Что такое sqrt в питоне
Python sqrt (): практическое руководство
Если вы не гений математики, вы не запомните все квадратные корни. И даже если вы это сделали, кто-то другой, глядя на ваш код, может не знать, что вы. Это означает, что им, возможно, придётся перепроверить, что вы написали правильные квадратные корни — это просто переделка работы.
Если вы использовали функцию квадратного корня Python, ясно, что вычисляется квадратный корень. Другой человек, смотрящий на ваш код, знает, что он точен. В качестве дополнительного бонуса никто не должен открывать свой калькулятор!
Что такое Python sqrt ()?
Независимо от того, используете ли вы теорему Пифагора или работаете над квадратным уравнением, функция квадратного корня Python — sqrt () — может помочь вам решить ваши проблемы. Как вы уже догадались, sqrt()вернёт квадрат числа, переданного вами в качестве параметра.
sqrt()Метод может быть полезен, потому что это быстро и точно. В этом кратком руководстве рассматривается, что вы можете передать в качестве параметра sqrt(), способы обхода недопустимых параметров и пример, который поможет вам понять. Вы можете получить квадратный корень из числа, возведя его в степень 0,5 с помощью оператора экспоненты Python (**) или pow()функции.
Когда вы работаете с несколькими числами, требующими квадратного корня, вы обнаружите, что использование sqrt()функции более элегантно, чем использование нескольких операторов экспоненты с «0,5». Кроме того, это более понятно. Можно легко забыть или пропустить лишнюю звёздочку (’*’), которая полностью превратит оператор в оператор умножения, что даст вам совершенно другой результат.
Синтаксис функции квадратного корня Python
Общий синтаксис, используемый для вызова sqrt()функции:
В приведённом выше фрагменте кода «x» — это число, квадратный корень которого вы хотите вычислить. Число, которое вы передаёте в качестве параметра функции извлечения квадратного корня, может быть больше или равно 0. Обратите внимание, что вы можете передать только одно число.
Но к чему относится «математическая» часть синтаксиса выше? Математический модуль — это библиотека Python, которая содержит множество полезных математических функций, одна из которых является sqrt()функцией. Для использования sqrt()вам нужно будет импортировать математический модуль, поскольку именно там хранится код для выполнения функции. Приставляя «math» к префиксу sqrt(), компилятор знает, что вы используете функцию sqrt(), принадлежащую библиотеке «math».
Способ импорта математического модуля состоит в том, чтобы написать ключевое слово «импорт» вместе с именем модуля — в данном случае «математика». Оператор импорта — это простая строка, которую вы пишете перед кодом, содержащим sqrt()функцию:
Результатом функции извлечения квадратного корня является число с плавающей запятой (float). Например, результатом использования sqrt()81 будет 9,0, что является числом с плавающей запятой.
Включите математический оператор импорта в начало любого сеанса файла или терминала / консоли, который содержит код, который использует sqrt().
Как использовать метод Python sqrt ()
Вы можете передавать положительные числа типа с плавающей запятой или целочисленного типа int. В предыдущем примере мы видели int 81 в качестве параметра. Но мы также можем передать число с плавающей запятой, 70,5, например:
Результат этого расчёта: 8,916277250063503. Как видите, результат довольно точный. Теперь вы можете понять, почему имеет смысл, что результат всегда будет двойным, даже если квадратный корень из числа такой же простой, как «9».
Вы также можете передать переменную, представляющую число:
yourValue= 90
math.sqrt(yourValue)
# 9.486832980505138
И вы также можете сохранить результат в переменной:
Сохранение этого в переменной упростит вывод на экран:
Работа с отрицательными числами с помощью abs ()
Квадратный корень из любого числа не может быть отрицательным. Это потому, что квадрат является произведением самого числа, и если вы умножите два отрицательных числа, отрицательные числа уравняются, и результат всегда будет положительным. Если вы попытаетесь передать отрицательное число sqrt(), вы получите сообщение об ошибке, и ваш расчёт не будет выполнен.
abs()Функция возвращает абсолютное значение заданного числа. Абсолютное значение −9 будет 9. Аналогично, абсолютное значение 9 равно 9. Поскольку sqrt()оно предназначено для работы с положительными числами, отрицательное число вызовет исключение ValueError.
Предположим, вы передаёте переменные sqrt()и не можете узнать, все ли они положительны, не просматривая длинные строки кода, чтобы найти значения переменных. В то же время вы также не хотите, чтобы вам выдавалось исключение ValueError. Даже если вы посмотрите, может войти другой программист и непреднамеренно добавить отрицательную переменную, тогда ваш код выдаст ошибку. Чтобы предотвратить это безумие, вы можете использовать abs():
abs()Функция будет принимать в своём значении и перевести его к абсолютному значению (81 в данном случае). Затем в sqrt()функцию будет передано неотрицательное абсолютное значение, что нам и нужно, чтобы не получить надоедливых ошибок!
