Что такое sdi выход
Serial Digital Interface
Содержание
Существует несколько стандартов SDI:
Эти стандарты используются для передачи некомпрессированных и некодированных цифровых видео сигналов (могут также иметь вложенные аудио потоки и/или таймкод) в профессиональном телевизионном оборудовании. Передача потока данных 270 Мбит/с возможна на расстояния до 300 м по коаксиальному кабелю.
Электрический интерфейс
В различных стандартах цифрового последовательного интерфейса используется один (и более) коаксиальный кабель волновым сопротивлением 75 Ом с разъёмами типа BNC. Такой же кабель используется для аналогового видео, но для цифрового потока предпочтительнее кабели более высокого качества. Размах сигнала 800 мВ (±10 %). Затухание сигнала при передаче на большие расстояния могут компенсироваться на приёмной стороне, что делает возможным передачу потока 270 Мбит/с на расстояние до 300 м. Для HD-потоков расстояние обычно не более 100 м.
Для передачи цифрового компонентного некомпрессированного видеосигнала используется канальное кодирование с модифицированным кодом без возвращения к нулю (БВНМ) в сочетании со скремблированием. Интерфейс является самосинхронизируемым. Кадровая синхронизация осуществляется специальным синхронизирующим пакетом данных, состоящим из последовательности подряд идущих 10 единиц и 20 нулей (20 единиц и 40 нулей для HD).
Стандарты
Стандарт | Название | Битрейт | Примеры видеоформатов |
---|---|---|---|
SMPTE 259M | SD-SDI | 270 Мбит/с, 360 Мбит/с, 143 Мбит/с, и 177 Мбит/с | 480i, 576i |
SMPTE 344M | ED-SDI | 540 Мбит/с | 480p, 576p |
SMPTE 292M | HD-SDI | 1,485 Гбит/с и 1,485/1,001 Гбит/с | 720p, 1080i |
SMPTE 372M | Dual Link HD-SDI | 2,970 Гбит/с и 2,970/1,001 Гбит/с | 1080p |
SMPTE 424M | 3G-SDI | 2,970 Гбит/с и 2,970/1,001 Гбит/с | 1080p |
Скорости передачи данных
Для передачи SDI используются следующие скорости потока:
Дополнительные данные
SMPTE 259M, SMPTE 292M включают поддержку дополнительных данных по стандарту SMPTE 291M. Дополнительные данные представляют собой стандартизованный поток данных для передачи в составе потока цифрового последовательного интерфейса. Помимо видео, в поток SDI могут быть включены вложенный звук, субтитры, тайм-код, сигналы обнаружения ошибок (EDH) и другие виды метаданных.
Вложенный звук
Сигналы обнаружения ошибок (EDH)
Сигнал обнаружения ошибок (EDH) не исправляет ошибки, а только их детектирует. Также не существует механизма, при котором поля с выявленными ошибками могли бы быть переданы снова.
EDH не используется в стандарте высокой четкости HD-SDI, так как в стандарте заложена передача суммы контрольного значения циклического избыточного кода каждой строки.
Что такое стандарт SDI и каковы его преимущества
Для стандарта SDI не нужен какой-то определенный вид соединения, но все же во многих случаях не обойтись без коаксиальных кабелей. Благодаря им SDI стали использовать в различных сферах, в том числе в производстве систем безопасности для видеонаблюдения. Так, можно применять такой стандарт для решения множества задач.
Подобные товары вы можете приобрести в нашем интернет-магазине. Вас поразит широкий ассортимент продукции, предназначенной для различных целей. Если вы не можете сделать выбор в пользу того или иного прибора, наши специалисты с удовольствием помогут вам. Они учтут, для чего вам нужно устройство, как вы будете его использовать и еще целый ряд разных факторов, и предложат оптимальный для вас вариант.
Технология SDI
У технологии SDI — множество достоинств. Так, цифровой сигнал используется по всей системе. Чтобы на примере показать все преимущества такого стандарта, сравним аналоговые системы с SDI. Часто во время передачи сигналов появляются различные ошибки в виде помех, недостаточной яркости, которые негативно сказываются на качестве изображения. Данные в аналоговом сигнале включены по модуляции, амплитуде и частоте. Их нужно деколировать после завершения передачи, чтобы получить хорошее изображение. У сигнала SDI же нет искажения изображения. HD-SDI в отличие от HD-видео осуществляет передачу данных во много раз больше.
