½Π½ΠΎ:

АргумСнт Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ:

y = log a f ( x ) β‡’ f ( x ) > 0

АрифмСтичСский ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ сущСствуСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΈΠ· Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»ΡŒ Π΄Ρ€ΠΎΠ±ΠΈ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ Ρ€Π°Π²Π½ΡΡ‚ΡŒΡΡ Π½ΡƒΠ»ΡŽ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π΅Ρ‰Π΅ Ρ€Π°Π·: ноль Π²ΠΏΠΎΠ»Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ, Π½ΠΎ Π² Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ΅ ΠΈΠ»ΠΈ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ Π΄Ρ€ΠΎΠ±ΠΈ β€” Π½ΠΈΠΊΠΎΠ³Π΄Π°. ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ это Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ…:

Π—Π°Π΄Π°Ρ‡Π°. НайдитС наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Под ΠΊΠΎΡ€Π½Π΅ΠΌ снова квадратичная функция: Π•Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊ β€” ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, Π½ΠΎ Π²Π΅Ρ‚Π²ΠΈ Π²Π½ΠΈΠ·, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΡƒΡ…ΠΎΠ΄ΠΈΡ‚ Π½Π° минус Π±Π΅ΡΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ нСдопустимо, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ арифмСтичСский ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ ΠΈΠ· ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ числа Π½Π΅ сущСствуСт.

ВыписываСм ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ (ΠžΠ”Π—):

3 βˆ’ 2 x βˆ’ x 2 β‰₯ 0 β‡’ x 2 + 2 x βˆ’ 3 ≀ 0 β‡’

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

Π’ΠΎΡ‡ΠΊΠ° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ ΠžΠ”Π— β€” ΠΈ это Ρ…ΠΎΡ€ΠΎΡˆΠΎ. Π’Π΅ΠΏΠ΅Ρ€ΡŒ считаСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π° Ρ‚Π°ΠΊΠΆΠ΅ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠžΠ”Π—:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Ρ‚Π°ΠΊ, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ числа 2 ΠΈ 0. Нас просят Π½Π°ΠΉΡ‚ΠΈ наибольшСС β€” это число 2.

Π—Π°Π΄Π°Ρ‡Π°. НайдитС наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π’Π½ΡƒΡ‚Ρ€ΠΈ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ° стоит квадратичная функция Π­Ρ‚ΠΎ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° вСтвями Π²Π½ΠΈΠ·, Π½ΠΎ Π² Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ΅ Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл, поэтому выписываСм ΠžΠ”Π—:

6 x βˆ’ x 2 βˆ’ 5 > 0 β‡’ x 2 βˆ’ 6 x + 5 x 0 = βˆ’ b /(2 a ) = βˆ’6/(2 Β· (βˆ’1)) = βˆ’6/(βˆ’2) = 3

Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠΎ ΠžΠ”Π—: Но ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΊΠΎΠ½Ρ†Ρ‹ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° нас Π½Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‚, считаСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ

y min = y (3) = log 0,5 (6 Β· 3 βˆ’ 3 2 βˆ’ 5) =

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция. ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

8 класс, 9 класс, Π•Π“Π­/ΠžΠ“Π­

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ понятия

Ѐункция β€” это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ Β«yΒ» ΠΎΡ‚ Β«xΒ», ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Β«xΒ» являСтся ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Β«yΒ» β€” зависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π—Π°Π΄Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Π² соотвСтствии с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΏΠΎ значСниям нСзависимой ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ Π΅Π΅ значСния. Π’ΠΎΡ‚, ΠΊΠ°ΠΊΠΈΠΌΠΈ способами Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°Π΄Π°Ρ‚ΡŒ:

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” это объСдинСниС всСх Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΊΠΎΠ³Π΄Π° вмСсто Β«xΒ» ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ»ΡŒΠ½Ρ‹Π΅ значСния ΠΈ Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этих Ρ‚ΠΎΡ‡Π΅ΠΊ.

Π•Ρ‰Π΅ быстрСС Ρ€Π°Π·ΠΎΠ±Ρ€Π°Ρ‚ΡŒΡΡ Π² Ρ‚Π΅ΠΌΠ΅ ΠΈ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π° курсах ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Π² ΠΎΠ½Π»Π°ΠΉΠ½-школС Skysmart.

ΠŸΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция задаСтся Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ y = ax 2 + bx + c, Π³Π΄Π΅ x ΠΈ y β€” ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Π΅, a, b, c β€” Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ числа, ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ условиС β€” a β‰  0. Π’ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ сущСствуСт ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ распрСдСлСниС:

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, которая ΠΈΠΌΠ΅Π΅Ρ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ Π²ΠΈΠ΄ для y = x 2 :

Если Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΡ‚Π°Ρ€ΡˆΠΈΠΉ коэффициСнт Ρ€Π°Π²Π΅Π½ Π΅Π΄ΠΈΠ½ΠΈΡ†Π΅, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ‚Ρƒ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒ, ΠΊΠ°ΠΊ y = x 2 ΠΏΡ€ΠΈ Π»ΡŽΠ±Ρ‹Ρ… значСниях ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… коэффициСнтов.

Π“Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = –x 2 выглядит, ΠΊΠ°ΠΊ пСрСвСрнутая ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°:

ЗафиксируСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π±Π°Π·ΠΎΠ²Ρ‹Ρ… Ρ‚ΠΎΡ‡Π΅ΠΊ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅:

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€Π΅Π² Π½Π° ΠΎΠ±Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ ΠΈΡ… ΡΠΈΠΌΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ оси ОΠ₯. ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ Π²Π°ΠΆΠ½Ρ‹Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹:

Рассмотрим Ρ‚Ρ€ΠΈ случая:

Если a > 0, Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ выглядит ΠΊΠ°ΠΊ-Ρ‚ΠΎ Ρ‚Π°ΠΊ:

0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>

На основС Π²Ρ‹ΡˆΠ΅ΠΈΠ·Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ясно, Ρ‡Ρ‚ΠΎ зная Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ Π²Π΅Ρ‚Π²Π΅ΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΈ Π·Π½Π°ΠΊ дискриминанта, Ρƒ нас Π΅ΡΡ‚ΡŒ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΠΊΠ°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠšΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Ρ‚Π°ΠΊΠΆΠ΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π²Π°ΠΆΠ½Ρ‹ΠΌ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ находятся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ способом:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Ось симмСтрии ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ β€” прямая, которая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ оси OY.

Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ, Π½Π°ΠΌ Π½ΡƒΠΆΠ½Π° Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с осью OY. Π’Π°ΠΊ ΠΊΠ°ΠΊ абсцисса ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ оси OY Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ y = ax 2 + bx + c с осью OY, Π½ΡƒΠΆΠ½ΠΎ Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ вмСсто Ρ… ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ ноль: y(0) = c. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ этой Ρ‚ΠΎΡ‡ΠΊΠΈ Π±ΡƒΠ΄ΡƒΡ‚ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ: (0; c).

На ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡ‚ΠΌΠ΅Ρ‡Π΅Π½Ρ‹ основныС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Алгоритм построСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

Рассмотрим нСсколько способов построСния ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. НаиболСС ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΉ способ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Π±Ρ€Π°Ρ‚ΡŒ Π² соотвСтствии с Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ Π·Π°Π΄Π°Π½Π° квадратичная функция.

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ y = ax 2 + bx + c.

Как строим:

Π’ Π΄Π°Π½Π½ΠΎΠΌ случаС дискриминант большС нуля, поэтому ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΠΈΠΌΠ΅Π΅Ρ‚ Π΄Π²Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ пСрСсСчСния с осью ОΠ₯. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹, Ρ€Π΅ΡˆΠΈΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅:

Как строим:

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ Π²ΠΈΠ΄ y = (x + a) Γ— (x + b)

Рассмотрим ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€: y = (x βˆ’ 2) Γ— (x + 1).

Как строим:

Π”Π°Π½Π½Ρ‹ΠΉ Π²ΠΈΠ΄ уравнСния позволяСт быстро Π½Π°ΠΉΡ‚ΠΈ Π½ΡƒΠ»ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

(x βˆ’ 2) Γ— (x + 1) = 0, ΠΎΡ‚ΡΡŽΠ΄Π° х₁ = 2, Ρ…β‚‚ = βˆ’1.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Найти Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния с осью OY:

с = ab = (βˆ’2) Γ— (1) = βˆ’2 ΠΈ Π΅ΠΉ симмСтричная.

ΠžΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ соСдиним ΠΏΠ»Π°Π²Π½ΠΎΠΉ прямой.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

На ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ довольно часто приходится ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ самоС большоС ΠΈ самоС малСнькоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠœΡ‹ выполняСм это дСйствиС Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° выясняСм, ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ·Π΄Π΅Ρ€ΠΆΠΊΠΈ, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΡŒ, Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΡƒΡŽ Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ Π½Π° производство ΠΈ Π΄Ρ€., Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π² Ρ‚Π΅Ρ… случаях, ΠΊΠΎΠ³Π΄Π° Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ°ΠΊΠΎΠ³ΠΎ-Π»ΠΈΠ±ΠΎ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. Π§Ρ‚ΠΎΠ±Ρ‹ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π²Π΅Ρ€Π½ΠΎ, Π½Π°Π΄ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠžΡΠ½ΠΎΠ²Π½Ρ‹Π΅ опрСдСлСния

НачнСм, ΠΊΠ°ΠΊ всСгда, с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΠΈ основных ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ.

Π—Π°Ρ‡Π΅ΠΌ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ стационарныС Ρ‚ΠΎΡ‡ΠΊΠΈ? Для ΠΎΡ‚Π²Π΅Ρ‚Π° Π½Π° этот вопрос Π½Π°Π΄ΠΎ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ Π€Π΅Ρ€ΠΌΠ°. Из Π½Π΅Π΅ слСдуСт, Ρ‡Ρ‚ΠΎ стационарная Ρ‚ΠΎΡ‡ΠΊΠ° – это такая Ρ‚ΠΎΡ‡ΠΊΠ°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ находится экстрСмум Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (Ρ‚.Π΅. Π΅Π΅ Π»ΠΎΠΊΠ°Π»ΡŒΠ½Ρ‹ΠΉ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ ΠΈΠ»ΠΈ максимум). Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, функция Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ наимСньшСС ΠΈΠ»ΠΈ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ ΠΈΠΌΠ΅Π½Π½ΠΎ Π² ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· стационарных Ρ‚ΠΎΡ‡Π΅ΠΊ.

Π•Ρ‰Π΅ функция ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ наибольшСС ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π² Ρ‚Π΅Ρ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… сама функция являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ, Π° Π΅Π΅ ΠΏΠ΅Ρ€Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ сущСствуСт.

ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ вопрос, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ‚ ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ этой Ρ‚Π΅ΠΌΡ‹: Π²ΠΎ всСх Π»ΠΈ случаях ΠΌΡ‹ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ наибольшСС ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅? НСт, ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ этого ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π±ΡƒΠ΄ΡƒΡ‚ ΡΠΎΠ²ΠΏΠ°Π΄Π°Ρ‚ΡŒ с Π³Ρ€Π°Π½ΠΈΡ†Π°ΠΌΠΈ области опрСдСлСния, ΠΈΠ»ΠΈ Ссли ΠΌΡ‹ ΠΈΠΌΠ΅Π΅ΠΌ Π΄Π΅Π»ΠΎ с бСсконСчным ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»ΠΎΠΌ. Π‘Ρ‹Π²Π°Π΅Ρ‚ ΠΈ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ функция Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ ΠΈΠ»ΠΈ Π½Π° бСсконСчности Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ бСсконСчно ΠΌΠ°Π»Ρ‹Π΅ ΠΈΠ»ΠΈ бСсконСчно большиС значСния. Π’ этих случаях ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ наибольшСС ΠΈ/ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ прСдставляСтся Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΌ.

Π‘ΠΎΠ»Π΅Π΅ понятными эти ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ станут послС изобраТСния Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ°Ρ…:

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π Π°Π·Π±Π΅Ρ€Π΅ΠΌ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ случай, ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹ΠΉ Π½Π° Π²Ρ‚ΠΎΡ€ΠΎΠΌ Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅. ИзмСним Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π° [ 1 ; 6 ] ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, Ρ‡Ρ‚ΠΎ наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Π΄ΠΎΡΡ‚ΠΈΠ³Π°Ρ‚ΡŒΡΡ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ с абсциссой Π² ΠΏΡ€Π°Π²ΠΎΠΉ Π³Ρ€Π°Π½ΠΈΡ†Π΅ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°, Π° наимСньшСС – Π² стационарной Ρ‚ΠΎΡ‡ΠΊΠ΅.

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НаибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° бСсконСчности

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π½Π°ΠΉΡ‚ΠΈ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π’ этом ΠΏΡƒΠ½ΠΊΡ‚Π΅ ΠΌΡ‹ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ дСйствий, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½ΡƒΠΆΠ½ΠΎ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΡ‚ΡŒ для нахоТдСния наибольшСго ΠΈΠ»ΠΈ наимСньшСго значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ этот Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡.

РСшСниС:

Π’Π΅ΠΏΠ΅Ρ€ΡŒ вычисляСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ согласно ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ диффСрСнцирования Π΄Ρ€ΠΎΠ±ΠΈ:

y ( 1 ) = 1 3 + 4 1 2 = 5 y ( 2 ) = 2 3 + 4 2 2 = 3 y ( 4 ) = 4 3 + 4 4 2 = 4 1 4

Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ стационарной Ρ‚ΠΎΡ‡ΠΊΠΈ, поэтому Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Как Π½Π°ΠΉΡ‚ΠΈ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΈΠ»ΠΈ бСсконСчном ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅

ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊ ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ Π΄Π°Π½Π½Ρ‹ΠΉ способ, совСтуСм Π²Π°ΠΌ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΡ‚ΡŒ, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΡΡ‚ΡŒ односторонний ΠΏΡ€Π΅Π΄Π΅Π» ΠΈ ΠΏΡ€Π΅Π΄Π΅Π» Π½Π° бСсконСчности, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ·Π½Π°Ρ‚ΡŒ основныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈΡ… нахоТдСния. Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ наибольшСС ΠΈ/ΠΈΠ»ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠΌ ΠΈΠ»ΠΈ бСсконСчном ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅, выполняСм ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ дСйствия.

РСшСниС

ΠŸΠ΅Ρ€Π²Ρ‹ΠΌ Π΄Π΅Π»ΠΎΠΌ Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’ Π·Π½Π°ΠΌΠ΅Π½Π°Ρ‚Π΅Π»Π΅ Π΄Ρ€ΠΎΠ±ΠΈ стоит ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅Ρ…Ρ‡Π»Π΅Π½, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π΅ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΠΎΠ±Ρ€Π°Ρ‰Π°Ρ‚ΡŒΡΡ Π² 0 :

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ всС ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π² условии ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Ρ‹.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π²Ρ‹ΠΏΠΎΠ»Π½ΠΈΠΌ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π° всСй области Π΅Π΅ опрСдСлСния.

Бопоставим Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Ρƒ нас ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ вычислСнии, с Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. На рисункС асимптоты ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π­Ρ‚ΠΎ всС, Ρ‡Ρ‚ΠΎ ΠΌΡ‹ Ρ…ΠΎΡ‚Π΅Π»ΠΈ Ρ€Π°ΡΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ наибольшСго ΠΈ наимСньшСго значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Π΅ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ дСйствий, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΡ‹ ΠΏΡ€ΠΈΠ²Π΅Π»ΠΈ, ΠΏΠΎΠΌΠΎΠ³ΡƒΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ вычислСния максимально быстро ΠΈ просто. Но ΠΏΠΎΠΌΠ½ΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ сначала Π²Ρ‹ΡΡΠ½ΠΈΡ‚ΡŒ, Π½Π° ΠΊΠ°ΠΊΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°Ρ… функция Π±ΡƒΠ΄Π΅Ρ‚ ΡƒΠ±Ρ‹Π²Π°Ρ‚ΡŒ, Π° Π½Π° ΠΊΠ°ΠΊΠΈΡ… Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Ρ‚ΡŒ, послС Ρ‡Π΅Π³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ дальнСйшиС Π²Ρ‹Π²ΠΎΠ΄Ρ‹. Π’Π°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ Π±ΠΎΠ»Π΅Π΅ Ρ‚ΠΎΡ‡Π½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция (Π•Π“Π­ 2022)

ΠŸΡ€ΠΎΠ²Π΅Ρ€ΡŒ сСбя, ΠΎΡ‚Π²Π΅Ρ‚ΡŒ Π½Π° эти вопросы:

Π’ ΠΊΠΎΠ½Ρ†Π΅ ΡΡ‚Π°Ρ‚ΡŒΠΈ Ρ‚Ρ‹ Π±ΡƒΠ΄Π΅ΡˆΡŒ Π·Π½Π°Ρ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚Ρ‹ Π½Π° эти вопросы.

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция β€” ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎ ΠΎ Π³Π»Π°Π²Π½ΠΎΠΌ

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция – функция Π²ΠΈΠ΄Π° \( y=a<^<2>>+bx+c\), Π³Π΄Π΅ \( a\ne 0\), \( b\) ΠΈ \( c\) ­– Π»ΡŽΠ±Ρ‹Π΅ числа (коэффициСнты), \( c\) – свободный Ρ‡Π»Π΅Π½.

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°.
Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹: \( \displaystyle <_<Π²>>=\frac<-b><2a>\).

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция Π²ΠΈΠ΄Π°: \( y=a<^<2>>\).

Π§Π΅ΠΌ большС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ \( \displaystyle a\) (ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ), Ρ‚Π΅ΠΌ у́ТС становится ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° (Π²Π΅Ρ‚Π²ΠΈ становятся Π±ΠΎΠ»Π΅Π΅ ΠΊΡ€ΡƒΡ‚Ρ‹ΠΌΠΈ). И Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚, Ρ‡Π΅ΠΌ мСньшС \( \displaystyle a\), Ρ‚Π΅ΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° ΡˆΠΈΡ€Π΅.

Π’Π°Ρ€ΠΈΠ°Π½Ρ‚Ρ‹ располоТСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² зависимости ΠΎΡ‚ коэффициСнта \( \displaystyle a\) ΠΈ дискриминанта \( \displaystyle D=<^<2>>-4ac\).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ функция?

НС знаСшь? Π’ΠΎΠ³Π΄Π° спСрва ΠΏΡ€ΠΎΡ‡ΠΈΡ‚Π°ΠΉ Ρ‚Π΅ΠΌΡƒ Β«Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ» – ΠΎΠ½Π° нСслоТная, Π½ΠΎ ΠΎΡ‡Π΅Π½ΡŒ ваТная.

А ΠΌΡ‹ ΠΏΠΎΠΊΠ° ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΠΌ.

Ѐункция – это ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ элСмСнту ΠΎΠ΄Π½ΠΎΠ³ΠΎ мноТСства (Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρƒ) ставится Π² соотвСтствиС Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ (СдинствСнный!) элСмСнт Π΄Ρ€ΡƒΠ³ΠΎΠ³ΠΎ мноТСства (мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ).

Π’ΠΎ Π΅ΡΡ‚ΡŒ, Ссли Ρƒ тСбя Π΅ΡΡ‚ΡŒ функция \( y=f\left( x \right)\), это Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ допустимому Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ \( x\) (ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Β«Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠΌΒ») соотвСтствуСт ΠΎΠ΄Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ \( y\) (Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΠΎΠΉ Β«Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉΒ»).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ «допустимому»? Если Π½Π΅ моТСшь ΠΎΡ‚Π²Π΅Ρ‚ΠΈΡ‚ΡŒ Π½Π° этот вопрос, Π΅Ρ‰Π΅ Ρ€Π°Π· Π²Π΅Ρ€Π½ΠΈΡΡŒ ΠΊ Ρ‚Π΅ΠΌΠ΅ Β«Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ».

ВсС Π΄Π΅Π»ΠΎ Π² понятии Β«ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния»:

Для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π½Π΅ всС Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ.

НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=\sqrt\) ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° \( x\) – нСдопустимы.

ΠšΡΡ‚Π°Ρ‚ΠΈ, Π° с Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Ρ‚Ρ‹ ΡƒΠΆΠ΅ Π΄Ρ€ΡƒΠΆΠΈΡˆΡŒ? ΠŸΡ€ΠΎ Π½Π΅Π΅ всС написано Π² Ρ‚Π΅ΠΌΠ΅ «ЛинСйная функция» – Ρ‚Π°ΠΌ Ρ‚Ρ‹ поймСшь, Ρ‡Ρ‚ΠΎ Π² функциях Π½ΠΈΡ‡Π΅Π³ΠΎ ΡΡ‚Ρ€Π°ΡˆΠ½ΠΎΠ³ΠΎ Π½Π΅Ρ‚ ΠΈ Π½Π°ΡƒΡ‡ΠΈΡˆΡŒΡΡ ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ коэффициСнты (это Ρ†ΠΈΡ„Π΅Ρ€ΠΊΠΈ ΠΏΠ΅Ρ€Π΅Π΄ Π±ΡƒΠΊΠ²ΠΎΠΉ \( x\)).

И Π΅Ρ‰Π΅, надСюсь, Ρ‚Ρ‹ ΡƒΠΌΠ΅Π΅ΡˆΡŒ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния? ΠžΡΠ²Π΅ΠΆΠΈΡ‚ΡŒ ΠΏΠ°ΠΌΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ, ΠΏΠΎΡ‡ΠΈΡ‚Π°Π² Ρ‚Π΅ΠΌΡƒ Β«ΠšΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅ уравнСния».

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция β€” ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½Π΅Π΅

ΠšΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Π°Ρ функция – это функция Π²ΠΈΠ΄Π° \( y=a<^<2>>+bx+c\), Π³Π΄Π΅ \( a\ne 0\), \( b\) ΠΈ \( c\) ­– Π»ΡŽΠ±Ρ‹Π΅ числа (ΠΎΠ½ΠΈ ΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ коэффициСнтами).

Число \( a\) Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡΡ‚Π°Ρ€ΡˆΠΈΠΌ ΠΈΠ»ΠΈ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ коэффициСнтом Ρ‚Π°ΠΊΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, \( b\) – Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ коэффициСнтом, Π° \( c\) – свободным Ρ‡Π»Π΅Π½ΠΎΠΌ.

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, квадратичная функция – это Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ, содСрТащая Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅. ΠžΡ‚ΡΡŽΠ΄Π° ΠΈ Π΅Π΅ Π½Π°Π·Π²Π°Π½ΠΈΠ΅.

Как ΡƒΠΆΠ΅ Π³ΠΎΠ²ΠΎΡ€ΠΈΠ»ΠΎΡΡŒ Π² Ρ‚Π΅ΠΌΠ΅ Β«Π€ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ», ваТнСйшими понятиями, связанными с любой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π΅Π΅ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния \( D\left( y \right)\) ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ\( E\left( y \right)\).

Какими ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ значСния Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=a<^<2>>+bx+c\)? ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ, Π»ΡŽΠ±Ρ‹ΠΌΠΈ. Π’Π΅Π΄ΡŒ Π² эту Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ любоС число (Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠΈ, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, ΠΎΡ‚ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=\frac<1>\) – Π² Π½Π΅Π΅ нСльзя ΠΏΠΎΠ΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ \( x=0\)).

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния – всС Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа:

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. ВсС Π»ΠΈ значСния ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ функция?

Достаточно Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΡΠ°ΠΌΡƒΡŽ ΠΏΡ€ΠΎΡΡ‚ΡƒΡŽ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ \( y=<^<2>>\) \( \left( a=1,\text< >b=0,\text< >c=0 \right)

\), Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΠ±Π΅Π΄ΠΈΡ‚ΡŒΡΡ Π² ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΌ: вСдь ΠΊΠ°ΠΊΠΎΠ΅ Π±Ρ‹ число ΠΌΡ‹ Π½Π΅ Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΠ»ΠΈ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ всСгда Π±ΡƒΠ΄Π΅Ρ‚ большС ΠΈΠ»ΠΈ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ.

Π—Π½Π°Ρ‡ΠΈΡ‚, эта функция всСгда Π½Π΅ мСньшС нуля.

А Π²ΠΎΡ‚ большС нуля ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ сколько ΡƒΠ³ΠΎΠ΄Π½ΠΎ: вСдь бСсконСчно большой x Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅ Π±ΡƒΠ΄Π΅Ρ‚ Π΅Ρ‰Π΅ большС.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΌΠΎΠΆΠ΅ΠΌ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ для \( y=<^<2>>:E\left( y \right)=\left[ 0;+\infty \right)\).

Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠΌ случаС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π±ΡƒΠ΄Π΅Ρ‚ разная, Π½ΠΎ всСгда – ограничСнная.

Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

НавСрняка Ρ‚Ρ‹ ΡΠ»Ρ‹ΡˆΠ°Π», Ρ‡Ρ‚ΠΎ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ называСтся ΠΏΠ°Ρ€Π°Π±ΠΎΠ»ΠΎΠΉ. Как ΠΎΠ½Π° выглядит? БСйчас нарисуСм

ΠšΡΡ‚Π°Ρ‚ΠΈ ΠΌΡ‹ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ Ρ€Π°Π·ΠΎΠ±Ρ€Π°Π»ΠΈ ΠΊΠ°ΠΊ быстро ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ. ΠŸΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈ ΠΏΠΎ ссылкС ΠΈ всСму Π½Π°ΡƒΡ‡ΠΈΡˆΡŒΡΡ.

НачнСм с ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠ΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ – \( y=<^<2>>\).

Боставим Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ:

x-2-1012
y41014

НарисуСм эти Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈ соСдиним ΠΈΡ… ΠΏΠ»Π°Π²Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠ΅ΠΉ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ИмСнно Ρ‚Π°ΠΊ ΠΈ выглядит ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°. Бамая ниТняя Π΅Π΅ Ρ‚ΠΎΡ‡ΠΊΠ° называСтся Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ, Π° части спарва ΠΈ слСва ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌ вСтвями ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Как Π²ΠΈΠ΄ΠΈΠΌ, Π²Π΅Ρ‚Π²ΠΈ симмСтричны ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΠΈ, проходящСй Ρ‡Π΅Ρ€Π΅Π· Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ.

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π΄Ρ€ΡƒΠ³ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ: \( y=<^<2>>-2-3\).

Боставим Ρ‚Π°Π±Π»ΠΈΡ†Ρƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ:

x-2-101234
y50-3-4-305

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ€Π°Π²Π½ΠΈΠΌ Π΄Π²Π° рисунка.

Π’ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ это ΠΊΠ°ΠΊ Π±ΡƒΠ΄Ρ‚ΠΎ ΠΎΠ΄Π½Π° ΠΈ Ρ‚Π° ΠΆΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π°, просто располоТСнная Π² Ρ€Π°Π·Π½Ρ‹Ρ… мСстах.

Π’ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ΅Ρ€Π΅ΠΌΠ΅ΡΡ‚ΠΈΠ»Π°ΡΡŒ Π² Ρ‚ΠΎΡ‡ΠΊΡƒ \( \left( 1;-4 \right)\), Π° Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ΅Ρ€Π΅Π΅Ρ…Π°Π»ΠΈ вмСстС с Π½Π΅ΠΉ.

Π”Π°, Ρ‚Π°ΠΊ ΠΎΠ½ΠΎ ΠΈ Π΅ΡΡ‚ΡŒ: всС ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ ΡΡ‚Π°Ρ€ΡˆΠΈΠΌ коэффициСнтом, a выглядят ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ – Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… коэффициСнтах.

ΠšΡΡ‚Π°Ρ‚ΠΈ, Ссли Ρ…ΠΎΡ‡Π΅ΡˆΡŒ Π½Π°ΡƒΡ‡ΠΈΡ‚ΡŒΡΡ быстро ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈ ΠΏΠΎ ссылкС, Ρ‚Π°ΠΌ отличная ΡΡ‚Π°Ρ‚ΡŒΡ.

ΠšΠΎΡΡ„Ρ„ΠΈΡ†ΠΈΠ΅Π½Ρ‚Ρ‹ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Π°Π²Π°ΠΉ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, Π½Π° Ρ‡Ρ‚ΠΎ Π²Π»ΠΈΡΡŽΡ‚ коэффициСнты ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
НачнСм со ΡΡ‚Π°Ρ€ΡˆΠ΅Π³ΠΎ коэффициСнта.
Π‘ΡƒΠ΄Π΅ΠΌ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π° \( y=a<^<2>>\) (\( b=0\), \( c=0\) – ΠΏΡƒΡΡ‚ΡŒ Π½Π΅ ΠΌΠ΅ΡˆΠ°ΡŽΡ‚).

Π§Ρ‚ΠΎ Ρ‚Ρ‹ видишь? Π§Π΅ΠΌ ΠΎΠ½ΠΈ ΠΎΡ‚Π»ΠΈΡ‡Π°ΡŽΡ‚ΡΡ? ΠšΠ°ΠΊΡƒΡŽ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅Ρ€Π½ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ?

Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, это Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π½Π΅ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ссли \( \displaystyle \mathbf \mathbf<0>\) – Π²Π²Π΅Ρ€Ρ….

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π—Π½Π°Ρ‡ΠΈΡ‚, Ссли ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° пСрСсСкаСт ось \( \displaystyle Ox\) Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ…, Ρ‚ΠΎ Ρƒ нас Π΄Π²Π° корня ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния.

Если Π½Π΅ пСрСсСкаСт – ΠΊΠΎΡ€Π½Π΅ΠΉ Π½Π΅Ρ‚.

Но Π±Ρ‹Π²Π°Π΅Ρ‚ вСдь, Ρ‡Ρ‚ΠΎ дискриминант уравнСния Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ, ΠΈ Ρ‚ΠΎΠ³Π΄Π° Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ. Π’ этом случаС ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° касаСтся оси \( \displaystyle Ox\) Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А Ρ‡Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹?

Π’Π΅Ρ€ΡˆΠΈΠ½Π° ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹

ΠšΠΎΡ€Π΅Π½ΡŒ уравнСния Π² этом случаС ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π²Π΅Ρ€ΡˆΠΈΠ½Ρƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Если Π²ΡΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ корня ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния ΠΏΡ€ΠΈ \( \displaystyle D=0\), ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹:

Π­Ρ‚ΠΎ Ρ‚ΠΎΠΆΠ΅ Π±Ρ‹Π²Π°Π΅Ρ‚ ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ.

Π˜Ρ‚Π°ΠΊ, всСго Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ ΡˆΠ΅ΡΡ‚ΡŒ Ρ€Π°Π·Π½Ρ‹Ρ… Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ² располоТСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π’ΠΎΡ‚ ΠΎΠ½ΠΈ всС Π½Π° ΠΎΠ΄Π½ΠΎΠΌ рисункС:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΡ€Π΅ΡˆΠ°Π΅ΠΌ Π·Π°Π΄Π°Ρ‡ΠΊΠΈ.

РСшСниС Π·Π°Π΄Π°Ρ‡

1. Π“Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΠΈΠ· Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΈΠ·Π±Ρ€Π°ΠΆΠ΅Π½ Π½Π° рисункС?

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

2. НайдитС сумму ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния \( a<^<2>>+bx+c=0\), Ссли Π½Π° рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=a<^<2>>+bx+c\):

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

3. НайдитС ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния \( a<^<2>>+bx+c=0\), Ссли Π½Π° рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½ Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=a<^<2>>+bx+c\):

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

4. По Π³Ρ€Π°Ρ„ΠΈΠΊΡƒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ \( y=<^<2>>+bx+c\) ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ коэффициСнты \( b\) ΠΈ \( c\):

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСния

1. ΠŸΠ΅Ρ€Π²ΠΎΠ΅: ΠΊΡƒΠ΄Π° «смотрят» Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹? Π’Π½ΠΈΠ·. А Ρ‡Ρ‚ΠΎ это Π·Π½Π°Ρ‡ΠΈΡ‚? ΠŸΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎ, \( \displaystyle a

ΠŸΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΡ Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ (Π•Π“Π­ 18. Π—Π°Π΄Π°Ρ‡ΠΈ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ)

ΠΠ°ΡƒΡ‡ΠΈΠ»ΠΈΡΡŒ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ Π³Ρ€Π°Ρ„ΠΈΠΊ ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ? А Ρ‡Ρ‚ΠΎ, Ссли я Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ помСняю ΠΎΠ΄ΠΈΠ½ ΠΈΠ· коэффициСнтов? Или Β«Π·Π°ΠΊΠ»ΡŽΡ‡ΡƒΒ» Ρ‡Π°ΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² ΠΌΠΎΠ΄ΡƒΠ»ΡŒ?

МоТно Π»ΠΈ Π½Π΅ ΡΡ‚Ρ€ΠΎΠΈΡ‚ΡŒ для этого Π½ΠΎΠ²Ρ‹ΠΉ Π³Ρ€Π°Ρ„ΠΈΠΊ, Π° просто ΠΏΠ΅Ρ€Π΅Π΄Π²ΠΈΠ½ΡƒΡ‚ΡŒ/Ρ€Π°ΡΡ‚ΡΠ½ΡƒΡ‚ΡŒ старый?

МоТно! И Π½Π° этом ΡƒΡ€ΠΎΠΊΠ΅ ΠΌΡ‹ научимся ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ трансформации.

Благодаря Ρ‚Π°ΠΊΠΈΠΌ трансформациям ΠΌΡ‹ станСм ΠΏΠΎΠ½ΠΈΠΌΠ°Ρ‚ΡŒ, ΠΊΠ°ΠΊ выглядят Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ ΠΏΡ€ΠΈ всСх значСниях ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΈ научимся Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈΠ· Π•Π“Π­ Π½Π° эту Ρ‚Π΅ΠΌΡƒ.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *