Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜Π½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Ρ

Π˜Π½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Ρ‹ сайта

Боковая панСль

ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°:

ΠšΠΎΠ½Ρ‚Π°ΠΊΡ‚Ρ‹

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅

НахоТдСниС мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΡ

Бпособы нахоТдСния областСй Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Рассмотрим Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΈΠ· Π½ΠΈΡ….

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

ΠžΠ±Ρ‰ΠΈΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ наибольшСго ΠΈ наимСньшСго значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π² области Π΅Π΅ опрСдСлСния (ΠΈΠ»ΠΈ Π² Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½ΠΎ ΠΈΠ· Π½ΠΈΡ… ΠΈΠ»ΠΈ ΠΎΠ±Π° Π½Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚).

Π’ случаС, Ссли Π½ΡƒΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅:

Если ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π», Ρ‚ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ Ρ‚Π° ΠΆΠ΅ схСма, Π½ΠΎ вмСсто Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΡ€ΠΈ стрСмлСнии Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π° ΠΊ ΠΊΠΎΠ½Ρ†Π°ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π°. ЗначСния ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ² ΠΈΠ· Π½Π΅ входят Π² мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.

ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Ρ€Π°Π½ΠΈΡ†/ΠΎΡ†Π΅Π½ΠΎΠΊ

Π‘ΡƒΡ‚ΡŒ состоит Π² ΠΎΡ†Π΅Π½ΠΊΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ снизу ΠΈ свСрху ΠΈ Π² Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ достиТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΈ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΎΡ†Π΅Π½ΠΎΠΊ. ΠŸΡ€ΠΈ этом совпадСниС мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠΌ ΠΎΡ‚ Π½ΠΈΠΆΠ½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΎ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ обуславливаСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ отсутствиСм Ρƒ Π½Π΅Ρ‘ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.

Бвойства Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π”Ρ€ΡƒΠ³ΠΎΠΉ Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΡƒΡŽ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΡƒΡŽ, Ρ‚ΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ свойства нСравСнств ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ вновь ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Основан Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΌ отыскании мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… составлСна функция

ΠžΠ±Π»Π°ΡΡ‚ΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ
$y = kx+ b$E(y) = (-∞;+∞)
$y = x^<2n>$E(y) = [0;+∞)
$y = x^<2n +1>$E(y) = (-∞;+∞)
$y = k/x$E(y) = (-∞;0)u(0;+∞)
$y = x^<\frac<1><2n>>$E(y) = [0;+∞)
$y = x^<\frac<1><2n+1>>$E(y) = (-∞;+∞)
$y = a^$E(y) = (0;+∞)
$y = \log_$E(y) = (-∞;+∞)
$y = \sin$E(y) = [-1;1]
$y = \cos$E(y) = [-1;1]
$y = <\rm tg>\, x$E(y) = (-∞;+∞)
$y = <\rm ctg>\, x$E(y) = (-∞;+∞)
$y = \arcsin$E(y) = [-Ο€/2; Ο€/2]
$y = \arccos$E(y) = [0; Ο€]
$y = <\rm arctg>\, x$E(y) = (-Ο€/2; Ο€/2)
$y = <\rm arcctg>\, x$E(y) = (0; Ο€)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

НайдитС мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

НЕ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

НайдитС наибольшСС ΠΈ наимСньшСС значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Если Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ эту Π·Π°Π΄Π°Ρ‡Ρƒ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ…, Ρ‚ΠΎ потрСбуСтся ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Ρ‚ΡŒ прСпятствия, связанныС с Ρ‚Π΅ΠΌ, Ρ‡Ρ‚ΠΎ функция f(x) ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° Π½Π΅ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Π° Π½Π° всСй числовой прямой.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π³Ρ€Π°Π½ΠΈΡ†/ΠΎΡ†Π΅Π½ΠΎΠΊ

Π’Π°ΠΊ ΠΊΠ°ΠΊ данная функция Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π½Π° всСй области опрСдСлСния, Ρ‚ΠΎ мноТСство Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΎ ΠΌΠ΅ΠΆΠ΄Ρƒ наимСньшим ΠΈ наибольшим Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π½Π° всСй области опрСдСлСния, Ссли Ρ‚Π°ΠΊΠΎΠ²Ρ‹Π΅ ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚.

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, E(y) = [-6;6].

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

РСшим этот ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ нахоТдСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Ρ‹Π΄Π΅Π»ΠΈΠ² ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΠΎΠ΄ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ, ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

И ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΠΉΠ΄Ρ‘ΠΌ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π΅Ρ‘ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²:

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΡ€ΠΈΠ΅ΠΌ, основанный Π½Π° графичСском ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ПослС ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΈΠΌΠ΅Π΅ΠΌ: y 2 + x 2 = 25, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ y β‰₯ 0, |x| ≀ 5.

ΠŸΡ€ΠΈ этих ограничСниях Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ Π΄Π°Π½Π½ΠΎΠ³ΠΎ уравнСния являСтся вСрхняя ΠΏΠΎΠ»ΡƒΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΈ радиусом, Ρ€Π°Π²Π½Ρ‹ΠΌ 5. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ E(y) = [0; 5].

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚Π΅ ΠΏΠ΅Ρ€Π΅Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Ρ‹ Π½Π° Автор24

ΠžΠ±Π»Π°ΡΡ‚ΡŒ (мноТСство) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ рассматриваСмом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ β€” это ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π½Π° этом рассматриваСмом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅.

