Что значит нативная молекула
Большая Энциклопедия Нефти и Газа
Нативная молекула
Нативная молекула в каталитически активном состоянии. [2]
В нативной молекуле СЗ существует внутренняя тиоэфир-ная связь, которая весьма чувствительна к спонтанному гидролизу. Однако в норме конформация СЗ такова, что эта тиоэфирная связь находится внутри молекулы и недоступна для водной среды. Такая самопроизвольная активация СЗ постоянно происходит в организме в небольшом объеме и называется холостой. Образующийся продукт C3i в определенной степени подобен СЗЬ, образующемуся при классическом пути активации. В дальнейшем происходит следующий каскад реакций. [3]
Хотя спираль нативной молекулы ДНК имеет более 103 внт-ков, расчет показывает, что раскручивание спирали происходит всего лишь за несколько секунд. В опытах с ренатурацией ДНК охлаждение раствора длится час и более, и, следовательно, процесс ренатурации можно считать равновесным во всей области изменения температуры. Для восстановления двойных спиралей при медленном охлаждении требуется, чтобы вновь соединились цепи, комплементарные друг другу. [4]
Разработан щадящий метод выделения нативной молекулы ДНК с использованием протеиназы К и ДСН. Выделенный из клеток почек обезьяны препарат ДНК имел необычно высокую мол. [5]
Способность метилового зеленого избирательно связываться нативными молекулами ДНК давно используется в цитохимии этой НК. Прямому количественному определению, как отмечалось выше, мешают белки. [7]
Данные о структуре тРНК свидетельствуют о том, что нативные молекулы тРНК имеют примерно одинаковую третичную структуру, которая отличается от плоской структуры клеверного листа большой компактностью за счет складывания различных частей молекулы. Следует указать на существование у ряда вирусов ( реовирус, вирус раневых опухолей растений и др.) природных двухцепочечных РНК, обладающих однотипной с ДНК структурой. В настоящее время получены доказательства значимости ван-дер-ваальсовых ( диполь-дипольных и лондоновских) связей между азотистыми основаниями в стабилизации общей пространственной конфигурации нуклеиновых кислот. [8]
Функции отдельных гетероатомов в ВМС нефтей достаточно разнообразны, но в нативных молекулах полностью укладываются в рамки того набора функций, который характерен для низкомолекулярных неуглеводородных компонентов нефти. [11]
Гибридологический анализ основан на способности полину-клеотидных цепей денатурированной ДНК при охлаждении ассоциировать и давать двухнитчатую нативную молекулу не только со своими, или гомологичными нитями, но с нитями чужеродной, или гетерологичной ДНК. Во втором случае возникают гибридные молекулы. [13]
Большая Энциклопедия Нефти и Газа
Нативная молекула
Плоская структура монослоя белка на электроде приводит к тому, что электрохимические реакции восстановления коэнзим-ных групп в составе монослойной пленки протекают при потенциалах, которые приближаются к редокс-потенциалу свободных групп. Было также обнаружено, что после образования монослоя происходит дальнейшая адсорбция белковых макромолекул с образованием второго и последующих слоев, причем эта адсорбция протекает уже обратимо с сохранением нативной структуры белка. Часть белковых макромолекул, внедренных в поры монослоя, также сохраняет нативную форму, и они могут участвовать в виде нативных молекул в электрохимических реакциях. [36]
Все известные в настоящее время ферменты представляют собой белки, причем их каталитическая активность зависит от степени сохранности нативной структуры белка. Например, разрушение полипептидных цепей в результате кипячения фермента в растворе сильной кислоты или обработки трипсином обычно приводит к потере его каталитической активности. Это свидетельствует о том, что первичная структура белка необходима для проявления его ферментативной активности. Более того, стоит нам только нарушить характерную для нативной молекулы фермента упаковку полипептидной цепи ( цепей), нагревая белок или воздействуя на него экстремальными значениями рН или денатурирующими агентами, как каталитическая активность фермента исчезает. Таким образом, для ферментативной активности белков важное значение имеет сохранение их первичной, вторичной и третичной структур. [45]
НАТИВНОСТЬ БЕЛКОВОЙ МОЛЕКУЛЫ
ДЕНАТУРАЦИЯ БЕЛКА
Для обозначения процесса, при котором нативные свойства белка теряются, используют термин ДЕНАТУРАЦИЯ.