Понимание списка и sqrt ()
Что делать, если у вас есть несколько чисел, квадратные корни которых вы хотели бы получить? Вы можете вычислить квадратный корень для всего в одной строке с помощью встроенного цикла for, который называется составлением списка.
Сначала составьте список значений, квадратные корни которых вы хотите получить.
Во-вторых, давайте переберём список с помощью выражения для цикла, чтобы получить квадратный корень для каждого значения. Синтаксис встроенного выражения цикла for — это число в числах, где «число» — это каждый член списка, который мы назвали «числами». Мы сохраним результаты в списке, который мы назовём «квадратные числа».
squaredNumbers = [ math.sqrt(number) for number in numbers]
Используйте print()оператор, чтобы увидеть результаты возведения списка чисел в квадрат.
for-утверждения и sqrt ()
Вы также можете использовать типичный цикл for. Хотя использование типичного цикла for означает, что вам нужно написать больше строк кода, чем в приведённом выше примере, некоторые люди могут легче читать циклы for.
Сначала объявите список, в котором вы хотите сохранить вычисленные значения.
Мы будем использовать тот же список значений («числа»), что и в предыдущем примере, и перебираем каждый из его элементов, которые мы назвали «число».
for number in numbers:
squaredNumbers.append(math.sqrt(number))
Теперь, если вы распечатаете этот новый список чисел в квадрате, вы получите тот же результат, что и в предыдущем примере.
Пример с sqrt (): диагональные расстояния
Есть много вариантов использования sqrt(). Одним из примеров является то, что вы можете использовать его для определения диагонального расстояния между двумя точками, которые пересекаются под прямым углом, например, углами улиц или точками на поле или на схеме.
Это потому, что диагональное расстояние между двумя точками, которые пересекаются под прямым углом, было бы эквивалентно гипотенузе треугольника, и для этого вы можете использовать теорему Пифагора (a 2 + b 2 ) = c 2, которая, как правило, использует квадратные корни. Эта формула очень удобна, потому что на городских улицах, домашних чертежах и в полях можно легко получить измерения длины и ширины, но не для диагоналей между ними.
Вам нужно будет использовать sqrt()гипотенузу c 2, чтобы получить длину. Другой способ переписать теорему Пифагора — c = √a 2 + b 2. Давайте представим, что мы проехали по трассе в нашем местном парке в форме треугольника.
Мы пробежали по длине и ширине, а затем вернулись к исходной точке. Чтобы точно подсчитать, сколько футов вы пробежали, вы можете рассчитать футы диагонального пути, который вы пересекаете, используя длину и ширину (чью длину в футах вы можете сохранить как переменные «a» и «b») парк:
Результатом будет 47.43416490252569. Итак, когда вы добавляете это к двум другим длинам, вы знаете, и вот оно. Общее количество футов, которое вы пробежали по дорожке в форме прямоугольного треугольника в парке.
Что ещё можно сделать с помощью Sqrt ()?
Теперь, когда вы знаете основы, возможности безграничны. Например:
В этой статье вы узнали, как использовать sqrt()списки с положительными и отрицательными числами и как переработать теорему Пифагора, чтобы выполнить четыре математических вычисления sqrt().
Извлечение корня в Python
В этой статье мы рассмотрим, как извлечь корень в Python, а также какой модуль и функция для этого используется. Но давайте обо всем по порядку.
Если мы знаем только общую площадь квадрата и хотим узнать размер одной его стороны либо же собираемся рассчитать расстояние между 2-мя точками в декартовых координатах, нам потребуется квадратный корень. Это не проблема, если речь идет о математике. Но что делать, когда речь идет о языке программирования? К нашему счастью разработчики Python предусмотрели для решения вышеописанной задачи специальную функцию. Но прежде чем продолжить, давайте немного вспомним теорию.
Квадратный корень — что это?
Квадратным корнем, полученным из числа «A», называют число «B», которое при возведении во 2-ю степень даст в итоге то самое изначальное число «A».
Непосредственную операцию, позволяющую найти значение «B», называют извлечением корня из «A». Математики применяют для обозначения этой операции специальный знак (его еще называют знаком радикала):
Когда речь идет о корне в «Питоне», ситуация обстоит иначе, причем в обоих случаях. К примеру, само возведение числа в степень записывают посредством оператора «**«:
Ответ в консоли «Пайтона» будет равняться четырем.