Как ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Для опрСдСлСния мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ графичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ поисков ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума, вычислСниСм ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΠΌΠΈ.

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ графичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

Рисунок 1. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ графичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ

Π‘ΠΊΠΎΠ±ΠΊΠΈ Π² Π΄Π°Π½Π½ΠΎΠΌ случаС для области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΎΠ±Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π·Π°ΠΊΡ€Π°ΡˆΠ΅Π½Ρ‹, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ. Π’ случаС Ссли Ρ‚ΠΎΡ‡ΠΊΠΈ Π½Π΅ Π·Π°ΠΊΡ€Π°ΡˆΠ΅Π½Ρ‹, ΠΎΠ½ΠΈ Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ Π² ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈ Ρ‚ΠΎΠ³Π΄Π° ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ΡΡ ΠΊΡ€ΡƒΠ³Π»Ρ‹Π΅ скобки.

Π“ΠΎΡ‚ΠΎΠ²Ρ‹Π΅ Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π½Π° Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΡƒΡŽ Ρ‚Π΅ΠΌΡƒ

ΠœΠ΅Ρ‚ΠΎΠ΄ нахоТдСния области значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ

Рассмотрим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ нахоТдСния области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠœΠ΅Ρ‚ΠΎΠ΄ поиска ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума

ΠœΠ΅Ρ‚ΠΎΠ΄ поиска ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈ максимума основан Π½Π° Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΉΡ‚ΠΈ максимальноС ΠΈ ΠΈ минимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ функция ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π½Π° ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ области.

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

Π Π°Π·Π½ΠΈΡ†Π° ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ значСния ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π‘Ρ‚ΠΎΠΈΡ‚ ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ β€” Π½Π΅ ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ с Ρ‚Π΅Ρ€ΠΌΠΈΠ½ΠΎΠΌ Β«ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΒ».

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ (мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ). НСобходимыС понятия ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ нахоТдСния

Π—Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π² Ρ€Π°ΠΌΠΊΠ°Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π°ΠΌ приходится ΠΈΡΠΊΠ°Ρ‚ΡŒ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° области опрСдСлСния ΠΈΠ»ΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. НапримСр, это Π½ΡƒΠΆΠ½ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Ρ€Π°Π·Π½Ρ‹Ρ… Ρ‚ΠΈΠΏΠΎΠ² нСравСнств, ΠΎΡ†Π΅Π½ΠΊΠ°Ρ… Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΈ Π΄Ρ€.

Π’ Ρ€Π°ΠΌΠΊΠ°Ρ… этого ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° ΠΌΡ‹ расскаТСм, Ρ‡Ρ‚ΠΎ ΠΈΠ· сСбя прСдставляСт ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅ΠΌ основныС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Π΅Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ, ΠΈ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ Π·Π°Π΄Π°Ρ‡ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни слоТности. Для наглядности ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹Π΅ полоТСния ΠΏΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°ΠΌΠΈ. ΠŸΡ€ΠΎΡ‡ΠΈΡ‚Π°Π² эту ΡΡ‚Π°Ρ‚ΡŒΡŽ, Π²Ρ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚Π΅ ΠΈΡΡ‡Π΅Ρ€ΠΏΡ‹Π²Π°ΡŽΡ‰Π΅Π΅ прСдставлСниС ΠΎΠ± области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

НачнСм с Π±Π°Π·ΠΎΠ²Ρ‹Ρ… ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ.

ΠžΠ±Ρ€Π°Ρ‚ΠΈΡ‚Π΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ понятиС мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π΅ всСгда тоТдСствСнно области Π΅Π΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ. Π­Ρ‚ΠΈ понятия Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚ΠΎΠΌ случаС, Ссли ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ x ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ совпадСт с ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

НиТС приводится ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡ, Π½Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹. Π‘ΠΈΠ½ΠΈΠ΅ Π»ΠΈΠ½ΠΈΠΈ – это Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, красныС – асимптоты, Ρ€Ρ‹ΠΆΠΈΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΈ Π»ΠΈΠ½ΠΈΠΈ Π½Π° оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ – это области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Рассмотрим основныС способы нахоТдСния области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

Π’ΠΎΠ·ΡŒΠΌΠ΅ΠΌ Π·Π°Π΄Π°Ρ‡Ρƒ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½ΡƒΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ арксинуса.

РСшСниС

РСшСниС

ВсС, Ρ‡Ρ‚ΠΎ Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ, – это Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅.

Для опрСдСлСния Ρ‚ΠΎΡ‡Π΅ΠΊ экстрСмума Π½Π°Π΄ΠΎ произвСсти ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ вычислСния:

НачнСм с опрСдСлСния наибольшСй ΠΈ наимСньшСй Ρ‚ΠΎΡ‡ΠΊΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠ² возрастания ΠΈ убывания Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅. ПослС этого Π½Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ односторонниС ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π² ΠΊΠΎΠ½Ρ†Π°Ρ… ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π° ΠΈ/ΠΈΠ»ΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Ρ‹ Π½Π° бСсконСчности. Π˜Π½Ρ‹ΠΌΠΈ словами, Π½Π°ΠΌ Π½Π°Π΄ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… условиях. Для этого Ρƒ нас Π΅ΡΡ‚ΡŒ всС Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅.