ДЕНАТУРАЦИЯ — это лишение белка его природных, нативных свойств, сопровождающееся разрушением четвертичной (если она была), третичной, а иногда и вторичной структуры белковой молекулы, которое возникает при разрушении дисульфидных и слабых типов связей, участвующих в образовании этих структур. Первичная структура при этом сохраняется, потому что она сформирована прочными ковалентными связями. Разрушение первичной структуры может произойти только в результате гидролиза белковой молекулы длительным кипячением в растворе кислоты или щелочи.
ФАКТОРЫ, ВЫЗЫВАЮЩИЕ ДЕНАТУРАЦИЮ БЕЛКОВ
Факторы, которые вызывают денатурацию белков, можно разделить на физические и химические.
Физические факторы
1. Высокие температуры. Для разных белков характерна различная чувствительность к тепловому воздействию. Часть белков подвергается денатурации уже при 40-50 0 С. Такие белки называют термолабильными. Другие белки денатурируют при гораздо более высоких температурах, они являются термостабильными.
2. Ультрафиолетовое облучение
3. Рентгеновское и радиоактивное облучение
5. Механическое воздействие (например, вибрация).
Что значит нативная молекула
• Молекулярные шапероны связываются с белками в люмене и обеспечивают образование их нативной структуры.
После того как новообразующиеся полипептиды подверглись переносу и модификации, у них начинает образовываться нативная структура. Образование нативных структур белков представляет собой один из наиболее активных процессов, происходящих в люмене ЭПР, куда постоянно поступают транслоцированные белки.
Поскольку белки, обладающие дефектной нативной структурой, представляют большую опасность для клетки, одна из главных функций ЭПР заключается в контроле за нативной структурой белков, вступающих на секреторный путь. Для этого в ЭПР существует активная система контроля качества, которая распознает нескрученные или неправильно скрученные белки и либо обеспечивает им возможность принять правильную нативную конфигурацию, либо вызывает их деградацию.
Для образования нативной структуры в эндоплазматическом ретикулуме (ЭПР) характерны те же проблемы, что и для ее образовании в цитозоле. Движущей силой при формировании нативной структуры белка являются гидрофобные взаимодействия: гидрофобные домены проявляют тенденцию связываться друг с другом, а не оставаться в водном окружении.
Однако гидрофобные домены могут связываться неправильным образом, что приводит к дефектной нативной структуре белка или к его агрегации при взаимодействии с другими белками. In vivo молекулярные шапероны способствуют образованию нативной структуры белка, обеспечивая надлежащее окружение для протекания этого процесса и контроль за его результатами. Структурные перестройки могут повторяться до тех пор, пока белок не приобретет правильную нативную конформацию.
Шапероны в в эндоплазматическом ретикулуме (ЭПР) очень активны и составляют основу системы контроля структуры белка. Пока белок связан с шаперонами, он не может выйти из ЭПР и транспортироваться в аппарат Гольджи.
Многие распространенные шапероны ЭПР родственны шаперонам цитозоля. В люмене к числу наиболее полно охарактеризованных шаперонов относится белок BiP, из группы hsp70. Этот белок — самый часто встречающийся в ЭПР и взаимодействует со многими белками на ранних этапах образования их нативной структуры.
Поскольку обычно гидрофобные области скрыты в сердцевине глобулярных белков, присутствие на поверхности молекулы гидрофобных участков свидетельствует о том, что белок полностью не приобрел нативную структуру. Эти участки служат местами связывания BiP с нативной цепью. За счет последовательных циклов гидролиза АТФ BiP неоднократно связывается с новообразующимся белком и высвобождается. Тем самым предупреждается агрегация образующегося белка и облегчается образование им правильной нативной структуры.
