Что такое opc сервер простыми словами
OPC-сервер
OPC (OLE for Process Control) — семейство программных технологий, предоставляющих единый интерфейс для управления объектами автоматизации и технологическими процессами. Многие из OPC протоколов базируются на Windows-технологиях: OLE, ActiveX, COM/DCOM. Такие OPC протоколы, как OPC XML DA и OPC UA являются платформенно-независимыми.
Создание и поддержку спецификаций OPC координирует международная некоммерческая организация OPC Foundation, созданная в 1994 году ведущими производителями средств промышленной автоматизации.
Девиз OPC: открытые коммуникации по открытым протоколам.
Содержание
Стандарты
OPC DA (Data Access)
Это основной и наиболее востребованный стандарт. Описывает набор функций обмена данными в реальном времени с ПЛК, РСУ, ЧМИ, ЧПУ и другими устройствами.
OPC AE (Alarms & Events)
Предоставляет функции уведомления по требованию о различных событиях: аварийные ситуациии, действия оператора, информационные сообщения и другие.
Предоставляет функции шагового и рецептурного управления технологическим процессом (в соответствии с стандартом S88.01)
OPC DX (Data eXchange)
Предоставляет функции организации обмена данными между OPC-серверами через сеть
OPC HDA (Historical Data Access)
В то время как OPC Data Access предоставляет доступ к данным изменяющимся в реальном времени, OPC Historical Data Access предоставляет доступ к уже сохраненным данным.
Определяет функции организации прав доступа клиентов к данным системы управления через OPC-сервер.
OPC XML-DA (XML-Data Access)
Предоставляет гибкий, управляемый правилами формат обмена данными через HTTP.
OPC UA (Unified Architecture)
Новая спецификация, которая не основана на технологии Microsoft COM, что предоставляет кросс-платформенную совместимость.
Назначение
Стандарт OPC разрабатывался с целью сократить затраты на создание и сопровождение приложений промышленной автоматизации. В начале 90-ых у разработчиков промышленного ПО возникла потребность в универсальном инструменте обмена данными с устройствами разных производителей или по разным протоколам обмена данными.
Суть OPC проста — предоставить разработчикам промышленных программ универсальный фиксированный интерфейс (то есть набор функций) обмена данными с любыми устройствами. В то же время разработчики устройств предоставляют программу, реализующую этот интерфейс (набор функций).
Версии
На данный момент используется OPC версии 3.0, однако наиболее распространенной версией пока является 2.05a. Недавно разработанный стандарт OPC UA (Unified Architecture) унифицирует набор функций для обмена данными, регистрации событий, хранения данных, обеспечения безопасности данных.
OPC Version 2.05a
Наиболее широко используемая. В этом стандарте помимо синхронного обмена данными, введена поддержка асинхронного обмена данными. Асинхронный обмен данных позволяет продолжать выполнение программы без ожидания ответа устройства. Этот метод снижает нагрузку на сеть и должен быть рекомендован как основной. Получение данных реализуется с помощью callback-функции пользовательской программы, которая вызывается в момент прихода ответа от устройства.
OPC Unified Architecture
Инструментарий
Чаще всего для создания приложений с поддержкой OPC используют языки программирования C++, C# или Visual Basic.
Уровни управления
Исходя из области применения OPC-серверов в АСУ предприятия различают несколько уровней управления:
Каждый из этих уровней может обслуживаться OPC-сервером, поставляя данные OPC-клиенту на более высоком уровне или даже «соседу».
Возможные области применения OPC-серверов в АСУ предприятия
Если имеется оборудование, например плата АЦП, управляемая через драйвер на компьютере с Windows или другой ОС, поддерживающей DCOM, то это самый главный кандидат на реализацию OPC-сервера непосредственно поверх драйвера.
Замена устройства не потребует изменения остальных приложений: OPC-сервер изменяется, но сам OPC-интерфейс поверх него остается прежним.
При наличии устройства, управляемого через какой-нибудь сетевой протокол, вполне возможна реализация OPC-сервера, получающего данные по этому протоколу. Единственная особенность — следует предусмотреть механизмы восстановления связи в случае сбоев.