Чтобы не пользоваться многочисленными кабелями для просмотра видео на экранах, нужно остановиться на конвертерах HD-SDI. Такое устройство имеет положительные характеристики, такие как высокая надежность и прочность. Например, у него есть резервный вход, то есть даже если основной сигнал потеряется по какой-то причине, переход на него будет происходить автоматически. Зачастую это происходит из-за того, что кабель начинает работать некорректно из-за повреждений различного характера.
Передача двухмегапиксельного full HD-видео
Стандарт SDI, как уже было сказано выше, занял прочные позиции на телевидении и в других сферах. Он также незаменим для проведения любых конференций, где требуется высокое качество изображения. Приборы SDI может приобрести любой желающий, ведь демократичная стоимость позволяет сделать это. Также внедрить такие системы можно практически на любой объект, где проложены коаксиальные кабели. Такой вариант является наиболее дешевым, нежели создание системы IP-видеонаблюдения. Правда, эти решения являются совершенно разными, но дополняющими друг друга.
Интерфейсы SDI/HD-SDI: проблемы, характеристики, структура
Зачем нужны цифровые форматы телевидения?
Как известно, изначально телевидение, как и все прочее, было аналоговым и в основном остается таковым до сих пор. Только сейчас начинается активный переход к цифровому ТВ, практически совпадающий по времени с принятием стандартов и внедрением телевидения высокой четкости.
Цифровые форматы ТВ очень перспективны по многим причинам:
Однако неоспоримые преимущества цифровой обработки ощутимо теряют свою привлекательность из-за того, что существует необходимость многократной транспортировки сигнала из студии в студию, с одного аппаратного комплекса или компьютера на другой. При этом многочисленные преобразования из аналоговой в цифровую форму и наоборот не менее губительны, чем сложные операции обработки и передача на большие расстояния аналогового сигнала.
Уже давно появились средства цифровой видеозаписи, позволяющие исключить критическую стадию аналого-цифрового преобразования. Весьма логично было бы вслед за этим избавиться и от всех промежуточных преобразований, оставив лишь одно – из цифры в аналог – в самом конце тракта, непосредственно перед передачей в эфир. Аналоговое телевещание пока что превалирует с большим перевесом, хотя постепенный переход на цифровое уже начинается, что позволит наконец полностью избавиться от лишних ЦАП’ови АЦП. Причем не только в студиях и на телецентрах, но и во многих случаях на приемной стороне: ведь такие распространенные на сегодня дисплеи, как плазменные панели и DLP-проекторы, являются цифровыми по своей сути. Несомненно, что и светодиодные дисплеи, которые в будущем наверняка вытеснят плазменные, жидкокристаллические и тем более кинескопные телевизоры, также будут цифровыми. Стопроцентная реализация потенциала цифрового дисплея возможно только при наличии полностью цифрового тракта.
… и конкретно SDI?
Итак, первоочередной целью, поставленной перед студиями, была организация распределительных кабельных сетей для передачи цифрового видео вещательного уровня качества без потерь. Естественно, физическая замена среды распространения – кабельных сетей – была бы связана с высокими капиталовложениями. Поэтому стояла задача адаптировать цифровые потоки под уже имеющиеся коммуникации коаксиального кабеля, которые долгие годы служили для передачи аналогового сигнала. При этом достаточно было частично заменить, а частично дополнить состав аппаратных комплексов, не вмешиваясь в конструктив зданий и помещений (перепрокладка кабелей – это по сути капремонт, а значит, не только деньги, но и время).
Однако просто оцифровать компонентный сигнал, с которым имеют дело в профессиональной сфере, недостаточно. К тому же, поскольку в эфир передается полный телевизионный сигнал, представляющий собой композитный видеосигнал плюс звук в форме частотно-модулированной поднесущей, значительная часть студийных магистралей имела не трех-, а однолинейную структуру. Значит, необходимо было разработать специальный цифровой формат видео, которым и стал SDI – Series Digital Interface, или последовательный цифровой интерфейс, требующий всего одного коаксиального кабеля для передачи трех сигналов – яркости и двух цветоразностных компонент. И обеспечивающий доставку видео без потерь на расстояния, типичные для студий и телецентров.
Какие проблемы стояли на пути создания формата SDI?