На активность BiP в качестве шаперона влияют дополнительные белки, стимулирующие гидролиз АТФ, а также белки, способствующие обмену АДФ на АТФ. Возможно, что таким образом, в зависимости от потребностей клетки, может регулироваться скорость образования нативной структуры белка. После того как белок образовал компактную структуру, гидрофобные участки которой находятся внутри, связывание BiP прекращается. Очень высокое содержание BiP в люмене ЭПР позволяет предполагать, что он является одним из первых шаперонов, с которыми встречается большинство новообразующихся белков, и что при попытке формирования нативной структуры поблизости всегда оказываются молекулы BiP.
Данный белок с самого начала участвует в этом процессе и играет основную роль в облегчении скручивания белковой цепи.
К другим шаперонам, содержащимся в люмене и цитозоле, относится белок Grp94, принадлежащий к семейству hsp90. Хотя этот белок, так же как и BiP, находится в люмене в больших количествах, в отличие от последнего он связывается с белками, которые уже частично приобрели нативную структуру, а не с теми, которые только что вышли в люмен и таковой не обладают. Grp94 взаимодействует с меньшим количеством субстратов, чем BiP, и неизвестно, какое свойство белка он узнает.
Вероятно, функция его в основном заключается в том, чтобы способствовать эффекту BiP и других шаперонов, участвующих в формировании нативной структуры. Существование белка Grp94 служит показателем того, что контроль качества образования нативной структуры белковой цепи носит многоуровневый характер.
BiP связывается с открытыми гидрофобными областями транслоцированных белков.
После приобретения белком нативной структуры его гидрофобные участки оказываются в глубине и более недоступны для BiP.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Молочные и сывороточные белки (протеины). Преимущества и обзор биологической ценности.
Что значит нативный белок
Белок – это высокомолекулярный полимер, построенный из остатков аминокислот. Почти все белки формируются двадцатью протеиногенными аминокислотами, соединенными между собой пептидными связями.
Нативный белок – это белок в исходном виде. Нативная структура белка определяется составом окружающего водного раствора и такими показателями окружения как pH, температура, ионная сила и тд. Незначительные изменения в этих показателях не ведут к радикальным метаморфозам в архитектуре белка, то есть не меняются его функциональные свойства и питательная ценность.
Процесс денатурации белка
В противовес процессам, не ведущим к структурным изменениям белков, процессы, значительно изменяющие эту структуру, но без разрушения пептидных связей, называются денатурирующими. Проблема денатурации белка в том, что денатурированный белок теряет часть своих функциональных возможностей и его питательная ценность снижается.
На производстве денатурация обусловлена необходимостью изменения физических свойств белка. Например, при частичной термической денатурации повышаются эмульгирующие свойства соевого белка. В случае со всеми белками бобовых культур термическая денатурация значительно улучшает их усвоение, так как при высокотемпературной обработке инактивируется ингибитор трипсина.
Часто полная денатурация требуется при производстве белковых напитков, потому что даже частично денатурированный белок вызывает флокуляцию (хлопьеобразование), в результате в процессе хранения образуется осадок, что недопустимо.
Температура как денатурирующий фактор
Наиболее распространенный способ денатурации белков, применяемый при переработке пищевых продуктов и их консервации, это тепловая обработка. В зависимости от температуры, длительности воздействия и типа белка такая обработка может менять свойства белка в разной степени. Поэтому не всегда белок, прошедший термообработку, становится денатурированным и теряет ряд биологических свойств.
Например, глицинин из соевого белка при 2 °С агрегируется и осаждается, но при нагреве до комнатной температуры снова становится растворимым. Сывороточные глобулярные белки альфа-лактальбумин и бета-лактоглобулин из коровьего молока денатурируются при нагреве до 83 °С. А обезжиренное молоко при 4 °С диссоциирует казеин из казеиновых мицелл (то есть мицеллы распадаются на отдельные молекулы), что меняет их свойства относительно сычужной свертываемости.