Несколько более сложной будет схема при работе управляющих приложений на компьютере, не поддерживающем DCOM. В этом случае применим двухкомпонентный OPC-сервер. На стороне ОС, не поддерживающей COM, устанавливается сетевой модуль, который, с одной стороны, связан с приложением(ями), а с другой — через сеть с OPC-сервером. Заметим, что сетевой модуль может быть стандартным, как, например, ISaNet в системе ISaGRAF. В этом случае необходимо разработать только OPC-сервер. Иногда сетевой модуль создается специально для OPC-сервера. Возможна даже реализация, при которой этот модуль не ориентирован на конкретное приложение, а предоставляет некоторый API-интерфейс для любых приложений, желающих обслуживаться с помощью OPC. Так действует OPC-сервер для операционной системы полевой шины, такой, как Profibus или fieldbus-сети, а OPC-сервер будет взаимодействовать с этой сетью через драйвер адаптера. В Internet можно найти немало таких примеров.
Идея подобной схемы достаточно очевидна. Сеть полевой шины работает в жестком реальном времени, а OPC предоставляет менее требовательный шлюз к этой сети из приложений более высокого уровня.
Можно назвать много других мест применения OPC: для работы с базами данных в качестве вспомогательных или промежуточных OPC-серверов и т. д. Технология DCOM не очень пригодна для глобальных сетей. Поэтому для привлечения к OPC-технологии Internet-технологий возможен такой путь: расширение Web-сервера является OPC-клиентом, собирающим данные от OPC-серверов. А на стороне клиентов запускается динамическая html- или xml-страница, получающая данные от этого Web-сервера. Ее можно сделать даже OPC-сервером для других приложений.
Полезность применения OPC с точки зрения интеграции достаточно прозрачна и вытекает из самой сути OPC. Это стандарт на интерфейс обмена данными с оборудованием. Первое преимущество — если вы заменяете какой-нибудь компонент, то нет нужды корректировать другое ПО, так как даже при замене драйвера поверх него работает OPC. Второе — если вы хотите добавить в систему новые программы, нет необходимости предусматривать в них драйверы устройств, кроме OPC-клиента, разумеется. Ну и так далее.
Состояние дел
В настоящее время общепризнанным стандартом является только спецификация DA OPC, а остальные спецификации только начинают завоевывать себе место под солнцем. Не все спецификации завершены, по крайней мере, с точки зрения интерфейса автоматизации (например, для ОРС-Batch уже существует версия 2.0 custom-интерфейса, и только 1.0 — для интерфейса автоматизации. Для некоторых других спецификаций тоже существует отставание интерфейсов автоматизации от custom-интерфейсов; для ОРС Security спецификации на интерфейс автоматизации вообще не существует).
Соответственно широкое распространение получил лишь стандарт OPC DA. Можно сказать, что сейчас действительно очень многие производители снабжают свои продукты OPC DA серверами. Чего нельзя сказать о других спецификациях.
Среди программ высокого уровня аналогичная картина. Спросом пользуется лишь OPC DA. Все известные
Из операционных систем технологию DCOM поддерживают следующие:
В других распространенных операционных системах поддержки DCOM нет.
Перспективы
Итак, в настоящее время картина далеко не идеальна. Еще довольно много оборудования и ПО не охвачено OPC-технологиями. Даже технологией DA. Но нам представляется, что сейчас в мире налицо некий бум OPC, по крайней мере, в отношении опять же DA. Думается также, что Microsoft рано или поздно доведет все до желаемого уровня по всем направлениям. Тем более что альтернативных вариантов пока нет. Мы имеем в виду не COM/DCOM, а именно спецификации на обмен технологическими данными. Поскольку для COM/DCOM замена как раз имеется — CORBA. Это действительно изначально платформенно-независимая технология взаимодействия приложений. Но это не обмен технологическими данными, реализующий более высокий уровень абстракции. Кстати, заметим, что на рынке имеются OPC-шлюзы к CORBA (это возможно, как и к любому другому протоколу).