РСшСниС

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΡΠ΅ΠΌ наибольшСС ΠΈ наимСньшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС

РСшСниС

ΠœΡ‹ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ, Ρ‡Ρ‚ΠΎ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄ΡƒΡ‚ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Ρ‚ΡŒ ΠΎΡ‚ минус бСсконСчности Π΄ΠΎ плюс бСсконСчности ΠΏΡ€ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΈ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ x ΠΎΡ‚ нуля Π΄ΠΎ плюс бСсконСчности. Π—Π½Π°Ρ‡ΠΈΡ‚, мноТСство всСх Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл – это ΠΈ Π΅ΡΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.

ΠžΡ‚Π²Π΅Ρ‚: мноТСство всСх Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… чисСл – ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Ρ‚ΡƒΡ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠ°.

РСшСниС

Данная функция являСтся ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ x – Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число. Вычислим наибольшиС ΠΈ наимСньшиС значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π΅Π΅ возрастания ΠΈ убывания:

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΆΠ΅ Π²Π΅Π΄Π΅Ρ‚ сСбя функция Π½Π° бСсконСчности:

Из записи Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² этом случаС Π±ΡƒΠ΄ΡƒΡ‚ асимптотичСски ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°Ρ‚ΡŒΡΡ ΠΊ 0.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

На Π½Π΅ΠΌ Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π» E ( y ) = ( 0 ; 9 ]

ΠžΡ‚Π²Π΅Ρ‚: E ( y ) = ( 0 ; 9 ]

А ΠΊΠ°ΠΊ Π±Ρ‹Ρ‚ΡŒ Π² случаС, Ссли ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ прСдставляСт ΠΈΠ· сСбя объСдинСниС Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠ²? Π’ΠΎΠ³Π΄Π° Π½Π°ΠΌ Π½Π°Π΄ΠΎ Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· этих ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠ² ΠΈ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ ΠΈΡ….

РСшСниС

Для ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ³ΠΎ Π»ΡƒΡ‡Π° 2 ; + ∞ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΠΌ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊΠΈΠ΅ ΠΆΠ΅ дСйствия. Ѐункция Π½Π° Π½Π΅ΠΌ Ρ‚Π°ΠΊΠΆΠ΅ являСтся ΡƒΠ±Ρ‹Π²Π°ΡŽΡ‰Π΅ΠΉ:

Π­Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ²ΠΈΠ΄Π΅Ρ‚ΡŒ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΡΠΎΠ±Ρ‹ΠΉ случай – пСриодичСскиС Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π˜Ρ… ΠΎΠ±Π»Π°ΡΡ‚ΡŒ значСния совпадаСт с мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° Ρ‚ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρƒ этой Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

РСшСниС

Бинус относится ΠΊ пСриодичСской Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, Π° Π΅Π³ΠΎ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ составляСт 2 ΠΏΠΈ. Π‘Π΅Ρ€Π΅ΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ 0 ; 2 Ο€ ΠΈ смотрим, ΠΊΠ°ΠΊΠΈΠΌ Π±ΡƒΠ΄Π΅Ρ‚ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° Π½Π΅ΠΌ.

Если Π²Π°ΠΌ Π½ΡƒΠΆΠ½ΠΎ Π·Π½Π°Ρ‚ΡŒ области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ‚Π°ΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠ°ΠΊ стСпСнная, ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ, логарифмичСская, тригономСтричСская, обратная тригономСтричСская, Ρ‚ΠΎ совСтуСм Π²Π°ΠΌ ΠΏΠ΅Ρ€Π΅Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΡΡ‚Π°Ρ‚ΡŒΡŽ ΠΎΠ± основных элСмСнтарных функциях. ВСория, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΌΡ‹ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΠΌ здСсь, позволяСт ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Ρ‚Π°ΠΌ значСния. Π˜Ρ… ΠΆΠ΅Π»Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π²Ρ‹ΡƒΡ‡ΠΈΡ‚ΡŒ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ΠΈ часто Ρ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡. Если Π²Ρ‹ Π·Π½Π°Π΅Ρ‚Π΅ области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ основных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚ΠΎ Π»Π΅Π³ΠΊΠΎ смоТСтС Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ области Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΈΠ· элСмСнтарных с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ гСомСтричСского прСобразования.

РСшСниС

Π•Ρ‰Π΅ ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ запишСм Π±Π΅Π· пояснСний, Ρ‚.ΠΊ. ΠΎΠ½ ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π΅Π½ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅ΠΌΡƒ.

РСшСниС

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Ρ€Π°Π·Π±Π΅Ρ€Π΅ΠΌ, ΠΊΠ°ΠΊ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, которая Π½Π΅ являСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ. Для этого Π½Π°ΠΌ Π½Π°Π΄ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ всю ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ ΠΈ Π½Π°ΠΉΡ‚ΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· Π½ΠΈΡ…, послС Ρ‡Π΅Π³ΠΎ ΠΎΠ±ΡŠΠ΅Π΄ΠΈΠ½ΠΈΡ‚ΡŒ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ. Π§Ρ‚ΠΎΠ±Ρ‹ Π»ΡƒΡ‡ΡˆΠ΅ ΠΏΠΎΠ½ΡΡ‚ΡŒ это, совСтуСм ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΠΈΡ‚ΡŒ основныС Π²ΠΈΠ΄Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Ρ€Π°Π·Ρ€Ρ‹Π²Π° Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