Нутритивные свойства и качество белка
Белки различаются по биологической ценности. Эти различия определяются двумя факторами – содержание незаменимых (эссенциальных) аминокислот и степень усвояемости. Сочетание этих двух факторов создает понятие «качество белка».
По современным стандартам высококачественным может считаться только белок, объем эссенциальных аминокислот в котором превышает эталонный уровень, установленный ФАО (Организация ООН по вопросам продовольствия и сельского хозяйства), УООН (Университет ООН) и ВОЗ (Всемирная организация здравоохранения). Также высококачественный белок по степени усвоения должен быть сопоставим или превосходить усвоение яичного или молочного белка. С этой точки зрения качество белков животного происхождения выше, чем качество растительных белков.
У большинства бобовых и зерновых культур белки лимитированы как минимум одной из незаменимых аминокислот. Например, рис, пшеница, ячмень и кукуруза богаты метионином, зато в них очень мало лизина. У бобовых и масличных наоборот – в их составе много лизина и недостаток метионина. А в арахисе мало и метионина и лизина. Такие аминокислоты, которых в конкретном белке меньше, чем в эталонном, называются лимитирующими. Важно, чтобы рацион содержал достаточное количество всех эссенциальных (незаменимых) аминокислот. В противном случае у взрослых людей могут развиваться патологии, а у детей до 12 лет замедляется рост.
Лейцин, изолейцин, валин, гистидин и фенилаланин – это незаменимые кислоты, которые почти не бывают лимитирующими, то есть во всех видах белка, вне зависимости от происхождения, содержание этих аминокислот достаточное или даже избыточное. Лизин, треонин, триптофан и все серосодержащие аминокислоты становятся лимитирующими чаще всего. Сегодня достаточно легко исправить проблему лимитированных белков посредством их соединения с другими белками, богатыми аминокислотами, которые для исходного белка выступают лимитирующими. Например, эффективно комбинируются бобовые и зерновые белки. То есть рацион, в котором присутствуют белки обоих типов, будет содержать все незаменимые аминокислоты в объеме достаточном для обеспечения нормального роста и жизнедеятельности организма.
Эту проблему можно решить не только правильным составлением рациона, но также на производстве посредством сапплементации – обогащения белка аминокислотой, которая для него является лимитирующей. Таким образом можно повысить биологическую ценность низкокачественного белка. Например, нутритивное качество бобовых повышается обогащением метионином, а злаковые соответственно обогащают лизином.
Оптимальная биологическая ценность белка
Оптимальной биологическая ценность белка считается в том случае, если в нем содержатся все незаменимые аминокислоты и их объем достаточен для обеспечения всех процессов роста в организме и прочих метаболических процессов на нормальном уровне.
Сложность в том, что для каждого человека из любой категории населения оптимален свой суточный объем аминокислот, который определяется, исходя из физиологических показателей, режима дня, рациона, условий жизни и множества других факторов. ВОЗ и ФАО рекомендуют использовать универсальную норму, которая применяется для определения оптимальной биологической ценности белковой составляющей рациона у детей дошкольного возраста 2-5 лет.
Слишком большое потребление аминокислот опасно тем, что приводит к «аминокислотному антагонизму», сопровождающемуся пищевым отравлением. Если в рационе чрезмерный объем одной аминокислоты, это приводит к дефициту других аминокислот, так как начинается конкурирование между ними за приоритет всасывания в кишечнике (то есть какие-то аминокислоты просто не будут успевать усваиваться).
Например, если в рационе избыточный объем лейцина, он усваивается в кишечнике приоритетнее изолейцина, валина и тирозина. И даже если три эти аминокислоты присутствуют в рационе в достаточном объеме, возникает их дефицит, что также может приводить к задержке роста у детей и развитию патологических состояний у взрослых.
Усвояемость и конформация белка
Хотя объем эссенциальных аминокислот является превалирующим фактором, также для качества белка важна усвояемость – этот показатель отображает процент белка, который всасывается стенками кишечника. Например, для молока это 95%, а для риса 75%. Соответственно, для покрытия суточной нормы одних и тех же аминокислот нужен существенно больший объем рисового белка в сравнении с молочным (то есть «наесть» дневную норму потребление рисковым белком действительно сложно). В целом, белки животного происхождения усваиваются лучше, чем растительные белки.