Основная проблема – большие массивы данных и соответственно скорости их передачи, неизбежно возникающие при оцифровке и без того достаточно высокочастотного видеосигнала. Спектр цифрового видео имеет очень большую протяженность в области высоких частот: это сотни мегагерц. Широкая полоса тракта необходима не только для обеспечения нужной скорости передачи, но и для сохранения по возможности изначально прямоугольной формы импульсов. При вырождении ее в синусоиду постепенно накапливается джиттер (дрожание фаз фронтов), возрастает количество ошибок, сигнал теряет помехоустойчивость, одно из главных преимуществ цифрового представления сигнала. Джиттер может наблюдаться в широкой полосе частот. Различают низкочастотный джиттер, или НЧ дрейф (drift, wander) ниже 10 Гц, который почти не влияет на качество сигнала (медленное изменение тактовой частоты) и высокочастотный, приводящий к деградации сигнала. Допустимое значение ВЧ-джитера составляет 0,2 х T: 740 пс для 270 Мбит/с (стандартное телевидение), 135 пс для 1,485 Гбит/с (ТВ высокой четкости), где T – длительность тактового импульса.
Рис. 1. Джиттер
На приемной части от джиттера полностью избавляются путем восстановления тактовой частоты данных (перетактирования, reclocking). Однако существуют пределы степени деградации формы сигнала, при превышении которых полное восстановление становится невозможным.
Коаксиальный кабель – практически идеальная среда распространения высокочастотных сигналов (при условии согласованности линии передачи по входам и выходам с компонентами тракта), однако и она накладывает определенные ограничения по частоте, и тем боле жесткие, чем длиннее линия передач. Это касается не только аналоговых, но и цифровых сигналов.
Значит, нужно либо довольствоваться малыми расстояниями, что не всегда возможно, либо сжимать цифровой поток. Алгоритмы эффективного сжатия, основанные на отбрасывании информации малой степени заметности, существуют и широко применяются, и все они предполагают сжатие с потерями: MPEG-2, MPEG-4, DV (Motion JPEG) и пр. Надо сказать, что сжатие (например, MPEG-2 для DVB) используется для вещания в эфир, при этом субъективное восприятие качества картинки при однократной декомпрессии сжатого сигнала на приемной стороне остается достаточно высоким, а в стандартный частотный диапазон одного аналогового канала удается уложить до 3-6 цифровых каналов. Незаменимо оно и для уплотнения информации на внешних носителях (DVD, цифровая магнитная запись, винчестер). Помимо собственно изображения, сжатые форматы позволяют записывать и передавать многоканальный звук, различные дополнительные материалы и пр. Но при многократных циклах сжатия и распаковки сигнала происходит необратимая потеря качества с накоплением характерных артефактов изображения. Поэтому в пределах студии передача сигнала должна осуществляться без сжатия или с неглубоким сжатием без потерь.
Итак, формат SDI позволил решить задачу передачи цифровых видеоданных внутри студий как без цифро-аналоговых и аналого-цифровых преобразований, так и без многократных сжатий и распаковок, максимально сохранив при этом преемственность коммуникаций (как коаксиальных, так и оптоволоконных) и аппаратных комплексов. Многие компоненты, такие, как обычные и матричные коммутаторы, усилители-распределители и пр., применявшиеся в аналоговом ТВ, при условии определенного запаса по полосе частот с успехом работают с сигналами SDI.
Характеристики формата SDI
Формат SDI соответствует Рекомендациям МСЭ-Р ВТ.656 и стандарту SMPTE-259M (Society of Motion Picture and Television Engineers – Общество инженеров в области техники кино и телевидения). Помимо стандартного телевидения, он применим также для телевидения высокой четкости (версия HD-SDI SMPTE-292M). Передача сигнала осуществляется согласно Рекомендации МСЭ-Р ВТ.601 (а также дополнению «В» для формата 16:9). Среда распространения – единичный коаксиальный кабель 75 Ом с терминалами BNC. Либо оптоволоконная линия передач (одномодовое волокно, длина волны 1310±40 нм) с лазерными передатчиком и приемником (Рекомендация МСЭ-Р BT.1367). Оптоволоконная линия терминируется разъемами ST.
