Что такое sqrt в информатике
Функции Sqrt и Sqr
Подпишись на новости, чтобы ничего не пропустить
Функция Sqrt в Паскале вычисляет квадратный корень числа. Синтаксис функции следующий:
function Sqrt(Х : ValReal) : ValReal;
Эта функция возвращает квадратный корень числа, переданного через параметр Х. Число Х должно быть положительным, иначе произойдёт ошибка во время выполнения программы (так написано в документации, но в моей версии компилятора ошибки не происходит, а функция в случае отрицательного параметра возвращает значение NaN).
Функция Sqr в Паскале вычисляет квадрат числа. Синтаксис функции для разных типов приведён ниже:
Эта функция возвращает результат вычисления квадрата числа, переданного через параметр. То есть Sqr = х * х.
О типе ValReal я рассказывал здесь.
Квадрат числа
Здесь всё крайне просто. Квадрат числа Х равен произведению Х на Х. То есть функция Sqr на первый взгляд кажется бесполезной. Потому что во многих случаях проще написать так:
Единственный случай, когда использование функции Sqr является обоснованным с точки зрения упрощения кода, это когда в качестве параметра передаётся вещественное число (константа) с большим количеством знаков после запятой, или очень большое целое число, или сложное выражение. Например:
будет написать проще, чем
Х := 5.3456753322 * 5.3456753322
Также возведение в квадрат числа в Паскале сложного выражения тоже будет проще, если использовать функцию Sqr:
X := Sqr(Y + 100 * Z / X)
Вычисление квадратного корня
Когда мы изучали функции вычисления экспоненты и натурального логарифма, то мы узнали, что с их помощью можно возвести число в любую степень. То есть вычислить, в том числе, и корень любой степени.
Однако использование этих функций всё-таки немного сложновато. Поэтому для вычисления квадратного корня в Паскале имеется специальная функция (потому что квадратный корень приходится вычислять намного чаще, чем, например, корень n-й степени).
А здесь я напомню что такое квадратный корень для тех, кто подзабыл математику.
То есть квадратный корень из числа А, это число Х, которое при возведении в квадрат даёт число А.
ВАЖНО!
Число А может быть только положительным числом. Извлечение корня из отрицательного числа тоже возможно, но это уже будут комплексные числа.
Как извлечь корень в Python (sqrt)
Но обо всём по порядку.
Что такое квадратный корень
Корнем квадратным из числа «X» называется такое число «Y», которое при возведении его во вторую степень даст в результате то самое число «X».
Операция нахождения числа «Y» называется извлечением квадратного корня из «X». В математике для её записи применяют знак радикала:
Нотация питона отличается в обоих случаях, и возведение в степень записывается при помощи оператора » ** «:
a = 2 b = a ** 2 print(b) > 4
import math import random # пример использования функции sqrt() # отыщем корень случайного числа и выведем его на экран rand_num = random.randint(1, 100) sqrt_rand_num = math.sqrt(rand_num) print(‘Случайное число = ‘, rand_num) > Случайное число = 49 print(‘Корень = ‘, sqrt_rand_num) > Корень = 7.0
Квадратный корень
Положительное число
import math print(math.sqrt(100)) > 10.0
А можете — из вещественных:
import math print(math.sqrt(111.5)) > 10.559356040971437
Легко проверить корректность полученных результатов с помощью обратной операции возведения в степень:
print(math.sqrt(70.5)) > 8.396427811873332 # возвести в степень можно так print(8.396427811873332 ** 2) > 70.5 # а можно с помощью функции pow() print(pow(8.396427811873332, 2)) > 70.5
Отрицательное число
Функция sqrt() не принимает отрицательных аргументов. Только положительные целые числа, вещественные числа и ноль.
Такая работа функции идёт вразрез с математическим определением. В математике корень спокойно извлекается из чисел меньше 0. Вот только результат получается комплексным, а таким он нужен для относительно узкого круга реальных задач, вроде расчетов в сфере электроэнергетики или физики волновых явлений.
print(math.sqrt(-1)) > ValueError: math domain error
Функция sqrt() корректно отрабатывает с нулём на входе. Результат тривиален и ожидаем:
Кубический корень
Само название функции sqrt() намекает нам на то, что она не подходит для извлечения корня степени отличной от двойки. Поэтому для извлечения кубических корней, сначала необходимо вспомнить связь между степенями и корнями, которую продемонстрируем на корне квадратном:
# Квадратный корень можно извлечь с помощью операции возведения в степень «**» a = 4 b = a ** 0.5 print(b) > 2.0
👉 Таким образом, извлечь кубический корень в Python можно следующим образом:
Корень n-степени
То, что справедливо для корня третьей степени, справедливо и для корней произвольной степени.