На производстве часто выполняется гидролиз белков протеазами (ферменты, расщепляющие пептидную связь между аминокислотами), степень этого воздействия зависит от структурного состояния белка. Нативные (неденатурированные) белки гидролизованы значительно меньше, чем денатурированные. Гидролизации практически не подвержены нерастворимые фибриллярные белки и глобулярные белки, которые уже полностью денатурированы.
В качестве примера можно привести фазеолин (белок фасоли), который может быть подвергнут гидролизу протеазами и в этом случае будет расщеплен лишь частично с высвобождением полипептидов молекулярной массы до 22,000 Да. Но если фазеолин подвергнуть гидролизу протеазами при тепловой обработке, он полностью распадется до аминокислот и дипептидов.
Факторы, снижающие биологическую ценность белка
Большинство растительных белков в форме концентратов и изолятов содержат ингибиторы трипсина и химотрипсина. Эти вещества значительно замедляют процесс гидролиза белков из бобовых и масличных культур, а также препятствуют их полному гидролизу панкреатическими ферментами протеазами. Также эти растительные белки имеют в составе лектины (гликопротеины, «склеивающие» углеводы). Лектины связываются с клетками слизистой оболочки кишечника, что мешает проникновению аминокислот через кишечную стенку.
Некоторые ингибиторы трипсина и химотрипсина (тип Баумана-Бирка) термостабильны, а другие (тип Кунитца) термолабильны (то есть неустойчивы к тепловому воздействию). Также термолабильны лектины. Это значит, что после прохождения тепловой обработки белки бобовых и масличных культур лучше усваиваются (даже лучше, чем изоляты нативных белков).
В растительных белках содержатся таннины и фитаты, которые также снижают их биологическую ценность. Например, таннины препятствуют расщеплению полипептидов – процесс, который катализируется трипсином. Также скорость и полнота гидролиза белков снижается в процессе их взаимодействия с полисахаридами и пищевыми волокнами.
Оценка биологической ценности белков
Оценка биологической ценности белка для производителей необходима потому, что она позволяет выявить наиболее щадящие методы воздействия, при которых максимально сохраняется питательная ценность и функциональные свойства нативной формы (например – способность лакто-глобулина транспортировать Витамин D3 в кишечнике и свойство лактоферрина стимулировать развитие полезной микробиоты).
Для конечного потребителя оценка биологической ценности белка тоже важна, она позволяет точно определить оптимальный объем того или иного белка (или их комбинации) в рационе, не допустив недостатка и «аминокислотного антагонизма» при избытке. Для проведения такой оценки используют рацион с содержанием белка 10% (по сухой массе) с обеспечением его энергетической ценности. В течение 9 дней показатели изменения массы тела замеряются и по итогу выводится коэффициент эффективности белка (PER) – это прибавка веса в граммах на 1 грамм потребленного белка.
Другой показатель – коэффициент чистой эффективности белка (NPR), для его вычисления из показателя увеличения массы тела вычитается потеря массы из безбелковой группы и полученный результат делится на количество усвоенного белка. Показатель NPR отражает способность тестируемого белка эффективно поддерживать процессы роста и функционирования организма.
Существуют и другие методы оценки биологической ценности белка, включая ферментативные и микробиологические. Например, белок можно лабораторно расщеплять пепсином, трипсином поджелудочной железы или панкреатином. Это позволяет оценить скорость и полноту усвояемости белка, а также выявить – произошли ли с ним какие-либо изменения в процессе промышленной переработки.
Как пищевая ценность белков может меняться при промышленной переработке
Существует несколько основных видов промышленной переработки белка – нагревание, замораживание, сушка, воздействие химическими реагентами, ферментация. Самый часто применяемый метод – теплообработка, которая нужна для инактивации микроорганизмов и эндогенных ферментов, вызывающих различные изменения в белках в процессе хранения (например, их окисление). Также термообработка необходима для улучшения органолептических свойств белка (вкуса и запаха).