Касаемо квадратного корня, то он в Python представлен функцией sqrt(). Однако она существует не сама по себе, а в рамках соответствующего математического модуля math. Таким образом, перед началом работы этот модуль надо будет импортировать, но это абсолютно не сложно сделать на практике:
import math
Идем дальше. Наша функция sqrt() принимает лишь один параметр – значение, из которого нам надо извлечь √. Давайте напишем простенький код и задействуем float в качестве типа данных возвращаемого значения.
import math
import random
# попробуем функцию sqrt() на практике
# найдем корень случайного числа с последующим выводом его на экран
rand_num = random.randint(5, 55)
print(‘Наше случайное число = ‘, rand_num)
print(‘Искомое значение корня = ‘, sqrt_rand_num)
Вы можете попробовать работу этого кода у себя на компьютере или на любом онлайн-компиляторе. Вот, к примеру, компилятор для Python 3.
Результат может быть таким:
Так как мы используем модуль random, результат будет различаться при каждом выполнении кода.
Но никто не мешает сделать все намного проще:
Положительные числа
Функция sqrt() предназначена для работы с положительными значениями. Если число больше либо равно нулю, то неважно, какой тип данных у него, ведь извлечение корня возможно как из целых, так и из вещественных чисел.
Из целых:
Из вещественных:
Сомневаетесь в корректности итоговых результатов предыдущего примера? Просто выполните обратное возведение в степень:
Также не забывайте, что сделать это можно и посредством специальной функции pow:
Отрицательные значения и ноль
Функция sqrt в «Питоне» — вещь полезная и знать ее нужно, однако она не принимает отрицательного числа — лишь положительные (целые и вещественные), а также ноль.
Такая ограниченная возможность использования не соответствует математическим канонам, ведь в реальной жизни специалисты по математике без проблем извлекают √ и из отрицательных значений. Да, результат будет комплексным и пригодится лишь для решения довольно узкого спектра задач, типа расчетов волновых явлений в физике либо вычислений в энергетической сфере.
Учитывайте вышесказанное, если пытаетесь извлекать корни в Python посредством этой функции. Передав отрицательное значение, вы получите error:
А вот если говорить про ноль, то ошибки не будет, так как код отработает корректно. Однако результат тут очевиден, поэтому практическая ценность данной возможности весьма условна:
Хотите знать о «Питоне» намного больше? Добро пожаловать на специализированный курс в «Отус»!
Как извлечь корень в Python (sqrt)
Но обо всём по порядку.
Что такое квадратный корень
Корнем квадратным из числа «X» называется такое число «Y», которое при возведении его во вторую степень даст в результате то самое число «X».
Операция нахождения числа «Y» называется извлечением квадратного корня из «X». В математике для её записи применяют знак радикала:
Нотация питона отличается в обоих случаях, и возведение в степень записывается при помощи оператора » ** «:
a = 2 b = a ** 2 print(b) > 4
import math import random # пример использования функции sqrt() # отыщем корень случайного числа и выведем его на экран rand_num = random.randint(1, 100) sqrt_rand_num = math.sqrt(rand_num) print(‘Случайное число = ‘, rand_num) > Случайное число = 49 print(‘Корень = ‘, sqrt_rand_num) > Корень = 7.0
Квадратный корень
Положительное число
import math print(math.sqrt(100)) > 10.0
А можете — из вещественных:
import math print(math.sqrt(111.5)) > 10.559356040971437
Легко проверить корректность полученных результатов с помощью обратной операции возведения в степень:
print(math.sqrt(70.5)) > 8.396427811873332 # возвести в степень можно так print(8.396427811873332 ** 2) > 70.5 # а можно с помощью функции pow() print(pow(8.396427811873332, 2)) > 70.5
Отрицательное число
Функция sqrt() не принимает отрицательных аргументов. Только положительные целые числа, вещественные числа и ноль.
Такая работа функции идёт вразрез с математическим определением. В математике корень спокойно извлекается из чисел меньше 0. Вот только результат получается комплексным, а таким он нужен для относительно узкого круга реальных задач, вроде расчетов в сфере электроэнергетики или физики волновых явлений.
print(math.sqrt(-1)) > ValueError: math domain error
Функция sqrt() корректно отрабатывает с нулём на входе. Результат тривиален и ожидаем:
Кубический корень
Само название функции sqrt() намекает нам на то, что она не подходит для извлечения корня степени отличной от двойки. Поэтому для извлечения кубических корней, сначала необходимо вспомнить связь между степенями и корнями, которую продемонстрируем на корне квадратном:
# Квадратный корень можно извлечь с помощью операции возведения в степень «**» a = 4 b = a ** 0.5 print(b) > 2.0
👉 Таким образом, извлечь кубический корень в Python можно следующим образом:
Корень n-степени
То, что справедливо для корня третьей степени, справедливо и для корней произвольной степени.