Рис. 2. Физический интерфейс SDI: коаксиальный кабель, разъем BNC,
оптический разъем, лазерный передатчик
Затухание в линии не должно превышать 30 дБ/100 м на частоте 100 МГц (для стандартного телевидения) и 20 дБ/100м на частоте 750 МГц для ТВЧ. Соответственно примерные расстояния для передачи без ошибок составляют 280 м (СТВ) и 50 м (ТВЧ). С целью увеличения расстояний транспортировки, как и в случае с аналоговым видео, применяются повторители. Наилучшие результаты дают приборы с коррекцией амплитудной характеристики (подъем высоких частот), позволяющие в значительной степени восстановить форму импульсов. Еще лучше, если одновременно с восстановлением формы производится перетактирование сигнала.
Оптоволокно же дает возможность передавать данные без потерь более чем на 50 км.
Рис. 3. Число ошибок в сигнале SDI в зависимости от длины кабеля
(кабель Belden 8281)
Передача является односторонней, без квитирования (подтверждения о получении данных приемной стороной).
Передача каждой из трех компонент видео – Y, Cb, Cr – осуществляется последовательно в виде двоичных кодов. Вещательным стандартом является модель 4:2:2, предполагающая, что на цветоразностные компоненты приходится вдвое меньше отсчетов, чем на яркостную, и соответственно вдвое ниже разрешение по цветам по сравнению с яркостью. Фактически «4:2:2» означает, что из каждой четверки соседних пикселей в строке яркость кодируется для каждого, а цветоразностные компоненты – через один (первая двойка). Кроме этого, точно так же обстоят дела с соответствующими пикселями следующей строки (вторая двойка). Формула 4:4:4 означает равнозначность кодировки для все пикселей и строк (и по яркости, и по цветоразностным компонентам). А формула 4:2:0 означает, что информация о цвете передается не в каждой строке, а через строку.
Модель 4:2:2 хорошо согласуется с особенностями восприятия зрительного аппарата и применяется для того чтобы снизить объем данных. Однако существует возможность работы и с моделью 4:4:4, хотя и при меньших расстояниях передачи (физически реализуемая, хотя и выходит за рамки стандарта SDI). Это необходимо на стадии обработки по цвету, когда для корректного пересчета цифровых последовательностей требуется повышенное разрешение во избежание набега ошибки. Предусмотрена также передача оцифрованного в формате SDI композитного видеосигнала (модель 4:0:0), хотя на практике она применения не находит.
Данные кодируются с частотой выборки 13,5 МГц (яркость) или 6,75 МГц (цветоразностные компоненты). Разрешение составляет 10 бит для каждой компоненты (ранее применялось 8-битное кодирование, ныне устаревшее).
Передача сигнала стандартного телевидения происходит со скоростью потока 270 Мбит/с, для чего достаточно полосы канала в 250 МГц. В соответствии со спецификацией LVDS (Low Voltage Differential Signaling, или дифференциальная передача низкоуровневых сигналов) биты кодируются не напряжением, а перепадами уровней напряжения (размах его составляет 800±80 мВ). Это обеспечивает высокую помехозащищенность (по аналогии частотная модуляция аналогового сигнала меньше подвержена воздействию помех по сравнению с амплитудной). Поскольку важны не сами уровни, а только перепады, полярность сигнала значения не имеет, и поэтому в тракте с одинаковым успехом могут применяться как неинвертирующие, так и инвертирующие усилительные элементы.
Исходный цифровой поток скремблируется («перемешивается), на приемной же стороне производится его восстановление (дескремблирование). Эта операция применяется для более равномерного распределения энергии сигнала по всему его спектру, который приближается в результате к шумовому и создает меньше вредных наводок на соседние коммуникации.
Помимо собственно видео, в формате SDI возможна передача звука (стандартные 4 канала или больше) и временного кода.
Структура сигнала SDI
Для стандартного телевидения различают форматы SDI, соответствующие стандартам NTSC (60 полей/с, 525 строк в кадре) и PAL/SECAM (50/625).
Каждая строка в начале и конце имеет специальные маркеры, или метки SAV (Start of Active Video) и EAV (End of Active Video). Между метками SAV и EAV передаются собственно видеоданные (720 отсчетов сигнала яркости Y и по 360 отсчетов цветоразностных каналов Cr, Cb). Между окончанием предыдущей (EAV) и началом следующей строки (SAV) могут передаваться дополнительные данные, сюда же вставляются отсчеты каналов звукового сопровождения.