Еще один важный эффект от термической обработки – устранение аллергической реакции. Некоторые белки являются аллергенными, например – альфа-лактальбумин, бета-лактоглобулин и соевый белок. Но если они прошли обработку высокими температурами, возможные аллергические реакции и реакции гиперчувствительности устраняются. Проблема в том, что очень часто термообработка и другие методы денатурации негативно сказываются на пищевой ценности белка.
Умеренная тепловая обработка
Большинство пищевых белков частично денатурируются при умеренной тепловой обработке 60-90°С (длительность обработки – не более 60 минут). Этот процесс снижает растворимость белков и соответственно ухудшает зависящие от растворимости функциональные свойства. Однако с точки зрения качества белка частичная денатурация улучшает его усвояемость и биодоступность незаменимых аминокислот. Например, яичный белок и некоторые очищенные растительные белки отличаются недостаточной усвояемостью даже когда из них удаляются ингибиторы протеаз. Однако умеренная температурная обработка повышает этот показатель и при этом не образуются токсичные производные.
Также при умеренной тепловой обработке помимо протеаз инактивируются липазы, липоксигеназы, амилазы, полифенолоксидазы и некоторые другие ферменты, активность которых при хранении может приводить к изменениям вкуса и цвета белка. Например, в белках масличных и бобовых культур содержится много липоксигеназы. Этот фермент опасен тем, что в присутствии кислорода он катализирует окисление полиненасыщенных жирных кислот до гидропероксидов. В результате, образуются альдегиды и кетоны, которые приводят к появлению постороннего вкуса у соевой муки и изолятов соевого белка. Но если перед измельчением семян или бобов липоксигеназа была инактивирована тепловой обработкой, изменение вкуса не происходит.
Для растительных белков тепловая обработка полезнее, чем для белков животного происхождения, потому что в растительных белках много так называемых антиалиментарных веществ. Например, это уже упомянутые ингибиторы трипсина и химотрипсина, которые значительно снижают усвояемость белка и соответственно – его биодоступность. Опасность этих ингибиторов в том, что их деятельность проводит к повышенной выработке трипсина и химотрипсина, что может привести к гипертрофии и аденоме поджелудочной железы. Лектины, характеризующиеся высоким сродством с углеводами, не только ухудшают усвоение белка, с которым поступают, и снижают усвоение других нутриентов, но также являются фитогемагглютининами. Так называются вещества, которые приводят к агглютинации («слипанию») красных кровяных телец – эритроцитов.
Так как все эти вещества, содержащиеся в растительных белках, термолабильны, температурная обработка решает указанные проблемы. Например, пропаривание соевой муки, обжарка бобов и семян масличных растений предупреждает гипертрофию поджелудочной железы и повышает коэффициент эффективности белка. Такие же вещества-ингибиторы содержатся в яичном и молочном белке. В яичном это овомукоид и овоингибитор, в молочном – ингибитор плазменогенового активатора (PAI) и ингибитор плазмина (PI). В присутствии воды при умеренной тепловой обработке эти ингибиторы инактивируются. Также инактивируются некоторые токсины, например – энтеротоксин, который продуцируется Золотистым стафилококком. При этом степень денатурации недостаточная, чтобы снизить функциональные свойства молочных белков.
Специфика производства концентратов и изолятов белков
Изоляты белка получают из исходно сырья различными методами – экстракция, изоэлектрическое осаждение, термокоагуляция, ультрафильтрация и дифильтрация. Часть белков может теряться при некоторых методах, например – богатые серой альбуминопободные белки при изоэлектрическом осаждении могут оставаться в супернатанте (то есть в надосданой жидкости). Это значит, что часть нативных белков не войдет в конечный продукт, соответственно – изменяется аминокислотный состав и снижается биологическая ценность изолята по сравнению с исходным сырьем.