# извлечём корень 17-й степени из числа 5600 x = 5600 y = 17 z = pow(x, (1/y)) print(z) > 1.6614284717080507 # проверяем корректность результата print(pow(z, y)) > 5600.0
Но раз уж мы разбираемся с математической темой, то попытаемся мыслить более обобщённо. С помощью генератора случайных чисел с заданной точностью будем вычислять корень случайной степени из случайного числа:
import random # точность можно задать на ваше усмотрение x = random.randint(1, 10000) y = random.randint(1, 100) z = pow(x, (1 / y)) print(‘Корень степени’, y, ‘из числа’, x, ‘равен’, z) # при проверке вероятны незначительные расхождения из-за погрешности вычислений print(‘Проверка’, pow(z, y)) # но специально для вас автор накликал целочисленный результат > Корень степени 17 из числа 6620 равен 1.6778624404513571 > Проверка 6620.0
Решение реальной задачи с использованием sqrt
Корень — дитя геометрии. Когда Пифагор доказал свою знаменитую теорему, людям тут же захотелось вычислять стороны треугольников, проверять прямоту внешних углов и сооружать лестницы нужной длины.
Соотношение a2 + b2 = c2, где «a» и «b» — катеты, а «c» — гипотенуза — естественным образом требует извлекать корни при поиске неизвестной стороны. Python-а под рукой у древних греков и вавилонян не было, поэтому считать приходилось методом приближений. Жизнь стала проще, но расчет теоремы Пифагора никто не отменял и в XXI веке.
📡 Решим задачку про вышку сотовой связи. Заказчик требует рассчитать высоту сооружения, чтобы радиус покрытия был 23 километра. Мы неспешно отходим на заданное расстояние от предполагаемого места строительства и задумчиво смотрим под ноги. В голове появляются очертания треугольника с вершинами:
Модель готова, приступаем к написанию кода:
Расчёт выполнен, результат заказчику предоставлен. Можно идти пить чай и радоваться тому, что теперь ещё больше людей смогут звонить родным и сидеть в интернете.
Как вычислить квадратный корень в Python
Чтобы вычислить квадратный корень в Python, у нас есть в основном 5 методов или способов. Самый распространенный или самый простой способ-это использование функции математического модуля sqrt.
Как вычислить квадратный корень в Python
В языке непрофессионалов квадратный корень может быть определен как Квадратный корень числа-это значение, которое при умножении на себя дает число. В Python или любом другом языке программирования для вычисления квадратного корня числа у нас есть разные методы. И в этом уроке мы постараемся охватить все методы вычисления квадратного корня из числа.
Для вычисления квадратного корня в Python у нас есть в основном 5 методов или способов. Самый распространенный или самый простой способ-это использование функции математического модуля sqrt. Функция Python sqrt встроена в математический модуль, вы должны импортировать математический пакет (модуль). Функция sqrt в языке программирования python, возвращающая квадратный корень из любого числа (число > 0).
Различные способы вычисления квадратного корня в Python
Как правило, у нас есть способы вычисления квадратного корня в Python, которые упоминаются ниже:
- Использование метода math.sqrt() Использование оператора ** Для вещественных или комплексных чисел с использованием математического модуля Использование цикла Python Квадратный корень из числа с помощью pow()
Вычисление квадратного корня в Python С помощью функции sqrt()
Математический модуль Python имеет дело с математическими функциями и вычислениями. Функция sqrt() в математическом модуле используется для вычисления квадратного корня из заданного числа.
Синтаксис
Ниже приведен синтаксис функции Python sqrt ().
Параметры
номер – Здесь num может быть любым положительным числом, квадратный корень которого вы хотите.
Возвращаемое значение функции sqrt()
метод sqrt() в Python вернет квадратный корень из заданного числа с плавающей запятой. Если значение меньше 0, то он вернет ошибку времени выполнения.
Совместимость функций Python sqrt()
Примеры Вычисления Квадратного Корня С Помощью Функции sqrt()
Давайте рассмотрим несколько примеров вычисления квадратного корня Python с помощью функции sqrt ().
Пример 1: Вычисление квадратного корня из положительного целого числа
Пример 2: Вычисление квадратного корня из числа с плавающей запятой
Пример 3: Вычисление квадратного корня из 0
Модуль Math в Python
P ython библиотека math содержит наиболее применяемые математические функции и константы. Все вычисления происходят на множестве вещественных чисел.
Синтаксис и подключение
Чтобы подключить модуль, необходимо в начале программы прописать следующую инструкцию:
Теперь с помощью точечной нотации можно обращаться к константам и вызывать функции этой библиотеки. Например, так:
Константы модуля Math
math.pi Представление математической константы π = 3.141592…. «Пи» — это отношение длины окружности к её диаметру.
math.tau Число τ — это отношение длины окружности к её радиусу. Т.е
math.inf Положительная бесконечность.
math.nan NaN означает — «не число».
Список функций
Теоретико-числовые функции и функции представления
math.ceil() Функция округляет аргумент до большего целого числа.
Решим задачу : На столе лежат шесть рубинов. Сколько существует способов выбрать два из них?
💭 Можете подставить числа в формулу, и самостоятельно проверить правильность решения.
math.copysign() Функция принимает два аргумента. Возвращает первый аргумент, но со знаком второго.
print(math.copysign(-6, 2)) > 6.0
math.fabs() Функция возвращает абсолютное значение аргумента:
math.factorial() Вычисление факториала. Входящее значение должно быть целочисленным и неотрицательным.
print(math.fmod(75, 4)) > 3.0
math.frexp(num) Возвращает кортеж из мантиссы и экспоненты аргумента. Формула:
, где M — мантисса, E — экспонента.
print(math.frexp(10)) > (0.625, 4) # проверим print(pow(2, 4) * 0.625) > 10.0
math.fsum() Вычисляет сумму элементов итерируемого объекта. Например, вот так она работает для списка:
summable_list = [1, 2, 3, 4, 5] print(math.fsum(summable_list)) > 15.0
a = 5 b = 15 print(math.gcd(a, b)) > 5
norm = 3 inf = float(‘inf’) print(math.isfinite(norm)) > True print(math.isfinite(inf)) > False
not_inf = 42 inf = math.inf print(math.isinf(not_inf)) > False print(math.isinf(inf)) > True
not_nan = 0 nan = math.nan print(math.isnan(not_nan)) > False print(math.isnan(nan)) > True
math.isqrt() Возвращает целочисленный квадратный корень аргумента, округлённый вниз.
math.ldexp(x, i) Функция возвращает значение по формуле:
возвращаемое значение = x * (2 ** i) print(math.ldexp(3, 2)) > 12.0
math.modf() Результат работы modf() — это кортеж из двух значений:
Задача : Посчитать количество вариантов распределения трёх билетов на концерт Стаса Михайлова для пяти фанатов.
print(math.perm(5, 3)) > 60
Целых 60 способов! Главное — не запутаться в них, и не пропустить концерт любимого исполнителя!
math.prod() Принимает итерируемый объект. Возвращает произведение элементов.
multiple_list = [2, 3, 4] print(math.prod(multiple_list)) > 24
math.remainder(m, n) Возвращает результат по формуле:
Результат = m – x * n,
где x — ближайшее целое к выражению m/n число.
math.trunc() trunc() вернёт вам целую часть переданного в неё аргумента.
Степенные и логарифмические функции
1 аргумент: вернёт значение натурального логарифма (основание e ):
2 аргумента: вернёт значение логарифма по основанию, заданному во втором аргументе:
print(math.log(16, 4)) > 2.0
math.log1p() Это натуральный логарифм от аргумента (1 + x) :
print(math.log(5) == math.log1p(4)) > True
math.pow(a, b) Функция выполняет возведение числа a в степень b и возвращает затем вещественный результат.
math.sqrt() Возврат квадратного корня из аргумента
Тригонометрические функции
math.acos() Функция возвращает арккосинус в радианах:
math.asin() Возврат арксинуса (угол в радианах):
# π/2 print(math.asin(1)) > 1.5707963267948966
# π/4 print(math.atan(1)) > 0.7853981633974483
math.cos() Косинус угла, который следует указывать в радианах:
print(math.hypot(3, 4)) > 5.0
math.sin() Функция вернёт синус угла. Угол следует задавать в радианах:
math.tan() Тангенс угла. Аргумент указываем в радианах.
Угловые преобразования
math.degrees() Функция переводит радианное значение угла в градусы.
math.radians() Наоборот: из градусов — в радианы.
# функция отрабатывает прямо, как по табличке синусов =) print(math.radians(30)) > 0.5235987755982988 print(math.pi / 6) > 0.5235987755982988
Гиперболические функции
Гиперболические функции являются аналогами тригонометрических и тесно с ними связаны. Но тригонометрические функции основаны на окружностях, а гиперболические, соответственно, на гиперболах.
Для Python все они принимают один аргумент — точку, в которой вычисляется значение функции.