Однако, несмотря на такие планы, организация OPC Foundation своей политикой сдерживает развитие стандарта. Документация с описанием интерфейсов доступна только членам данной организации. Членство стоит от нескольких тысяч долларов, что недоступно не только для разработчиков-одиночек, но даже для многих организаций. Этим и объясняется популярность OPC DA, документация по данному интерфейсу долгое время была доступна свободно. Как результат многие фирмы, не желающие связываться с довольно капризной технологией, имеющие в штате хороших программистов нижнего уровня и работающие с ограниченной номенклатурой контроллеров используют для своих SCADA-пакетов технологию CORBA.
Заключение
Технология OPC предлагает стандарты для обмена технологическими данными, в которые заложены самые широкие возможности. Учитывая большой авторитет вовлеченных в данную деятельность фирм, можно ожидать, что технология OPC будет набирать силу. Это перспективная технология для интеграции разнородных систем. Хотя процесс становления еще далеко не завершен и есть много проблем, которые предстоит решить.
Просто о стандартах OPC DA и OPC UA
OPC (аббр. от англ. Open Platform Communications, ранее англ. OLE for Process Control) – это набор программных технологий, которые предоставляют единый интерфейс для управления различными устройствами и обмена данными. Спецификации OPC были разработаны международной некоммерческой организацией OPC Foundation, которую создали в 1994 году ведущие производители средств промышленной автоматизации. Целью создания OPC было предоставить инженерам универсальный интерфейс для управления различными устройствами.
Реализовав поддержку OPC-клиента, разработчики SCADA систем избавились от необходимости поддерживать сотни драйверов для различных устройств, а производители оборудования, добавив OPC-сервер, обрели уверенность в том, что их продукт может применяться пользователями любых SCADA систем.
Технология OPC включает несколько стандартов, которые описывают набор функций определенного назначения. Текущие стандарты:
OPC DA (Data Access)— наиболее распространённый стандарт. Описывает набор функций обмена данными в реальном времени с ПЛК, РСУ, ЧМИ, ЧПУ и другими устройствами.
OPC HDA (Historical Data Access)предоставляет доступ к уже сохраненным данным и истории.
OPC AE (Alarms & Events)— предоставляет функции уведомления по требованию о различных событиях: аварийные ситуации, действия оператора, информационные сообщения и другие.
OPC Batch— предоставляет функции шагового и рецептурного управления технологическим процессом.
OPC DX (Data eXchange)— предоставляет функции организации обмена данными между OPC-серверами через сеть Ethernet. Основное назначение — создание шлюзов для обмена данными между устройствами и программами разных производителей.
OPC Security— определяет функции организации прав доступа клиентов к данным OPC-сервера.
OPC XML-DA (XML-Data Access)— предоставляет гибкий, управляемый правилами формат обмена данными через XML, SOAP и HTTP.
OPC Complex Data— дополнительные спецификации к OPC DA и XML-DA, которые позволяют серверам работать со сложными типами данных, такими как бинарные структуры и XML-документы.
OPC Commands— набор программных интерфейсов, который позволяет ОРС клиентам и серверам идентифицировать, посылать и контролировать команды, исполняемые в контроллере или модуле ввода-вывода.
OPC UA (Unified Architecture)— последняя по времени выпуска спецификация, которая основана не на технологии Microsoft COM, что предоставляет кроссплатформенную совместимость.
Самое широкое распространение получил стандарт OPC DA, но у него есть существенный недостаток. Во времена его разработки он был построен на современных Windows-технологиях: OLE, ActiveX, COM/DCOM, но с тех пор в отрасли прошли изменения и большое распространение получили другие ОС и технологии. Поэтому технологию OPC сделали платформонезависимой и разработали стандарт OPC UA (Unified Architecture) на открытых кроссплатформенных технологиях.
Применение OPC
Обычно технологию OPC применяют для обмена данными между контроллерами и SCADA системой, но также возможна организация сложных систем на разных уровнях АСУ ТП.
OPC состоит из двух частей: OPC клиента и OPC сервера. ПО OPC сервера через драйверы устройств по полевым шинам опрашивает различные устройства. ПО OPC клиента обычно встроено в SCADA систему и предназначено для получения данных с OPC сервера.
На предприятии можно выделить несколько уровней АСУ:
Нижний уровень — полевые шины (fieldbus) и отдельные контроллеры;
Средний уровень — цеховые сети;
Уровень АСУ ТП — уровень работы систем типа SCADA;
Уровень АСУП — уровень приложений управления ресурсами предприятия, ERP, MES.