Однако, например, в сывороточных концентратах, которые производятся методом ультрафильтрации и диафильтрации, аминокислотный состав не меняется. В таком случае не меняются физические и функциональные свойства белков (в частности – глобулярных белков концентратов молочной сыворотки). Однако меняется их протеозопептонный состав, как результат – меняются пенообразующие свойства.
Химические изменения аминокислот
В отличие от низкотемпературной обработки, которая может только изменять свойства белка, высокотемпературная обработка запускает ряд процессов, происходящих непосредственно с аминокислотами. Это процессы рацемизации, гидролиза, десульфурации (потеря серы) и дезамидирования. Почти все они необратимы, но опасность заключается в том, что при некоторых из них могут образовываться структурно-модифицированные типы аминокислот, проявляющие токсичность.
Потенциальная опасность некоторых процессов денатурации
При высокотемпературной обработке белков в условиях щелочных значений pH происходит частичная рацемизация, в процессе которой остатки L-аминокислот превращаются в остатки D-аминокислот. Также рацемизация возможна при реакции гидролиза и при нагреве белка до 200 °С. Негативная сторона этого процесса в том, что пептидные связи между D-аминокислотами меньше подвержены ферментативному гидролизу, чем пептидные связи L-аминокислот. То есть такой белок усваивается хуже. Кроме того, в процессе рацемизации частично теряются незаменимые аминокислоты и снижается биологическая ценность белка.
Также тепловая обработка в щелочной среде помимо рацемизации приводит к разрушению аргинина, серина, треонина, лизина (например, аргинин разлагается до орнитина). При нагреве до 200 °С разлагается большинство аминокислотных остатков. Такой нагрев возможен не только на производстве, но и в быту, пример – готовка мяса на гриле. Опасность обработки белка такими температурами в том, что пиролиз (разложение) аминокислотных остатков приводит к образованию ряда продуктов, для которых тест Эймса показал высокую мутагенность. Наиболее мутагенные и канцерогенные аминокислотные остатки образуются при пиролизе триптофана и глутаминовой кислоты.
Мутагенные соединения, образующиеся в мясе при высоких температурах, называются имидазохинолинами. Это продукты общей конденсации углеводов, креатина и одной или нескольких аминокислот – глицина, треонина, аланина, лизина.
Также в процессе обработки белков в щелочной среде могут образовываться так называемые «сшивки» между молекулами и внутри молекул. Опасность процесса в том, что, например, лизиноаланиновая сшивка не может быть расщеплена трипсином, соответственно эти аминокислоты не усвояется. Поэтому образование сшивок снижает усвояемость и биологическую ценность белка. Однако проблема шире, потому что лизиноаланиновая сшивка не дает усваиваться рядом находящимся молекулам. При этом сам лизиноаланин всасывается стенками кишечника, но не усваивается организмом и выводится с мочой. Таким образом, при обработке белка в щелочной среде важно минимизировать количество лизиноаланина, хотя для человека появление таких сшивок не дает нефротоксического эффекта (такой эффект отмечен у мышей).
При переработке молока даже при нейтральной среде pH высокие температуры приводят к образованию лизиноаланина. Для подавления этого процесса вводят цистеин, аммиак или сульфиты. Наиболее безопасный вариант – вообще не обрабатывать молочный белок при высоких температурах, оставляя его нативным. В этом случае лизиноаланина либо нет вообще, либо его количество незначительно. Также в этом случае белок сохраняет высокую усвояемость и биологическую ценность (соответственно – имеет высокое качество).
В каких условиях меняются функциональные свойства белков
Небольшая денатурация (например – обработка при умеренных температурах) обычно желательна для белков, потому что таким образом обеспечивается необходимый уровень растворимости, благодаря которому белок можно использовать по назначению. Более того – в некоторых случаях частичная денатурация может улучшить функциональные свойства конечного продукта. Но некоторые способы и технологии изоляции (выделения) белка ухудшают его свойства.