РСшСниС

РСшСниС ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшСниС

Она ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° для всСх Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚Π°, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… собой Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ числа. ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ, Π² ΠΊΠ°ΠΊΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°Ρ… данная функция Π±ΡƒΠ΄Π΅Ρ‚ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Ρ‚ΡŒ, Π° Π² ΠΊΠ°ΠΊΠΈΡ… ΡƒΠ±Ρ‹Π²Π°Ρ‚ΡŒ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΉΠ΄Π΅ΠΌ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠ΅ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ Π½Π° ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° бСсконСчности:

Для вычислСния Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π° Π±Ρ‹Π»ΠΎ использовано ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ Лопиталя. Π˜Π·ΠΎΠ±Ρ€Π°Π·ΠΈΠΌ Ρ…ΠΎΠ΄ нашСго Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ Ѐункция?

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

7 класс, 11 класс, Π•Π“Π­/ΠžΠ“Π­

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΠΎ-Ρ€Π°Π·Π½ΠΎΠΌΡƒ. Рассмотрим нСсколько Π²Π°Ρ€ΠΈΠ°Π½Ρ‚ΠΎΠ², Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡƒΡΠ²ΠΎΠΈΡ‚ΡŒ навСрняка.

1. Ѐункция β€” это взаимосвязь ΠΌΠ΅ΠΆΠ΄Ρƒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΎΠΉ.

Π—Π½Π°ΠΊΠΎΠΌΠΎΠ΅ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ y = f (x) ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΈ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ идСю Ρ‚Π°ΠΊΠΎΠΉ зависимости ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³ΠΎΠΉ. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Ρƒ зависит ΠΎΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ… ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌΡƒ Π·Π°ΠΊΠΎΠ½Ρƒ, ΠΈΠ»ΠΈ ΠΏΡ€Π°Π²ΠΈΠ»Ρƒ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ обозначаСтся f.

Π’Ρ‹Π²ΠΎΠ΄: мСняя Ρ… (Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡƒΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΡƒΡŽ, ΠΈΠ»ΠΈ Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚) β€” мСняСм Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ.

2. Ѐункция β€” это ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ΅ дСйствиС Π½Π°Π΄ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ.

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΌΠΎΠΆΠ½ΠΎ Π²Π·ΡΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ρ…, ΠΊΠ°ΠΊ-Ρ‚ΠΎ Π½Π°Π΄ Π½Π΅ΠΉ ΠΏΠΎΠΊΠΎΠ»Π΄ΠΎΠ²Π°Ρ‚ΡŒ β€” ΠΈ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ Ρƒ.

Π’ тСхничСской Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡ‚Ρ€Π΅Ρ‚ΠΈΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для устройств, Π² ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π° Π²Ρ…ΠΎΠ΄ подаСтся Ρ… β€” Π½Π° Π²Ρ‹Ρ…ΠΎΠ΄Π΅ получаСтся Ρƒ. Π‘Ρ…Π΅ΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΎ это выглядит Ρ‚Π°ΠΊ:

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’ этом Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ слово «функция» ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ ΠΈ Π² Π΄Π°Π»Π΅ΠΊΠΈΡ… ΠΎΡ‚ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ областях. НапримСр, Ρ‚Π°ΠΊ говорят ΠΎ функциях Π½ΠΎΡƒΡ‚Π±ΡƒΠΊΠ°, костСй Π² ΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠ΅ ΠΈΠ»ΠΈ Π΄Π°ΠΆΠ΅ ΠΎ функциях ΠΌΠ΅Π½Π΅Π΄ΠΆΠ΅Ρ€Π° Π² ΠΊΠΎΠΌΠΏΠ°Π½ΠΈΠΈ. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΌ пСрСчислСнном случаС Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎ Π½Π΅ΠΊΠΈΡ… дСйствиях.

3. Ѐункция β€” это соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя мноТСствами, ΠΏΡ€ΠΈΡ‡Π΅ΠΌ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ элСмСнту ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ мноТСства соотвСтствуСт ΠΎΠ΄ΠΈΠ½ элСмСнт Π²Ρ‚ΠΎΡ€ΠΎΠ³ΠΎ мноТСства. Π­Ρ‚ΠΎ самоС популярноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π² ΡƒΡ‡Π΅Π±Π½ΠΈΠΊΠ°Ρ… ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

НапримСр, Π² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Ρƒ = 2Ρ… ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡƒ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу Ρ… ставит Π² соотвСтствиС число Π² Π΄Π²Π° Ρ€Π°Π·Π° большСС, Ρ‡Π΅ΠΌ Ρ….

ΠžΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния β€” мноТСство Ρ…, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ выраТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ записано Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅.

НапримСр, для Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²ΠΈΠ΄Π°

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния выглядит Ρ‚Π°ΠΊ:

И Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ это ΠΌΠΎΠΆΠ½ΠΎ Ρ‚Π°ΠΊ: D (y): Ρ… β‰  0.

ΠžΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ β€” мноТСство Ρƒ, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ это значСния, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Ρ‚ΡŒ функция.

НапримСр, СстСствСнная ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = x2 β€” это всС числа большС Π»ΠΈΠ±ΠΎ Ρ€Π°Π²Π½Ρ‹Π΅ Π½ΡƒΠ»ΡŽ. МоТно Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π²ΠΎΡ‚ Ρ‚Π°ΠΊ: Π• (Ρƒ): Ρƒ β‰₯ 0.

