Что такое sec и cosec
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ – один из классов элементарных функций.
Функция у = cos х.
Если построить единичную окружность с центром в начале координат, и задать произвольное значение аргумента x0 и отсчитать от оси Ox угол x0, то этому углу на единичной окружности соответствует некоторая точка A (рис. 1) а ее проекцией на ось Ох будет точка М. Длина отрезка ОМ равна абсолютной величине абсциссы точки A. Данному значению аргумента x0 сопоставлено значение функции y = cos x0 как абсциссы точки А. Соответственно точка В (x0; у0) принадлежит графику функции у = cos х (рис. 2). Если точка А находится правее оси Оу, то косинус будет положителен, если же левее – отрицателен. Но в любом случае точка А не может покинуть окружность. Поэтому косинус лежит в пределах от –1 до 1:
Если взять два значения аргумента, равные по абсолютной величине, но противоположные по знаку, x и –x, найти на окружности соответствующие точки Ax и А-x. Как видно на рис. 3 их проекцией на ось Ох является одна и та же точка М. Поэтому
Значит, можно исследовать свойства функции y = cos х на отрезке [0, p ], а затем учесть ее четность и периодичность.
Функция y = sin х.
На единичной окружности углу x0 соответствует точка А (рис. 7), а ее проекцией на ось Оу будет точка N. Значение функции у0 = sin x0 определяется как ордината точки А. Точка В (угол x0, у0) принадлежит графику функции y = sin x (рис. 8). Ясно, что функция y = sin x периодическая, ее период равен 2 p :
т.е. синус – функция нечетная, f(–x) = –f(x) (рис. 9).
Если точку A повернуть относительно точки О на угол p /2 против часовой стрелки (другими словами, если угол х увеличить на p /2), то ее ордината в новом положении будет равна абсциссе в старом. А значит,
Иначе, синус – это косинус, «запоздавший» на p /2, поскольку любое значение косинуса «повторится» в синусе, когда аргумент возрастет на p /2. И чтобы построить график синуса, достаточно сдвинуть график косинуса на p /2 вправо (рис. 10). Чрезвычайно важное свойство синуса выражается равенством
.
Геометрический смысл равенства виден из рис. 11. Здесь х – это половина дуги АВ, а sin х – половина соответствующей хорды. Очевидно, что по мере сближения точек А и В длина хорды все точнее приближается к длине дуги. Из того же рисунка несложно извлечь неравенство
Функции у = tg х, у = ctg х. Две другие тригонометрические функции – тангенс и котангенс проще всего определить как отношения уже известных нам синуса и косинуса:
Котангенс не определен там, где синус равен 0 (когда х = k p ). В остальных точках он монотонно убывает, а прямые х = k p – его вертикальные асимптоты. В точках х = p /2 + k p котангенс обращается в 0, а угловой коэффициент в этих точках равен –1 (рис. 13).
Четность и периодичность.
Функция называется четной, если f(–x) = f(x). Функции косинус и секанс – четные, а синус, тангенс, котангенс и косеканс – функции нечетные:
sin (–α) = – sin α | tg (–α) = – tg α |
cos (–α) = cos α | ctg (–α) = – ctg α |
sec (–α) = sec α | cosec (–α) = – cosec α |
sin (α + 2kπ) = sin α | cos (α + 2kπ) = cos α |
tg (α + kπ) = tg α | ctg (α + kπ) = ctg α |
sec (α + 2kπ) = sec α | cosec (α + 2kπ) = cosec α |
Периодичность синуса и косинуса следует из того, что все точки P a + 2k p , где k = 0, ±1, ±2,…, совпадают, а периодичность тангенса и котангенса – из того, что точки P a + k p поочередно попадают в две диаметрально противоположные точки окружности, дающие одну и ту же точку на оси тангенсов.
Основные свойства тригонометрических функций могут быть сведены в таблицу:
Формулы приведения.
1) название функции сохраняется, если k четное, и меняется на «дополнительное», если k нечетное;
Формулы сложения.
sin ( a b ) = sin a cos b
cos a sin b ;
cos ( a b ) = cos a cos b
sin a sin b
Формулы кратных углов.
Эти формулы выводятся прямо из формул сложения:
sin 2 a = 2 sin a cos a ;
cos 2 a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a ;
sin 3 a = 3 sin a – 4 sin 3 a ;
cos 3 a = 4 cos 3 a – 3 cos a ;
Если в формулах двойного аргумента заменить a на a /2, их можно преобразовать в формулы половинных углов:
;
;
Формулы универсальной подстановки.
Используя эти формулы, выражение, включающее разные тригонометрические функции от одного и того же аргумента, можно переписать как рациональное выражение от одной функции tg ( a /2), это бывает полезно при решении некоторых уравнений:
Формулы преобразования сумм в произведения и произведений в суммы.
До появления компьютеров эти формулы использовались для упрощения вычислений. Расчеты производились с помощью логарифмических таблиц, а позже – логарифмической линейки, т.к. логарифмы лучше всего приспособлены для умножения чисел, поэтому все исходные выражения приводили к виду, удобному для логарифмирования, т.е. к произведениям, например:
2 sin a sin b = cos ( a – b ) – cos ( a + b );
2 cos a cos b = cos ( a – b ) + cos ( a + b );
2 sin a cos b = sin ( a – b ) + sin ( a + b ).
Формулы для функций тангенса и котангенса можно получить из вышеприведенных.
Формулы понижения степени.
Из формул кратного аргумента выводятся формулы:
sin 2 a = (1 – cos 2 a )/2; | cos 2 a = (1 + cos 2 a )/2; |
sin 3 a = (3 sin a – sin 3 a )/4; | cos 3 a = (3 cos a + cos 3 a )/4. |
С помощью этих формул тригонометрические уравнения можно приводить к уравнениям более низких степеней. Таким же образом можно вывести и формулы понижения для более высоких степеней синуса и косинуса.
Производные и интегралы тригонометрических функций | |
(sin x)` = cos x; | (cos x)` = –sin x; |
(tg x)` = | (ctg x)` = – |
т sin x dx = –cos x + C; | т cos x dx = sin x + C; |
т tg x dx = –ln |cos x| + C; | т ctg x dx = ln |sin x| + C; |
Каждая тригонометрическая функция в каждой точке своей области определения непрерывна и бесконечно дифференцируема. Причем и производные тригонометрических функций являются тригонометрическими функциями, а при интегрировании получаются так же тригонометрические функции или их логарифмы. Интегралы от рациональных комбинаций тригонометрических функций всегда являются элементарными функциями.
Представление тригонометрических функций в виде степенных рядов и бесконечных произведений.
Все тригонометрические функции допускают разложение в степенные ряды. При этом функции sin x b cos x представляются рядами. сходящимися для всех значений x:
Эти ряды можно использовать для получения приближенных выражений sin x и cos x при малых значениях x:
Функции sin x и cos x могут быть представлены в виде бесконечных произведений:
(эта формула была получена Эйлером в 1740);
Тригонометрические функции комплексного аргумента
определяются как аналитические продолжения соответствующих тригонометрических функций действительного аргумента в комплексную плоскость. Так, sin z и cos z могут быть определены с помощью рядов для sin x и cos x, если вместо x поставить z:
,
.
Эти ряды сходятся по всей плоскости, поэтому sin z и cos z – целые функции.
Тангенс и котангенс определяются формулами:
,
.
Функции tg z и ctg z – мероморфные функции. Полюсы tg z и sec z – простые (1-го порядка) и находятся в точках z = p /2 + p n, полюсы ctg z и cosec z – также простые и находятся в точках z = p n, n = 0, ±1, ±2,…
Все формулы, справедливые для тригонометрических функций действительного аргумента, справедливы и для комплексного. В частности,
т.е. четность и нечетность сохраняются. Сохраняются и формулы
т.е. периодичность также сохраняется, причем периоды такие же, как и для функций действительного аргумента.
Тригонометрические функции могут быть выражены через показательную функцию от чисто мнимого аргумента:
;
;
.
Обратно, e iz выражается через cos z и sin z по формуле:
Эти формулы носят название формул Эйлера. Леонард Эйлер вывел их в 1743.
Тригонометрические функции также можно выразить через гиперболические функции:
z = –i sh iz, cos z = ch iz, z = –i th iz.
где sh, ch и th – гиперболические синус, косинус и тангенс.
Тригонометрические функции комплексного аргумента z = x + iy, где x и y – действительные числа, можно выразить через тригонометрические и гиперболические функции действительных аргументов, например:
Синус и косинус комплексного аргумента могут принимать действительные значения, превосходящие 1 по абсолютной величине. Например:
Если неизвестный угол входит в уравнение как аргумент тригонометрических функций, то уравнение называется тригонометрическим. Такие уравнения настолько часто встречаются, что методы их решения очень подробно и тщательно разработаны. С помощью различных приемов и формул тригонометрические уравнения сводят к уравнениям вида f(x) = a, где f – какая-либо из простейших тригонометрических функций: синус, косинус, тангенс или котангенс. Затем выражают аргумент x этой функции через ее известное значение а.