# извлечём корень 17-й степени из числа 5600 x = 5600 y = 17 z = pow(x, (1/y)) print(z) > 1.6614284717080507 # проверяем корректность результата print(pow(z, y)) > 5600.0
Но раз уж мы разбираемся с математической темой, то попытаемся мыслить более обобщённо. С помощью генератора случайных чисел с заданной точностью будем вычислять корень случайной степени из случайного числа:
import random # точность можно задать на ваше усмотрение x = random.randint(1, 10000) y = random.randint(1, 100) z = pow(x, (1 / y)) print(‘Корень степени’, y, ‘из числа’, x, ‘равен’, z) # при проверке вероятны незначительные расхождения из-за погрешности вычислений print(‘Проверка’, pow(z, y)) # но специально для вас автор накликал целочисленный результат > Корень степени 17 из числа 6620 равен 1.6778624404513571 > Проверка 6620.0
Решение реальной задачи с использованием sqrt
Корень — дитя геометрии. Когда Пифагор доказал свою знаменитую теорему, людям тут же захотелось вычислять стороны треугольников, проверять прямоту внешних углов и сооружать лестницы нужной длины.
Соотношение a2 + b2 = c2, где «a» и «b» — катеты, а «c» — гипотенуза — естественным образом требует извлекать корни при поиске неизвестной стороны. Python-а под рукой у древних греков и вавилонян не было, поэтому считать приходилось методом приближений. Жизнь стала проще, но расчет теоремы Пифагора никто не отменял и в XXI веке.
📡 Решим задачку про вышку сотовой связи. Заказчик требует рассчитать высоту сооружения, чтобы радиус покрытия был 23 километра. Мы неспешно отходим на заданное расстояние от предполагаемого места строительства и задумчиво смотрим под ноги. В голове появляются очертания треугольника с вершинами:
Модель готова, приступаем к написанию кода:
Расчёт выполнен, результат заказчику предоставлен. Можно идти пить чай и радоваться тому, что теперь ещё больше людей смогут звонить родным и сидеть в интернете.
Квадратный корень в программировании: как вычислить в разных языках
Квадратный корень в программировании вычисляется во многих языках программирования при помощи специальных функций. Но есть языки, в которых нет встроенных функций для извлечения корня, — тогда в них приходится «изворачиваться» собственными методами. Поэтому важно вспомнить, что такое корень числа, из курса математики, чтобы правильно его извлекать «собственными методами».
Квадратный корень из числа А — это некое число В, которое при умножении на сам о себя (возведение во 2-ю степень) дает число А. Все это можно выразить формулой: А=В 2 или А=В*В.
Извлечение корня в Java
При программировании на Java извлечение корня происходит при помощи класса «Math» и метода «static double sqrt(double a)».
Как выглядит извлечение корня в коде:
public class TestSqrt <
public static void main(String[] args) <
double y = Math.sqrt(x);
System.out.println(«Корень квадратный из числа » + x + » будет равен » + y);
Корень квадратный из числа 9 будет равен 3
Извлечение корня в Python
Для вычисления квадратного корня в Python применяется функция «sqrt()», которая расположена в модуле «math».
Как извлечение корня выглядит в коде:
print(«Корень квадратный из числа » + str(number) + » будет равен » + str(sqrt))
Корень квадратный из числа 9 будет равен 3
print («Корень квадратный из числа «+str(num)+» будет равен «+str(sqrt))
Запуск этой программы выдаст такой же результат, как и в первом случае:
Корень квадратный из числа 9 будет равен 3
Напомним, что символы «**» являются оператором возведения в степень.
Как извлечь квадратный корень в Си
Извлечь корень на С/С++ не сложнее, чем в предыдущих языках программирования, так как здесь для вычисления квадратного корня применяется такая же функция sqrt() из модуля «cmath».
Как извлечение корня выглядит в коде:
using namespace std;
double y = 9, result;
Корень квадратный из числа 9 будет равен 3
Заключение
Мы будем очень благодарны
если под понравившемся материалом Вы нажмёте одну из кнопок социальных сетей и поделитесь с друзьями.
Что такое Sqrt в информатике?
Что такое Sqrt в информатике?
Квадратный корень в информатике Во многих языках программирования функционального уровня (а также языках разметки типа LaTeX) функция квадратного корня обозначается как sqrt (от англ. square root «квадратный корень»).
Что такое Sqrt в математике?
Что такое квадратный корень?