Например, если белок изолируется методом изоэлектрического осаждения, структуры большинства глобулярных белков остаются стабильны, но если в белках есть пустоты (типа казеиновых мицелл), то они необратимо дестабилизируются. В результате коллапса (сжатия) мицеллярной структуры меняются ее свойства, что обусловлено в том числе изменением состава изолята по сравнению с исходным белком. Это объясняется тем, что часть фракций белка выпадает в осадок и не попадает в конечный изолят.
В производстве концентратов сывороточных белков и изолятов сывороточных белков чаще всего применяется метод ультрафильтрации, в ходе которой удаляются мелкие растворенные примеси, что влияет в большей степени на изменение небелкового состава конечного продукта. Удаление лактозы и золы меняет функциональные свойства белка, а при выдерживании ультрафильтрованного концентрата при температура 50-55 °С усиливается взаимодействие «белок-белок», в результате чего меняется влагосвязывающая способность, гелеобразование, пенообразование и эмульгирующие свойства. При этом у изолятов, полученных методом ионного обмена, ниже зольность (содержание кальция и фосфатов), поэтому его функциональные свойства лучше, чем у изолятов, полученных методами фильтрации.
Выдерживание белков при щелочной pH сильно меняет их аминокислотный состав, зато они лучше растворяются. Также для экстрагирования могут применяться химические реагенты, например – для экстрагирования соевого и хлопкового масла применяют гексан (насыщенный углеводород). Такая обработка приводит к денатурации, как и высокотемпературная обработка.
Почему для повышения питательной ценности рациона предпочтительнее нативный белок
На производстве белки часто полностью или частично денатурируются, что может существенно менять их качество, влияя на аминокислотный состав и усвояемость. Зачастую это необходимо для решения технических задач – улучшения растворимости, пенообразования, эмульгирования конечного продукта. Однако в контексте употребление белков в форме добавок для повышения питательной ценности рациона предпочтительнее неденатурированные (нативные белки), то есть белки, которые не были подвергнуты денатурации.
В качестве примера можно привести концентраты и изоляты сывороточных белков, которые получают методом ультрафильтрации и диафильтрации, то есть речь идет о чисто механической обработке без применения химических реагентов, высоких температур и иных технологий, которые могут существенно изменить структуру нативного белка и его свойства. В таком случае обеспечивается максимальная питательная ценность получаемого продукта, а глобулярные белки сохраняют свои свойства. Глобулярные белки – это группа белков, которые представляют собой полипептидные цепи, свернутые в шары (глобулы).
В нативных молочных белках содержатся следующие глобулярные белки – бета-лактоглобулин, альфа-лактальбумин, иммуноглобулины, альбумин сыворотки крови, гликомакропептиды, лактоферрин. Если эти глобулярные белки сохраняют нативную форму (не подвергаются денатурации), они выступают естественным источником всех незаменимых аминокислот без лимитирующих аминокислот, причем на аминокислоты с разветвленной боковой цепочкой приходится около 21% аминокислотного состава белка. Глобулярные белки необходимы для обеспечения транспорта нутриентов в кишечнике (например, транспорт Витамина D3 невозможен без бета-лактальбумина).
Глобулярные белки оказывают антиоксидантное действие, подавляя активность свободных радикалов кислорода, разрушающих здоровые клетки. Эти белки необходимы для работы иммунной системы, для нейтрализации патогенов, токсинов, ядов и чужеродных белков. Они обеспечивают защиту кишечной стенки, подавляют развитие патогенной кишечной микрофлоры и стимулируют полезную микробиоту, включая лактобактерии и бифидобактерии. Гликомакропептиды активируют выработку холецистокинина (нейропептидный гормон, обеспечивающий чувство насыщения), альбумин сыворотки крови является источником железа (профилактика анемии), а лактоферрин оказывает противоопухолевую активность.
При денатурации молочных белков все или почти все свойства глобулярных белков теряются, снижается объем BCAA и других незаменимых аминокислот. Именно поэтому применительно к сывороточным концентратам и изолятам для повышения питательной ценности рациона предпочтительнее нативный белок, сохраняющий исходно высокое качество.