Поскольку тригонометрические функции периодичны, одному и тому же а из области значений отвечает бесконечно много значений аргумента, и решения уравнения нельзя записать в виде одной функции от а. Поэтому в области определения каждой из основных тригонометрических функций выделяют участок, на котором она принимает все свои значения, причем каждое только один раз, и находят функцию, обратную ей на этом участке. Такие функции обозначают, приписывая приставку агс (дуга) к названию исходной функции, и называют обратными тригонометрическими функциями или просто аркфункциями.
Обратные тригонометрические функции.
Для sin х, cos х, tg х и ctg х можно определить обратные функции. Они обозначаются соответственно arcsin х (читается «арксинус x»), arcos x, arctg x и arcctg x. По определению, arcsin х есть такое число у, что
Аналогично и для других обратных тригонометрических функций. Но такое определение страдает некоторой неточностью.
Если отразить sin х, cos х, tg х и ctg х относительно биссектрисы первого и третьего квадрантов координатной плоскости, то функции из-за их периодичности становятся неоднозначными: одному и тому же синусу (косинусу, тангенсу, котангенсу) соответствует бесконечное количество углов.
Так же решаются другие простейшие тригонометрические уравнения:
где п = 0, ±1, ±2. (рис. 16);
где п = 0, ±1, ±2. (рис. 17);
где п = 0, ±1, ±2. (рис. 18).
Основные свойства обратных тригонометрических функций:
arcsin х (рис. 19): область определения – отрезок [–1, 1]; область значений – [– p /2, p /2], монотонно возрастающая функция;
arccos х (рис. 20): область определения – отрезок [–1, 1]; область значений – [0, p ]; монотонно убывающая функция;
arctg х (рис. 21): область определения – все действительные числа; область значений – интервал (– p /2, p /2); монотонно возрастающая функция; прямые у = – p /2 и у = p /2 – горизонтальные асимптоты;
arcctg х (рис. 22): область определения – все действительные числа; область значений – интервал (0, p ); монотонно убывающая функция; прямые y = 0 и у = p – горизонтальные асимптоты.
Т.к. тригонометрические функции комплексного аргумента sin z и cos z (в отличие от функций действительного аргумента) принимают все комплексные значения, то и уравнения sin z = a и cos z = a имеют решения для любого комплексного a:
,
.
Функции tg z и ctg z принимают все комплексные значения, кроме ±i: уравнения tg z = a, ctg z = a имеют решения для любого комплексного числа a № ± i:
,
.
Для любого z = x + iy, где x и y – действительные числа, имеют место неравенства
из которых при y ® Ґ вытекают асимптотические формулы (равномерно относительно x)
Кочетков Е.С., Кочеткова Е. С. Алгебра и элементарные функции, ч. 1–2, М., 1966
Шабат Б.В. Введение в комплексный анализ. М., 1969
Презентация » Секанс и косеканс»
«Управление общеобразовательной организацией:
новые тенденции и современные технологии»
Свидетельство и скидка на обучение каждому участнику
Описание презентации по отдельным слайдам:
ПРОЕКТ « ДВЕ ЗАБЫТЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ СЕКАНС И КОСЕКАНС»
ЦЕЛЬ Изучить тригонометрические функции вне школьной программы; Узнать их графики и свойства( определение, значение и т.д.)
Что такое тригонометрические функции? Тригонометрические функции представляют собой элементарные функции, аргументом которых является угол. С помощью тригонометрических функций описываются соотношения между сторонами и острыми углами в прямоугольном треугольнике. Области применения тригонометрических функций чрезвычайно разнообразны. Так, например, любые периодические процессы можно представить в виде суммы тригонометрических функций. Данные функции часто появляются при решении дифференциальных и функциональных уравнений.
Тригонометрические функции: *Прямые тригонометрические функции Синус (sin), косинус (cos). *Произвольные Тангенс (tg), котангенс (ctg) *Другие тригонометрические функции Секанс (sec), косеканс (cosec)
Две забытые тригонометрические функции Графики
Геометрическое определение: Секанс определяется как Косеканс определяется как
Определение Секансом угла называется (отношение гипотенузы к прилежащему катету). Косекансом угла называется (отношение гипотенузы к противолежащему катету).
Четность, периодичность Четность: Секанс – четная, косеканс – нечетная. Периодичность Функции y=sec, y=cosec периодические с периодом 2п.
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-1522834
Не нашли то, что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Большинство родителей в России удовлетворены качеством образования в детсадах
Время чтения: 2 минуты
В Липецкой области начинающие педагоги получат 120 тысяч рублей
Время чтения: 0 минут
Минпросвещения создает цифровую психологическую службу для школьников
Время чтения: 1 минута
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
Во всех педвузах страны появятся технопарки
Время чтения: 1 минута
В Минпросвещения рассказали о формате обучения школьников после праздников
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.