Рис. 4. Структура сигнала SDI
Рис. 5. Структура кадра SDI
Для ТВЧ структура сигнала SDI (в данном случае – HD SDI) остается прежней, изменяются только количество отсчетов в каждой строке и число строк в кадрах. Согласно стандарту SMPTE-292M передача ТВЧ осуществляется на скорости 1,485 Гбит/с при частоте кадров 24, 25, 30 Гц (прогрессивная развертка) или 50, 60 Гц (чересстрочная развертка). Существуют также версии формата HD SDI с частотами кадровой развертки 59,94, 29,97 и 23,976 Гц и скоростью потока 1,4835 Гбит/с, обеспечивающие совместимость различными вариантами NTSC.
Получение сигнала SDI
Если SDI получается из аналоговых композитного сигнала или S-Video, сначала эти сигналы декодируются и раскладываются на составляющие: яркость Y, а также цветоразностные сигналы U (или Cr) и V (или Cb). Уровни этих сигналов определяются следующими соотношениями:
Y = 0,299R+0,578G+0,114B; U = R-Y; V = B-Y, R – красный, G – зеленый, B – синий.
Затем каждая компонента оцифровывается и подается на кодер, в котором данные собираются в последовательности, соответствующей структуре SDI. Звук включается в структуру SDI (в промежутках между метками EAV и SAV) с помощью специальных устройств – эмбеддеров, на приемной же стороны он вновь извлекается из сигнала с помощью деэмбеддеров. Звуковое сопровождение может подаваться на вход эмбеддера в цифровом виде (по интерфейсу S/PDIF) либо в аналоговом.
Стандарт SMPTE-272M предусматривает возможность внедрения до 16 каналов цифрового звука с различными частотами дискретизации, разрядностями и способами синхронизации (всего 10 вариантов).
В SDI возможно ввести и другие данные, например телетекст. Это не предусмотрено стандартом, но физически реализуемо и часто применяется на практике.
Формат SDTI
Часто возникает потребность передачи сжатого оцифрованного видеосигнала. Для этого вполне можно использовать SDI, но снова возникает проблема лишних преобразований: декомпрессии (перед передачей) и повторного сжатия. Поэтому на базе SDI был создан специальный формат передачи сжатых данных – SDTI (Serial Digital Transport Interface), стандарт SMPTE-305M. Синоним SDTI – QSDI, принятый у разработчиков аппаратуры DVCAM. SDTI обеспечивает передачу сигнала быстрее, чем в реальном времени – несжатый сигнал передается со скоростью до 360 Мбит/с, а сжатый до 200 Мбит/ с, то есть в 4 раза быстрее, чем сжатый компонентный 4:2:2 (50 Мбит/с). Передача происходит быстрее реального времени. Стандарт предусматривает 8 каналов аудио, тайм-код и пр. В качестве среды распространения используется такой же коаксиальный кабель, как и в SDI, а также оптоволоконные линии. Первая версия формата – SDT – сочетала в себе основные особенности интерфейсов DVCAM и Betacam SX (Sony) и DVCPRO (Panasonic). SDTI обладает односторонней совместимостью с SDI (компоненты стандарта SMPTE-305M корректно работают с SMPTE-259M), что обеспечивает преемственность оборудования и дает возможность плавного перехода с одного формата на другой без глобальной замены.
Структура сигнала SDTI в целом та же, что и у SDI, но данные в области активного видео пакетируются. Между метками EAV и SAV (т.е. в служебной области) в каждой строке присутствуют специальные коды, оповещающие приемную сторону о том, что данная строка содержит информацию в формате SDTI.
Форматы передачи видеосигналов SDI/HD-SDI: задачи, описание и функциональность
14 октября 2019 года завершился двухлетний масштабный проект Правительства РФ – полный переход отечественного телевещания в цифровой формат. Эта реформа – закономерный результат технического прогресса в развитых странах: европейские государства активно переходят на цифровое вещание. В статье рассмотрим особенности работы с форматом SDI и тонкости перехода с аналогового формата видео на цифровое.
14 октября 2019 года завершился двухлетний масштабный проект Правительства РФ – полный переход отечественного телевещания в цифровой формат. Эта реформа – закономерный результат технического прогресса в развитых странах: европейские государства активно переходят на цифровое вещание.
Причины всеобщего перехода на «цифру»
Перспективность цифрового вещания не вызывает вопросов.