Для ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° рассмотрим соотвСтствиС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя мноТСствами β€” Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ-Π²Π»Π°Π΄Π΅Π»Π΅Ρ† странички Π² инстаграм ΠΈ сама страничка, Ρƒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π΅ΡΡ‚ΡŒ Π²Π»Π°Π΄Π΅Π»Π΅Ρ†. Π’Π°ΠΊΠΎΠ΅ соотвСтствиС ΠΌΠΎΠΆΠ½ΠΎ Π½Π°Π·Π²Π°Ρ‚ΡŒ Π²Π·Π°ΠΈΠΌΠ½ΠΎ-ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹ΠΌ β€” Ρƒ Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊΠ° Π΅ΡΡ‚ΡŒ страничка, ΠΈ это ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ. И Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ β€” ΠΏΠΎ Π°ΠΊΠΊΠ°ΡƒΠ½Ρ‚Ρƒ Π² инстаграм ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΈΡ‚ΡŒ, ΠΊΡ‚ΠΎ ΠΈΠΌ Π²Π»Π°Π΄Π΅Π΅Ρ‚.

Π’ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅ Ρ‚ΠΎΠΆΠ΅ Π΅ΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Π²Π·Π°ΠΈΠΌΠ½ΠΎ-ΠΎΠ΄Π½ΠΎΠ·Π½Π°Ρ‡Π½Ρ‹Π΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. НапримСр, линСйная функция Ρƒ = 3Ρ… +2. ΠšΠ°ΠΆΠ΄ΠΎΠΌΡƒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Ρ… соотвСтствуСт ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρƒ. И Π½Π°ΠΎΠ±ΠΎΡ€ΠΎΡ‚ β€” зная Ρƒ, ΠΌΠΎΠΆΠ½ΠΎ сразу Π½Π°ΠΉΡ‚ΠΈ Ρ….

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠžΠ±Π»Π°ΡΡ‚ΡŒ значСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π² Π·Π°Π΄Π°Ρ‡Π°Ρ… Π•Π“Π­

Π Π°Π·Π΄Π΅Π»Ρ‹: ΠœΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ всё, Ρ‡Ρ‚ΠΎ с Π½ΠΈΠΌ связано, относится ΠΊ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ слоТным, Π½Π΅ Π΄ΠΎ ΠΊΠΎΠ½Ρ†Π° понятым. ΠžΡΠΎΠ±Ρ‹ΠΌ ΠΊΠ°ΠΌΠ½Π΅ΠΌ прСткновСния ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ ΠΊ Π•Π“Π­ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ (измСнСния) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
НСрСдко учащиСся Π½Π΅ видят Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ Π΅Ρ‘ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.
И Ссли Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ области опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ учащимся удаётся ΠΎΡΠ²ΠΎΠΈΡ‚ΡŒ, Ρ‚ΠΎ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π²Ρ‹Π·Ρ‹Π²Π°ΡŽΡ‚ Ρƒ Π½ΠΈΡ… Π½Π΅ΠΌΠ°Π»Ρ‹Π΅ затруднСния.
ЦСль Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ: ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΠ΅ с ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ нахоТдСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.
Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ рассмотрСния Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΡ‹ Π±Ρ‹Π» ΠΈΠ·ΡƒΡ‡Π΅Π½ тСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π», рассмотрСны способы Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ мноТСств Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΏΠΎΠ΄ΠΎΠ±Ρ€Π°Π½ дидактичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» для ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ учащихся.
Данная ΡΡ‚Π°Ρ‚ΡŒΡ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ использована ΡƒΡ‡ΠΈΡ‚Π΅Π»Π΅ΠΌ ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ учащихся ΠΊ выпускным ΠΈ Π²ΡΡ‚ΡƒΠΏΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ экзамСнам, ΠΏΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ Ρ‚Π΅ΠΌΡ‹ β€œΠžΠ±Π»Π°ΡΡ‚ΡŒ значСния функции” Π½Π° Ρ„Π°ΠΊΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈΠ²Π½Ρ‹Ρ… занятиях элСктивных курсах ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

I. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

ΠžΠ±Π»Π°ΡΡ‚ΡŒΡŽ (мноТСством) Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(Ρƒ) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = f(x) называСтся мноТСство Ρ‚Π°ΠΊΠΈΡ… чисСл y0, для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… найдётся Ρ‚Π°ΠΊΠΎΠ΅ число x0, Ρ‡Ρ‚ΠΎ: f(x0) = y0.