Определения Дадим определение квадратному корню. Квадратным корнем из числа a называют такое число b, вторая степень которого равна a. Если при решении задачи интересует только положительное значение, то корень называют не просто квадратным, а арифметическим квадратным.
Как вычислить квадратный корень?
Чтобы найти первую цифру корня, извлекают квадратный корень из первой грани. Чтобы найти вторую цифру, из первой грани вычитают квадрат первой цифры корня, к остатку сносят вторую грань и число десятков получившегося числа делят на удвоенную первую цифру корня; полученное целое число подвергают испытанию.
Чем отличается квадратный корень от арифметического квадратного корня?
Какой корень из 6?
Ответ, проверенный экспертом Квадратный корень числа «х» называет такое число, квадрат которого равен «х». Следовательно, √ 6 = 2, что в квадрате дает 6,
Чему равен корень из 4?
Корень квадратный из 4 равен 2.
Сколько будет равен квадратный корень из 100?
Корень квадратный из 100 равен 10.
Какой корень из 144?
Корень квадратный из 144 равен 12.
Что такое корень из 20?
Корень квадратный из 20 равен 4./div>
степени→ числа↓ | 2 | 4 |
---|---|---|
20 | 4.Как извлечь корень из числа 52?Как упрощать число в корне?Разложение числа на множители — это нахождение двух или нескольких чисел, которые при перемножении дадут исходное число, например, 3 х 3 = 9. Найдя множители, вы сможете упростить квадратный корень или вообще избавиться от него. Например, √9 = √(3×3) = 3. Если подкоренное число четное, разделите его на 2. Python sqrt (): практическое руководство Если вы не гений математики, вы не запомните все квадратные корни. И даже если вы это сделали, кто-то другой, глядя на ваш код, может не знать, что вы. Это означает, что им, возможно, придётся перепроверить, что вы написали правильные квадратные корни — это просто переделка работы. Если вы использовали функцию квадратного корня Python, ясно, что вычисляется квадратный корень. Другой человек, смотрящий на ваш код, знает, что он точен. В качестве дополнительного бонуса никто не должен открывать свой калькулятор! Что такое Python sqrt ()?Независимо от того, используете ли вы теорему Пифагора или работаете над квадратным уравнением, функция квадратного корня Python — sqrt () — может помочь вам решить ваши проблемы. Как вы уже догадались, sqrt()вернёт квадрат числа, переданного вами в качестве параметра. sqrt()Метод может быть полезен, потому что это быстро и точно. В этом кратком руководстве рассматривается, что вы можете передать в качестве параметра sqrt(), способы обхода недопустимых параметров и пример, который поможет вам понять. Вы можете получить квадратный корень из числа, возведя его в степень 0,5 с помощью оператора экспоненты Python (**) или pow()функции. Когда вы работаете с несколькими числами, требующими квадратного корня, вы обнаружите, что использование sqrt()функции более элегантно, чем использование нескольких операторов экспоненты с «0,5». Кроме того, это более понятно. Можно легко забыть или пропустить лишнюю звёздочку (’*’), которая полностью превратит оператор в оператор умножения, что даст вам совершенно другой результат. Синтаксис функции квадратного корня PythonОбщий синтаксис, используемый для вызова sqrt()функции: В приведённом выше фрагменте кода «x» — это число, квадратный корень которого вы хотите вычислить. Число, которое вы передаёте в качестве параметра функции извлечения квадратного корня, может быть больше или равно 0. Обратите внимание, что вы можете передать только одно число. Но к чему относится «математическая» часть синтаксиса выше? Математический модуль — это библиотека Python, которая содержит множество полезных математических функций, одна из которых является sqrt()функцией. Для использования sqrt()вам нужно будет импортировать математический модуль, поскольку именно там хранится код для выполнения функции. Приставляя «math» к префиксу sqrt(), компилятор знает, что вы используете функцию sqrt(), принадлежащую библиотеке «math». Способ импорта математического модуля состоит в том, чтобы написать ключевое слово «импорт» вместе с именем модуля — в данном случае «математика». Оператор импорта — это простая строка, которую вы пишете перед кодом, содержащим sqrt()функцию: Результатом функции извлечения квадратного корня является число с плавающей запятой (float). Например, результатом использования sqrt()81 будет 9,0, что является числом с плавающей запятой. Включите математический оператор импорта в начало любого сеанса файла или терминала / консоли, который содержит код, который использует sqrt(). Как использовать метод Python sqrt ()Вы можете передавать положительные числа типа с плавающей запятой или целочисленного типа int. В предыдущем примере мы видели int 81 в качестве параметра. Но мы также можем передать число с плавающей запятой, 70,5, например: Результат этого расчёта: 8,916277250063503. Как видите, результат довольно точный. Теперь вы можете понять, почему имеет смысл, что результат всегда будет двойным, даже если квадратный корень из числа такой же простой, как «9». Вы также можете передать переменную, представляющую число:
И вы также можете сохранить результат в переменной: Сохранение этого в переменной упростит вывод на экран: Работа с отрицательными числами с помощью abs ()Квадратный корень из любого числа не может быть отрицательным. Это потому, что квадрат является произведением самого числа, и если вы умножите два отрицательных числа, отрицательные числа уравняются, и результат всегда будет положительным. Если вы попытаетесь передать отрицательное число sqrt(), вы получите сообщение об ошибке, и ваш расчёт не будет выполнен. abs()Функция возвращает абсолютное значение заданного числа. Абсолютное значение −9 будет 9. Аналогично, абсолютное значение 9 равно 9. Поскольку sqrt()оно предназначено для работы с положительными числами, отрицательное число вызовет исключение ValueError. Предположим, вы передаёте переменные sqrt()и не можете узнать, все ли они положительны, не просматривая длинные строки кода, чтобы найти значения переменных. В то же время вы также не хотите, чтобы вам выдавалось исключение ValueError. Даже если вы посмотрите, может войти другой программист и непреднамеренно добавить отрицательную переменную, тогда ваш код выдаст ошибку. Чтобы предотвратить это безумие, вы можете использовать abs(): abs()Функция будет принимать в своём значении и перевести его к абсолютному значению (81 в данном случае). Затем в sqrt()функцию будет передано неотрицательное абсолютное значение, что нам и нужно, чтобы не получить надоедливых ошибок! Понимание списка и sqrt ()Что делать, если у вас есть несколько чисел, квадратные корни которых вы хотели бы получить? Вы можете вычислить квадратный корень для всего в одной строке с помощью встроенного цикла for, который называется составлением списка. Сначала составьте список значений, квадратные корни которых вы хотите получить. Во-вторых, давайте переберём список с помощью выражения для цикла, чтобы получить квадратный корень для каждого значения. Синтаксис встроенного выражения цикла for — это число в числах, где «число» — это каждый член списка, который мы назвали «числами». Мы сохраним результаты в списке, который мы назовём «квадратные числа».
Используйте print()оператор, чтобы увидеть результаты возведения списка чисел в квадрат. for-утверждения и sqrt ()Вы также можете использовать типичный цикл for. Хотя использование типичного цикла for означает, что вам нужно написать больше строк кода, чем в приведённом выше примере, некоторые люди могут легче читать циклы for. Сначала объявите список, в котором вы хотите сохранить вычисленные значения. Мы будем использовать тот же список значений («числа»), что и в предыдущем примере, и перебираем каждый из его элементов, которые мы назвали «число».
Теперь, если вы распечатаете этот новый список чисел в квадрате, вы получите тот же результат, что и в предыдущем примере. Пример с sqrt (): диагональные расстоянияЕсть много вариантов использования sqrt(). Одним из примеров является то, что вы можете использовать его для определения диагонального расстояния между двумя точками, которые пересекаются под прямым углом, например, углами улиц или точками на поле или на схеме. Это потому, что диагональное расстояние между двумя точками, которые пересекаются под прямым углом, было бы эквивалентно гипотенузе треугольника, и для этого вы можете использовать теорему Пифагора (a 2 + b 2 ) = c 2, которая, как правило, использует квадратные корни. Эта формула очень удобна, потому что на городских улицах, домашних чертежах и в полях можно легко получить измерения длины и ширины, но не для диагоналей между ними. Вам нужно будет использовать sqrt()гипотенузу c 2, чтобы получить длину. Другой способ переписать теорему Пифагора — c = √a 2 + b 2. Давайте представим, что мы проехали по трассе в нашем местном парке в форме треугольника. Мы пробежали по длине и ширине, а затем вернулись к исходной точке. Чтобы точно подсчитать, сколько футов вы пробежали, вы можете рассчитать футы диагонального пути, который вы пересекаете, используя длину и ширину (чью длину в футах вы можете сохранить как переменные «a» и «b») парк: Результатом будет 47.43416490252569. Итак, когда вы добавляете это к двум другим длинам, вы знаете, и вот оно. Общее количество футов, которое вы пробежали по дорожке в форме прямоугольного треугольника в парке. Что ещё можно сделать с помощью Sqrt ()?Теперь, когда вы знаете основы, возможности безграничны. Например: В этой статье вы узнали, как использовать sqrt()списки с положительными и отрицательными числами и как переработать теорему Пифагора, чтобы выполнить четыре математических вычисления sqrt().
|