Во-первых, современное оборудование и всеобщая компьютеризация и цифровизация влияют на современный мир. Появились программные способы обработки сигналов, методы монтажа и обработки видео, недоступные для «плёнки».
Free-Flow является запатентованной технологией британского производителя KVM-оборудования Adder Technology
В-третьих, качество цифрового видео значительно превосходит аналоговое. Аналоговый сигнал при передаче сильно деформируется, в зависимости от расстояния, числа компонентов тракта, погоды. Возникали помехи в виде «полосок», «звездочек», постороннего шума, зависания видео.
В-четвертых, современная видеоаппаратура (мониторы, телевизоры, иное оборудование) может раскрыть весь свой потенциал только с «цифрой». Такие операции, как, например, набирающее популярность интерполяционное масштабирование (достижение изображения наилучшего качества в цвете и яркости пикселя, основываясь на значениях окружающих пикселей), актуальны в современном вещании. Однако они либо невозможны в сочетании с традиционными сигналами, либо возможны, но с применением преобразователей.
Но стоит понимать, что эти несомненные плюсы могут так и не стать преимуществами. Дело в том, что сигналы в процессе обработки множество раз перемещаются между студией и аппаратной, между серверами и компьютерами редакторов, монтажеров и операторов. Такие неоднократные перемещения с преобразованиями аналоговых сигналов в цифровые чреваты теми же проблемами, что и при трансляции чистого аналогового сигнала.
Производители видео- и звукозаписывающего оборудования предлагают телестудиям широкий выбор устройств, исключающих критически важные преобразования аналогового сигнала в цифровой. В идеале лучшим техническим решением было бы вовсе исключить промежуточные преобразование сигналов, кроме последнего, когда непосредственно перед эфиром необходимо преобразовать цифровой сигнал в аналоговый.
Что такое SDI
Чтобы перейти на цифровое телевещание, студиям, прежде всего, придется организовать инфраструктуру для передачи видео в «цифре» без потерь. Перепрокладывать всю кабельную сеть было бы очень дорогим и времязатратным шагом, тем более что под трансляцию цифрового сигнала можно адаптировать уже имеющиеся коаксиальные сети, ранее служившие для передачи аналогового. Для этого необходимо лишь оснастить аппаратные комплексы дополнительными устройствами без необходимости обновления уже имеющейся кабельной системы.
Вопреки устоявшемуся мнению, просто перевести аналоговый сигнал в цифровой недостаточно. Телесигнал, который передается в эфир, имеет сложную структуру: композитное видео плюс аудио в виде частотно-модулированной поднесущей. Но студийная кабельная сеть в основном однолинейная, а не трехлинейная, как это мыслится для передачи цифрового телесигнала.
Специально под эти нужды был разработан особый формат цифрового видео – SDI (Series Digital Interface). Так называемый последовательный цифровой интерфейс транслирует одновременно три сигнала: два – цветоразностных и один – яркости, – а также обеспечивает точную передачу видеосигнала на значительные расстояния.
Проблемы внедрения формата SDI
При оцифровке высокочастотных сигналов возникают трудности с обработкой данных больших объемов, что, в свою очередь, негативно сказывается на скорости передачи. Диапазон частот сигнала достигает сотен мегагерц. Нужная скорость и сохранение изначальной формы сигналов достигается расширенной полосой тракта. Полоса представляет собой выраженную синусоиду, где наглядно видно такое явление, как джиттер. Джиттер – это своего рода дрожание фронтовых фаз. Это дрожание провоцирует возникновение ошибок и помех. Низкочастотный джиттер (НЧ-дрейф) появляется на частоте ниже 10 Гц и практически не влияет на качество передачи. Высокочастотный же приводит к помехам и ошибкам. Расчет минимального значения для ВЧ-джиттера:
Проблему устраняют, как правило, восстановлением тактовой частоты сигналов. Однако стоит учесть, что существует порог деформирования сигнала, по достижении которого сигнал не восстановить без ущерба для восприятия.
Современное KVM оборудование позволяет передавать сигналы видео, аудио и USB в одном пакете (по одному кабелю) без потерь практически на любые расстояния. См., например, решения:
Некоторые технические особенности формата SDI
Типы кабелей для передачи сигналов в формате SDI и требования к сетям
Коаксиальный кабель | Оптоволоконный кабель |
Важные характеристики | 75 Ом с терминалами BNC |