Напомним области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π€ΡƒΠ½ΠΊΡ†ΠΈΡΠœΠ½ΠΎΠΆΠ΅ΡΡ‚Π²ΠΎ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ
y = kx+ bE(y) = (-∞;+∞)
y = x 2nE(y) = [0;+∞)
y = x 2n +1E(y) = (-∞;+∞)
y = k/xE(y) = (-∞;0)u(0;+∞)
y = x 1/2nE(y) = [0;+∞)
y = x 1/2n+1E(y) = (-∞;+∞)
y = a xE(y) = (0;+∞)
y = logaxE(y) = (-∞;+∞)
y = sin xE(y) = [-1;1]
y = cos xE(y) = [-1;1]
y = tg xE(y) = (-∞;+∞)
y = ctg xE(y) = (-∞;+∞)
y = arcsin xE(y) = [-Ο€/2 ; Ο€/2]
y = arcos xE(y) = [0; Ο€]
y = arctg xE(y) = (-Ο€/2 ; Ο€/2)
y = arcctg xE(y) = (0; Ο€)

II. Бвойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Для ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎΠ³ΠΎ нахоТдСния мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Π΄ΠΎ Ρ…ΠΎΡ€ΠΎΡˆΠΎ Π·Π½Π°Ρ‚ΡŒ свойства основных элСмСнтарных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, особСнно ΠΈΡ… области опрСдСлСния, области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΈ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ монотонности. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘ΠΌ свойства Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ…, ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½Ρ‹Ρ… Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Π΅ ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Бвойства 2 ΠΈ 3, ΠΊΠ°ΠΊ ΠΏΡ€Π°Π²ΠΈΠ»ΠΎ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ вмСстС свойством элСмСнтарной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π±Ρ‹Ρ‚ΡŒ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Π² своСй области опрСдСлСния. ΠŸΡ€ΠΈ этом Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ простоС ΠΈ ΠΊΡ€Π°Ρ‚ΠΊΠΎΠ΅ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ достигаСтся Π½Π° основании свойства 1, Ссли нСслоТными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ удаётся ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΡΡ‚ΡŒ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. РСшСниС Π·Π°Π΄Π°Ρ‡ΠΈ Π΅Ρ‰Ρ‘ упрощаСтся, Ссли функция, Π²Π΄ΠΎΠ±Π°Π²ΠΎΠΊ, – чётная ΠΈΠ»ΠΈ нСчётная, пСриодичСская ΠΈ Ρ‚.Π΄. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ мноТСств Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ слСдуСт ΠΏΠΎ ΠΌΠ΅Ρ€Π΅ надобности ΠΏΡ€ΠΎΠ²Π΅Ρ€ΡΡ‚ΡŒ ΠΈ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ свойства Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ:

НСслоТныС Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ своём ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹:

Π±) Π½Π° Π²Ρ‹Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π°: Ρ… 2 – 4Ρ… + 7 = (Ρ… – 2) 2 + 3;

Π²) Π½Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ тригономСтричСских Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ: 2sin 2 x – 3cos 2 x + 4 = 5sin 2 x +1;

Π³) использованиС монотонности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ x 1/3 + 2 x-1 возрастаСт Π½Π° R.

III. Рассмотрим способы нахоТдСния областСй Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ.

Π°) ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;
Π±) ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΡ†Π΅Π½ΠΎΠΊ;
Π²) использованиС свойств нСпрСрывности ΠΈ монотонности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;
Π³) использованиС ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ;
Π΄) использованиС наибольшСго ΠΈ наимСньшСго Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ;
Π΅) графичСский ΠΌΠ΅Ρ‚ΠΎΠ΄;
ΠΆ) ΠΌΠ΅Ρ‚ΠΎΠ΄ ввСдСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°;
Π·) ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ.

РаскроСм ΡΡƒΡ‚ΡŒ этих ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π½Π° ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π°Ρ….

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. НайдитС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(y) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = log0,5(4 – 2Β·3 x – 9 x ).

РСшим этот ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ нахоТдСния Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ² Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π’Ρ‹Π΄Π΅Π»ΠΈΠ² ΠΏΠΎΠ»Π½Ρ‹ΠΉ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ ΠΏΠΎΠ΄ Π»ΠΎΠ³Π°Ρ€ΠΈΡ„ΠΌΠΎΠΌ, ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ

y = log0,5(5 – (1 + 2Β·3 x – 3 2x )) = log0,5(5 – (3 x + 1) 2 )

И ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π½Π°ΠΉΠ΄Ρ‘ΠΌ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π΅Ρ‘ слоТных Π°Ρ€Π³ΡƒΠΌΠ΅Π½Ρ‚ΠΎΠ²:

E(3 x ) = (0;+∞), E(3 x + 1) = (1;+∞), E(-(3 x + 1) 2 = (-∞;-1), E(5 – (3 x +1) 2 ) = (-∞;4)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. НайдитС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшим этот ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΎΡ†Π΅Π½ΠΎΠΊ, ΡΡƒΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ состоит Π² ΠΎΡ†Π΅Π½ΠΊΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ снизу ΠΈ свСрху ΠΈ Π² Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ достиТСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠ΅ΠΉ Π½ΠΈΠΆΠ½Π΅ΠΉ ΠΈ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΎΡ†Π΅Π½ΠΎΠΊ. ΠŸΡ€ΠΈ этом совпадСниС мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ с ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠΌ ΠΎΡ‚ Π½ΠΈΠΆΠ½Π΅ΠΉ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ ΠΎΡ†Π΅Π½ΠΊΠΈ Π΄ΠΎ Π²Π΅Ρ€Ρ…Π½Π΅ΠΉ обуславливаСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΡΡ‚ΡŒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ отсутствиСм Ρƒ Π½Π΅Ρ‘ Π΄Ρ€ΡƒΠ³ΠΈΡ… Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. НайдитС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) = cos2x + 2cosx.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

По Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ косинуса Π΄Π²ΠΎΠΉΠ½ΠΎΠ³ΠΎ ΡƒΠ³Π»Π° ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅ΠΌ функция f(x) = 2cos 2 x + 2cosx – 1 ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ t = cosx. Π’ΠΎΠ³Π΄Π° f(x) = 2t 2 + 2t – 1. Π’Π°ΠΊ ΠΊΠ°ΠΊ E(cosx) =

[-1;1], Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) совпадаСт со мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ g(t) = 2t 2 + 2t – 1 Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-1;1], ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π½Π°ΠΉΠ΄Ρ‘ΠΌ графичСским ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. ΠŸΠΎΡΡ‚Ρ€ΠΎΠΈΠ² Π³Ρ€Π°Ρ„ΠΈΠΊ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 2t 2 + 2t – 1 = 2(t + 0,5) 2 – 1,5 Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ [-1;1], Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ E(f) = [-1,5; 3].