Каждый из этих уровней может обслуживаться OPC-сервером, поставляя данные OPC-клиенту на более высоком уровне или соседнему устройству.
Работа OPC DA сервера
OPC DA сервер обеспечивает обмен данными (запись и чтение) между клиентской программой (обычно SCADA системой) и конечными устройствами. Данные в OPC представляют собой переменную Тег с некоторыми свойствами. Переменная может быть любого типа, допустимого в OLE: различные целые и вещественные типы, логический тип, строковый, дата, массивом и т. д. Свойства могут быть обязательными, рекомендуемыми и пользовательскими.
Текущее значение переменной, ее тип и права доступа (чтение и/или запись).
Качество переменнойзависит от выхода измеряемой величины за границы динамического диапазона, отсутствии данных, ошибки связи и других параметров. Обычно принимает значения: хорошее/плохое/неопределенное и дополнительная информация.
Метка временисообщает о времени, когда переменная получила данное значение.
Частота опроса переменной OPC-серверомзадает время обновления значения переменной.
Описание переменной, которое содержит информацию для пользователя о том, что представляет собой эта переменная.
Дополнительно могут быть указаны необязательные свойства: диапазон изменения значения, единица измерения и другие пользовательские параметры.
Для чтения данных из ОРС сервера можно использовать различные режимы:
Синхронный режим: клиент посылает запрос серверу и ждет от него ответ.
Асинхронный режим: клиент отправляет запрос и сразу же переходит к выполнению других задач. Сервер после обработки запроса посылает клиенту уведомление и тот забирает предоставленные данные.
Режим подписки: сервер отсылает клиенту только те теги, которые изменились. Для того, чтобы шум данных не был принят за их изменение, вводится понятие «мертвой зоны», которая слегка превышает максимально возможный размах помехи.
Режим обновления данных: клиент вызывает одновременное чтение всех активных тегов. Активными называются все теги, кроме обозначенных как «пассивные». Такое деление тегов уменьшает загрузку процессора обновлением данных, принимаемых из физического устройства.
Клиент получает данные от ОРС сервера либо из буфера, либо сразу из конечного устройства. Чтение из буфера выполняется быстрее, но данные в нем могут устареть к моменту чтения. ОРС сервер периодически обновляет данные, запрашивая информацию у конечных устройств.
Запись данных в конечное устройство осуществляется в синхронном или асинхронном режимах без промежуточной буферизации. В синхронном режиме клиент осуществляет запись данных и ждет пока не получит подтверждение о выполнении команды от конечного устройства. Этот процесс может занимать много времени, в течении которого клиент находится в ожидании. Асинхронный режим позволяет клиенту отправить запрос серверу и заниматься другими задачами. После окончания записи сервер отправит клиенту уведомление.
Примеры OPC DA сервера
Для примера возьмём SCADA систему Trace Mode 6, в которой реализована функция OPC DA сервера. Trace Mode 6 можно поставить на ПК, либо сразу на контроллер.
SCADA Trace Mode 6 может опрашивать различные модули ввода-вывода и управлять контроллерами по стандартным промышленным протоколам типа: Modbus, МЭК 60870-5-104, HART и другим. Но промышленные протоколы не предназначены для обмена данными между SCADA и ERP, MES системами. Тут придет на помощь стандарт OPC DA, который позволит собрать различные данные с исполнительных модулей SCADA. OPC DA сервер для получения данных с Trace Mode доступен как отдельный модуль, так и в составе модулей OPC МРВ+ или OPC ДокМРВ+.
Также Trace Mode 6 может выступать в качестве OPC клиента и получать данные с OPC DA серверов различных производителей. Например, есть видео урок подключения Trace Mode 6 к NAPOPC DA Server – это OPC DA сервер от компании ICP DAS.
NAPOPC DA Server – это бесплатный OPC DA сервер для опроса модулей ввода-вывода ICP DAS. Его можно установить на ПК, либо прямо контроллеры ICP DAS с ОС:
Windows 10 — XP-9781-IoT
Windows WES — XP-9781-WES7
Windows CE 6.0 — XP-8731-CE6
Windows CE 5.0 — WP-8841-EN
NAPOPC DA Server позволяет опрашивать модули: I-7000, M-7000, ET-7000, I-8K, I-87K и корзины RU-87Pn.
Стандарт OPC UA
OPC UA (Unified Architecture) – это современный стандарт, описывающий передачу данных в промышленных сетях. Он обеспечивает защищенную и надежную коммуникацию между устройствами, являясь при этом аппаратно- и платформо-независимым, что позволяет обеспечить обмен данными между устройствами с разными операционными системами.
Сильными сторонами OPC UA является объектно-ориентированная информационная модель, которая позволяет «просматривать» данные (в стиле web-браузера), и сервис ориентированная архитектура (SOA). Если раньше приходилось использовать несколько OPC серверов: OPC DA для данных в реальном времени, OPC HDA для истории и OPC AE для событий, то теперь все это и многое другое доступно в одном стандарте OPC UA. Вместо дерева тегов, теперь вводится понятие узлов или объектов. Каждый узел включает в себя переменные, методы и другие структуры данных реального объекта.
Обмен данными теперь происходит через бинарные структуры и XML документы. В дополнение к модели клиент/сервер становится доступна модель издатель/подписчик. Также стандарт определяет механизм для поддержки резервирования (если один клиент станет не доступным, то его заменит другой) и быстрого восстановления связи в случае сбоя. Передача данных происходит через транспортный слой TCP, HTTP/SOAP или HTTPS. Вместо механизмов контроля прав доступа Windows, в OPC UA реализована поддержка цифровых сертификатов и возможность шифрования передаваемых данных.
Реализована обратная совместимость с OPC DA через специальную оболочку (wrapper) и proxy-модуль. Для передачи данных через маршрутизаторы и межсетевые экраны OPC DA требовал использовать промежуточное ПО, OPC UA же работает без прослойки. Спецификация OPC UA включает в себя несколько частей, которые описывают логику работы серверов и клиентов. Детальная версия спецификации доступна в стандарте IEC 62541.
Пример OPC UA сервера
Примером OPC UA сервера может стать набор ПО MX-AOPC UA Suite от компании MOXA. В MX-AOPC UA Suite входит 3 программы:
Server – для получения данных с Modbus устройств
Viewer – для просмотра тегов и состояния сервера (Viewer встроен в Server)
Logger – для ведения истории изменения данных, а также интеграции с базами данных и Облачными решениями
В первую очередь MX-AOPC UA Server ориентирован на модули ввода-вывода MOXA, т.к. там реализована функция Active Tag, но также поддерживается подключение сторонних устройств по протоколам Modbus RTU и Modbus TCP. ФункцияActive Tagпозволяет обновлять состояние каналов сразу после их изменения, не дожидаясь команды со стороны сервера.
MX-AOPC UA Logger позволяет отправлять данные в Облако Microsoft Azure и базы данных Microsoft SQL Server, MySQL, Oracle, Microsoft Office 2003 Access или Excel через ODBC.
В MX-AOPC UA реализована защита данных через шифрование ключом Basic128Rsa15 и подтверждение сертификатом X509.
Минусы применения OPC
Конечно у любой хорошей технологии есть свои минусы. Например, разработчики SCADA Trace Mode 6 из компании АдАстра Рисерч Груп, выделяют типовые ошибки в проектировании АСУ ТП.
К ошибкам можно отнести:
Неоправданное применение WEB-технологий в АСУ ТП
Применение протоколов реального времени в телемеханических задачах
Например, вы узнали о хорошей технологии OPC и стремитесь заменить все протоколы нижнего уровня только на OPC. Но конвертация промышленных протоколов Modbus, Profibus и любых других на ПК будет занимать дополнительное время и тратить ресурсы компьютера. Тесты показали, что SCADA система работает в 2 раза быстрее напрямую с промышленными протоколами, чем через промежуточный OPC сервер. Конечно, есть системы где процесс не нужно контролировать в реальном времени, но это нужно учитывать при проектировании АСУ ТП.
К недостаткам также можно отнести сложность настройки OPC сервера и необходимость ручной привязки тысячи тегов. Кроме того, OPC-сервер не всегда поставляется бесплатно и чаще всего на каждый ПК придется покупать отдельную лицензию.
Если система отправляет данные через Интернет в Облако, то наличие слабого шифрования может стать потенциальной уязвимостью и целью для атак хакеров, что ставит под сомнение безопасность всей АСУ ТП.
OPC UA для работы в реальном времени
OPC UA over TSN— для поддержки работы в реальном времени технология OPC UA (вместо модели клиент/сервер) может использовать модель издатель/подписчик совместно с технологией TSN (Time-Sensitive Networking).
Модель клиент/сервер хорошо работает в случае подключения точка-точка, но если устройств становится много, то появляются задержки в обновлении данных. Модель издатель/подписчик обеспечивает связь от одного ко многим и от многих ко многим. Сервер отправляет свои данные в сеть (публикация) и каждый клиент может получить эти данные (подписка).
Технология Ethernet с TSN дополняет существующие средства Ethernet в том, что касается обеспечения качества обслуживания трафика (QoS), включая выделение полосы пропускания, синхронизацию, гарантию низких значений задержки и обеспечения резервирования. Данные, которые передают различные устройства по Ethernet сети, представляют собой потоки. Ethernet коммутаторы с TSN позволяют выделить для каждого потока свою полосу пропускания и обеспечить его передачу в реальном времени. Несколько потоков можно объединить (это называется сетевой конвергенцией) и организовать их передачу по одной сети в режиме реального времени. Получается без технологии TSN по одной Ethernet сети можно передавать только один протокол реального времени, а с TSN несколько.
Объединение технологий OPC UA over TSN позволяет организовать коммуникацию между оборудованием от разных производителей и гарантировать непрерывное получение данных в режиме реального времени.
OPC Foundation планирует использовать OPC UA не только для передачи данных между контроллерами и SCADA системой, но и на полевом уровне от датчиков и IoT устройств к контроллерам, а также от локальных систем в Облако. Для этого планируют разбить стандарт OPC UA на 4 части в зависимости от производительности устройства и необходимых ему возможностей.
Nano Embedded Device Server: подходит для самых маленьких датчиков;
Micro Embedded Device Server: подходит для недорогих ПЛК;
Embedded UA Server: подходит для более мощных ПЛК и пограничных шлюзов;
Standard UA Server: полноценная реализация, поддерживающая все функции.
ЦП Автоматизированные системы управления и промышленная безопасность
БК Автоматизированные системы управления и кибернетика
28. 29. Технология ОРС. OPC-сервер и OPC-клиент.
OPC (OLE for Process Control) — технология связывания и внедрения объектов для систем промышленной автоматизации. Технология OPC определяет способ обмена данными между двумя программами на ПЭВМ под управлением ОС Windows. Разработана международной организацией OPC Foundation как промышленный стандарт для взаимодействия программ, обслуживающих комплексы телемеханики разных производителей. Опубликована спецификация OPC — набор документов, определяющий правила для реализации взаимодействия.
Технология OPC определяет 2 класса программ: ОРС-сервер (OPC server), непосредственно взаимодействующий с аппаратурой телемеханики, и ОРС-клиент (OPC client), получающий данные от ОРС-сервера для дальнейшей обработки и передающий в ОРС-сервер команды управления.
Используя спецификацию ОРС, производитель аппаратных средств имеет возможность разработать программу-сервер, обеспечивающую доступ к данным программам–клиентам различных производителей программного обеспечения. В свою очередь, производители ПО имеют возможность получать данные для обработки от нескольких различных систем по стандартному интерфейсу.
Структурная схема взаимодействия между аппаратурой, серверными и клиентскими программами:
Как видно из схемы, программа ОРС-сервер выполняет непосредственное взаимодействие с аппаратурой, используя аппаратные интерфейсы компьютера. ОРС-cервер обеспечивает сбор данных, передачу команд управления, диагностику каналов связи и т.д. OPC-сервер создает программные интерфейсы, обеспечивающие доступ к данным.
Программа OPC-клиент получает данные через интерфейс сервера и выполняет их комплексную обработку — использует для визуализации, строит графики, выводит на печать, сохраняет на диске и т.д.
Программы могут взаимодействовать по технологии ОРС как на одной и той же ПЭВМ, так и на разных, взаимодействуя через локальную сеть (при этом ОРС-сервер должен работать под ОС класса Windows NT).