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅ – ΠΊ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΡŽ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ сводятся ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ, связанныС, Π² основном, с Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒΡŽ ΠΈ числом Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ уравнСния ΠΈ нСравСнств. НапримСр, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x) = Π° Ρ€Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π°

a Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈE(f) Аналогично, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x) = Π° ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ, располоТСнный Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π₯, ΠΈΠ»ΠΈ Π½Π΅ ΠΈΠΌΠ΅Π΅Ρ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ корня Π½Π° этом ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΈΠ»ΠΈ Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ мноТСству Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π₯. Π’Π°ΠΊΠΆΠ΅ ΠΈΡΡΠ»Π΅Π΄ΡƒΡŽΡ‚ΡΡ с ΠΏΡ€ΠΈΠ²Π»Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ ΠΈ нСравСнства f(x)β‰  Π°, f(x)>Π° ΠΈ Ρ‚.Π΄. Π’ частности, f(x)β‰  Π° для всСх допустимых Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ…, Ссли a Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈE(f)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 4. ΠŸΡ€ΠΈ ΠΊΠ°ΠΊΠΈΡ… значСниях ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π° ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ (x + 5) 1/2 = a(x 2 + 4) ΠΈΠΌΠ΅Π΅Ρ‚ СдинствСнный ΠΊΠΎΡ€Π΅Π½ΡŒ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-4;-1].

На ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-4;-1] функция y = xΠ† + 4 Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π°, ΡƒΠ±Ρ‹Π²Π°Π΅Ρ‚ ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, поэтому функция g(x) = 1/(x 2 + 4) Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° ΠΈ возрастаСт Π½Π° этом ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π½Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ монотонности Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ мСняСтся Π½Π° ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ. Ѐункция h(x) = (x + 5) 1/2 Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° ΠΈ возрастаСт Π² своСй области опрСдСлСния D(h) = [-5;+∞) ΠΈ, Π² частности Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-4;-1], Π³Π΄Π΅ ΠΎΠ½Π°, ΠΊΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°. Π’ΠΎΠ³Π΄Π° функция f(x)=g(x)Β·h(x), ΠΊΠ°ΠΊ ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π΄Π²ΡƒΡ… Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹Ρ…, Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°ΡŽΡ‰ΠΈΡ… ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ, Ρ‚Π°ΠΊΠΆΠ΅ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° ΠΈ возрастаСт Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-4;-1], поэтому Π΅Ρ‘ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Π½Π° [-4;-1] Π΅ΡΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ [f(-4); f(-1)] = [0,05; 0,4]. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [-4;-1], ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ СдинствСнноС (ΠΏΠΎ свойству Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½ΠΎΠΉ ΠΌΠΎΠ½ΠΎΡ‚ΠΎΠ½Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ), ΠΏΡ€ΠΈ 0,05 ≀ a ≀ 0,4

Π—Π°ΠΌΠ΅Ρ‡Π°Π½ΠΈΠ΅. Π Π°Π·Ρ€Π΅ΡˆΠΈΠΌΠΎΡΡ‚ΡŒ уравнСния f(x) = a Π½Π° Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π₯ Ρ€Π°Π²Π½ΠΎΡΠΈΠ»ΡŒΠ½Π° принадлСТности Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π° мноТСству Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π½Π° Π₯. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π₯ совпадаСт с мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x) = a ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ Π½Π° ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π₯. Π’ частности, ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x)совпадаСт с мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x) = a ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 5. НайдитС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

РСшим ΠΏΡ€ΠΈΠΌΠ΅Ρ€ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ввСдСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, согласно ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌΡƒ E(f) совпадаСт с мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°, для ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

ΠΈΠΌΠ΅Π΅Ρ‚ хотя Π±Ρ‹ ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ.

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊ ΠΊΠ°ΠΊ Ρ‚ΠΎΡ‡ΠΊΠ° Π° = 2 ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΡ‚ΠΎ искомым мноТСством Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f) Π±ΡƒΠ΄Π΅Ρ‚ вСсь ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ.

Как нСпосрСдствСнноС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ввСдСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° ΠΏΡ€ΠΈ Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, для нахоТдСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π½Π°Π΄ΠΎ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x)= y, считая y ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ. Если это ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠΌΠ΅Π΅Ρ‚ СдинствСнноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ x =g(y), Ρ‚ΠΎ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f) исходной Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(x) совпадаСт с ΠΎΠ±Π»Π°ΡΡ‚ΡŒΡŽ опрСдСлСния D(g) ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ g(y). Если ΠΆΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ f(x)= y ΠΈΠΌΠ΅Π΅Ρ‚ нСсколько Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ x =g1(y), x =g2(y) ΠΈ Ρ‚.Π΄., Ρ‚ΠΎ E(f) Ρ€Π°Π²Π½Π° объСдинСнию областСй ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ g1(y), g2(y) ΠΈ Ρ‚.Π΄.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 6. НайдитС ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(y) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ y = 5 2/(1-3x).

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡŽ x = log3((log5y – 2)/(log5y)) ΠΈ Π΅Ρ‘ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния D(x):

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π°ΠΊ ΠΊΠ°ΠΊ уравнСния ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ… ΠΈΠΌΠ΅Π΅Ρ‚ СдинствСнноС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅, Ρ‚ΠΎ

E(y) = D(x) = (0; 1)Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ(25;+ ∞ ).

Если ΠΎΠ±Π»Π°ΡΡ‚ΡŒ опрСдСлСния Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ состоит ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡŒΠΊΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΎΠ² ΠΈΠ»ΠΈ функция Π½Π° Ρ€Π°Π·Π½Ρ‹Ρ… ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ°Ρ… Π·Π°Π΄Π°Π½Π° Ρ€Π°Π·Π½Ρ‹ΠΌΠΈ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°ΠΌΠΈ, Ρ‚ΠΎ для нахоТдСния области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π°Π΄ΠΎ Π½Π°ΠΉΡ‚ΠΈ мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ ΠΈ Π²Π·ΡΡ‚ΡŒ ΠΈΡ… объСдинСниС.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 7. НайдитС области Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ f(x) ΠΈ f(f(x)), Π³Π΄Π΅

Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, объСдинив ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ [9;+∞) ΠΈ [5;9] – мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(f(x)), ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ t = f(x). Π’ΠΎΠ³Π΄Π° f(f(x)) = f(t), Π³Π΄Π΅ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚ Π½Π°ΠΉΡ‚ΠΈ мноТСство Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈΠŸΡ€ΠΈ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… t функция f(t) = 2cos(x-1) 1/2 + 7 ΠΈ ΠΎΠ½Π° снова ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ всС значСния ΠΎΡ‚ 5 Π΄ΠΎ 9 Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, Ρ‚.Π΅. ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(fΠ†) = E(f(f(x))) = [5;9].

Аналогично, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠ² z = f(f(x)), ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ ΠΎΠ±Π»Π°ΡΡ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ E(f 3 ) Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(f(f(x))) = f(z), Π³Π΄Π΅ 5 ≀ z ≀ 9 ΠΈ Ρ‚.Π΄. Π£Π±Π΅Π΄ΠΈΡ‚Π΅ΡΡŒ, Ρ‡Ρ‚ΠΎ E(f 3 ) = [2cos8 1/2 + 7; 2cos2 + 7].

НаиболСС ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ нахоТдСния мноТСства Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ являСтся использованиС наибольшСго ΠΈ наимСньшСго Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ Π½Π° Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅.

0,5 ≀ t 3 – 2t 2 + t ΠΏΡ€ΠΈ 0,5 ≀ t 2 – 4t + 1. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, f(t) Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠ°, Π·Π½Π°Ρ‡ΠΈΡ‚, ΠΈ Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Π° Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [0,5;4]. Из уравнСния f’(t) = 0 Π½Π°ΠΉΠ΄Ρ‘ΠΌ критичСскиС Ρ‚ΠΎΡ‡ΠΊΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ t = 1/3, t = 1, пСрвая ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ [0,5;4], Π° вторая ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π΅ΠΌΡƒ. Π’Π°ΠΊ ΠΊΠ°ΠΊ f(0,5) = 1/8, f(1) = 0, f(4) = 36, Ρ‚ΠΎ, ΠΏΠΎ свойству Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΡƒΠ΅ΠΌΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, 0 – наимСньшСС, Π° 36 – наибольшСС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ f(t) Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [0,5;4]. Π’ΠΎΠ³Π΄Π° f(t), ΠΊΠ°ΠΊ нСпрСрывная функция, ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ [0,5;4] всС значСния ΠΎΡ‚ 0 Π΄ΠΎ 36 Π²ΠΊΠ»ΡŽΡ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡ€ΠΈΡ‡Ρ‘ΠΌ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ 36 ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅Ρ‚ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€ΠΈ t = 4, поэтому ΠΏΡ€ΠΈ 0,5 ≀ t

Данная Ρ‚Π΅ΠΌΠ° ΠΈΠΌΠ΅Π΅Ρ‚ практичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅. Π’ школьном курсС ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ изучаСтся Ρ‚Π΅ΠΌΠ° β€œΠžΠ±Π»Π°ΡΡ‚ΡŒ значСния функции”. Π’Π°ΠΊΠΈΠ΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ содСрТатся Π² заданиях Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… матСматичСских тСстов, Π² частности Π² заданиях Π΅Π΄ΠΈΠ½ΠΎΠ³ΠΎ государствСнного экзамСна.
Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ Ρ€Π°Π±ΠΎΡ‚Ρ‹ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π° ΡƒΡ€ΠΎΠΊΠ°Ρ… ΠΈ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… занятиях ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ учащихся выпускным ΠΈ Π²ΡΡ‚ΡƒΠΏΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ экзамСнам, ΠΏΡ€ΠΈ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ΅ учащихся ΠΏΠΎ Π΄Π°Π½Π½ΠΎΠΉ Ρ‚Π΅ΠΌΠ΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *