Что такое modeling based learning

В чем разница между безмодельным и основанным на моделях обучением с подкреплением?

В чем разница между безмодельным и основанным на моделях обучением с подкреплением?

Мне кажется, что любой учащийся без модели, обучающийся методом проб и ошибок, может быть переименован в основанный на модели. В таком случае, когда ученики без моделей будут уместны?

Однако нет необходимости изучать модель, и агент может вместо этого изучать политику напрямую, используя такие алгоритмы, как Q-learning или градиент политики.

Простая проверка, чтобы увидеть, является ли алгоритм RL на основе модели или без модели:

Если после обучения агент может делать прогнозы о том, каким будет следующее состояние и награда, прежде чем он выполнит каждое действие, это алгоритм RL на основе модели.

Если это невозможно, то это алгоритм без модели.

В чем разница между безмодельным и основанным на моделях обучением с подкреплением?

В обучении с подкреплением термины «на основе модели» и «без модели» не относятся к использованию нейронной сети или другой статистической модели обучения для прогнозирования значений или даже для прогнозирования следующего состояния (хотя последнее может использоваться как часть алгоритма, основанного на модели, и будет называться «моделью» независимо от того, является ли алгоритм основанным на модели или не имеет модели).

Тот факт, что реализована модель среды, не означает, что агент RL является «основанным на модели». Чтобы квалифицироваться как «основанный на модели», алгоритмы обучения должны явно ссылаться на модель:

Алгоритмы, основанные исключительно на опыте, такие как Монте-Карло Контроль, SARSA, Q-learning, Actor-Critic, являются «безмодельными» алгоритмами RL. Они полагаются на реальные образцы из окружающей среды и никогда не используют сгенерированные прогнозы следующего состояния и следующего вознаграждения для изменения поведения (хотя они могут выбирать из опыта, который близок к тому, чтобы быть моделью).

В литературе по RL проводится различие между «моделью» как моделью среды для «модельно-ориентированного» и «безмодельного» обучения и использованием статистических учеников, таких как нейронные сети.

В RL нейронные сети часто используются для изучения и обобщения функций значений, таких как значение Q, которое предсказывает общий доход (сумму дисконтированных вознаграждений), учитывая пару состояния и действия. Такую обученную нейронную сеть часто называют «моделью», например, в контролируемом обучении. Однако в литературе по RL вы увидите термин «аппроксиматор функции», используемый для такой сети, чтобы избежать двусмысленности.

Мне кажется, что любой учащийся без модели, обучающийся методом проб и ошибок, может быть переименован в основанный на модели.

Я думаю, что здесь вы используете общее понимание слова «модель» для включения любой структуры, которая делает полезные прогнозы. Это относится, например, к таблице значений Q в SARSA.

В таком случае, когда ученики без моделей будут уместны?

Как правило, при современном состоянии дел в RL, если у вас нет точной модели, предоставленной как часть определения проблемы, подходы, не связанные с моделью, часто превосходят.

Прямо сейчас (в 2018 году), если у вас есть реальная проблема в среде без явно известной модели с самого начала, тогда самым безопасным вариантом будет использование подхода без модели, такого как DQN или A3C. Это может измениться, поскольку поле движется быстро, и новые более сложные архитектуры вполне могут стать нормой через несколько лет.

a ‘ role=»presentation»> a s ‘ role=»presentation»> s s ′ ‘ role=»presentation»> s ‘ r ‘ role=»presentation»> р

Среда может быть детерминированной (то есть, примерно, одно и то же действие в том же состоянии приводит к тому же следующему состоянию для всех временных шагов) или стохастической (или недетерминированной), то есть если агент выполняет действие в В определенном состоянии результирующее следующее состояние среды не всегда может быть одинаковым: существует вероятность того, что это будет определенное состояние или другое. Конечно, эти неопределенности усложнят задачу поиска оптимальной политики.

Однако у нас часто нет MDP, то есть у нас нет функций перехода и вознаграждения (MDP, связанных с окружающей средой). Следовательно, мы не можем оценить политику по MDP, потому что она неизвестна. Обратите внимание, что, в общем, если бы у нас были функции перехода и вознаграждения MDP, связанные с окружающей средой, мы могли бы использовать их и получить оптимальную политику (используя алгоритмы динамического программирования).

В отсутствие этих функций (то есть, когда MDP неизвестно), чтобы оценить оптимальную политику, агент должен взаимодействовать с окружающей средой и наблюдать за реакцией среды. Это часто упоминается как «проблема обучения с подкреплением», потому что агент должен будет оценивать политику, укрепляя свои убеждения относительно динамики окружающей среды. Со временем агент начинает понимать, как среда реагирует на его действия, и поэтому он может начать оценивать оптимальную политику. Таким образом, в задаче RL агент оценивает оптимальную политику поведения в неизвестной (или частично известной) среде, взаимодействуя с ней (используя метод проб и ошибок).

Например, давайте посмотрим на основное правило обновления в алгоритме Q-learning :

R t + 1 ‘ role=»presentation»> р T + 1

Теперь давайте посмотрим на основное правило обновления алгоритма улучшения политики :

Источник

PDDM — Новый Model-Based Reinforcement Learning алгоритм с улучшенным планировщиком

Что такое modeling based learning. Смотреть фото Что такое modeling based learning. Смотреть картинку Что такое modeling based learning. Картинка про Что такое modeling based learning. Фото Что такое modeling based learning

Обучение с подкреплением (Reinforcement Learning) делится на два больших класса: Model-Free и Model-Based. В первом случае действия оптимизируются напрямую по сигналу награды, а во втором нейросеть является только моделью реальности, а оптимальные действия выбираются с помощью внешнего планировщика. У каждого подхода есть свои достоинства и недостатки.

Разработчики из Berkeley и Google Brain представили Model-Based алгоритм PDDM с улучшенным планировщиком, позволяющий эффективно обучаться сложным движениям с большим числом степеней свободы на небольшом числе примеров. Чтобы научиться вращать мячи в роботизированной руке с реалистичными суставами пальцев с 24 степенями свободы, потребовалось всего 4 часа практики на реальном физическом роботе.

Обучение с подкреплением (Reinforcement Learning) — это обучение роботов по сигналу награды. Это похоже на то, как учатся живые существа. Но проблема осложняется тем, что неизвестно как нужно изменять веса нейросети, чтобы предлагаемые ею действия вели к увеличению награды. Поэтому в Reinforcement Learning обычные методы обучения нейросетей не подходят. Ведь неизвестно, что именно она должна выдавать на своем выходе, а значит невозможно найти ошибку между ее предсказанием и реальным положением вещей. Чтобы пропустить эту разницу обратно по слоям нейросети и изменить веса между нейронами, чтобы минимизировать эту ошибку. Это классический алгоритм обратного распространения ошибки, которым обучают нейросети.

Поэтому учеными было изобретено несколько способов, как решить эту задачу.

Model-Free

Одним из самых эффективных подходов оказалась модель actor-critic (актер-критик). Пусть одна нейросеть (actor) на своем входе получает состояние окружающей среды state, а на выходе выдает действия actions, которые должны вести к увеличению награды reward. Пока эти действия случайные и просто зависят от прохождения сигнала внутри сети, так как нейросеть еще не обучена. А вторая нейросеть (critic) пусть на вход получает тоже состояние окружающей среды state, но еще и действия actions с выхода первой сети. А на выходе пусть предсказывает только награду reward, которая будет получена, если применить эти действия.

А теперь следите за руками: какие должны быть на выходе первой сети оптимальные действия actions, ведущие к увеличению награды, мы не знаем. Поэтому с помощью алгоритма обратного распространения ошибки обучить ее не можем. А вот вторая нейросеть очень даже может предсказывать точное значение награды reward (а точнее, обычно ее изменение), которую она получит, если сейчас применить действия actions. Так давайте возьмем градиент изменения ошибки из второй сети, и применим его к первой! Так можно обучать первую нейросеть классическим методом обратного распространения ошибки. Просто ошибку берем не из выходов первой сети, а из выходов второй.

В итоге первая нейросеть обучится выдавать оптимальные действия, ведущие к увеличению награды. Потому что если критик critic ошибся и предсказал меньшую награду, чем оказалась в реальности, то градиент этой разницы будет двигать действия актера actor в направлении, чтобы критик точнее предсказывал награду. А значит в сторону более оптимальных действий (ведь именно они приведут к тому, что критик точно предскажет более высокую награду). Аналогичный прицип работает и в обратную сторону: если критик завысил ожидаемую награду, разница между ожиданием и реальностью будет понижать выходы actions у первой нейросети, которые привели к этому завышенному показанию reward у второй сети.

Как видите, в этом случае действия оптимизируются напрямую по сигналу награды. Это общая суть всех Model-Free алгоритмов в Reinforcement Learning. Именно они являются state-of-the-art на данный момент.

Их преимуществом является то, что оптимальные действия ищутся градиентным спуском, поэтому в итоге находятся самые оптимальные. А значит показывающие лучший результат. Другим преимуществом является возможность использовать маленькие (а значит быстрее обучаемые) нейросети. Если из всего многообразия факторов окружающей среды ключевыми для решения задачи являются какие-то конкретные, то градиентный спуск вполне способен их выявить. И использовать для решения задачи. Эти два преимущества обеспечили успех прямым Model-Free методам.

Но у них есть и недостатки. Так как действия обучаются напрямую по сигналу награды, то нужно много обучающих примеров. Десятки миллионов даже для очень простых случаев. Они плохо работают на задачах с большим числом степеней свободы. Если алгоритму сразу не удастся выявить ключевые факторы среди ландшафта высокой размерности, то он скорее всего вообще не обучится. Также Model-Free методы могут эксплуатировать уязвимости в системе, зацикливаясь на неоптимальном действии (если к нему сошелся градиентный спуск), игнорируя остальные факторы окружающей среды. Для даже немного отличающихся задач Model-Free методы приходится обучать полностью заново.

Model-Based

Model-Based методы в Reinforcement Learning в корне отличаются от описанного выше подхода. В Model-Based нейросеть только предсказывает что будет дальше. Не предлагая никаких действий. То есть, является просто моделью реальности (отсюда «Model»-Based в названии). А вовсе не системой принятия решений.

На вход Model-Based нейросети подают текущее состояние окружающей среды state и какие хотим совершить действия actions. А нейросеть предсказывает как изменится в будущем state после применения этих действий. Она может также предсказывать какая будет награда reward в результате этих действий. Но это не обязательно, так как награду обычно можно вычислить из известного state. Далее этот выходной state можно подать обратно на вход нейросети (вместе с новыми предполагаемыми actions), и так рекурсивно предсказывать изменение внешней окружающей среды на много шагов вперед.

Model-Based нейросети очень легко обучаются. Так как они просто предсказывают как будет изменяться мир, не делая никаких предложений какие должны быть оптимальные действия, чтобы награда увеличивалась. Поэтому Model-Based нейросеть использует для своего обучения все существующие примеры, а не только те, что ведут к увеличению или уменьшению награды, как это происходит в Model-Free. Это причина того, почему Model-Based нейросетям нужно намного меньше примеров для обучения.

Единственным недостатком является то, Model Based нейросеть должна изучить реальную динамику системы, а значит должна обладать достаточной емкостью для этого. Model-Free нейросеть может сойтись на ключевых факторах, игнорируя остальные, и поэтому быть маленькой простой сетью (если задача в принципе решаема меньшими ресурсами).

Другим большим преимуществом, помимо обучения на меньшем на порядки числе примеров, является то, что будучи универсальной моделью мира, единственную Model-Based нейросеть можно использовать для решения любого числа задач в этом мире.

Главная проблема в Model-Based подходе — а какие, собственно, действия actions подавать нейросети на вход? Ведь нейросеть сама не предлагает никаких оптимальных действий.

Самый простой способ — это прогонять через такую нейросеть десятки тысяч случайных действий и выбрать те, для которых нейросеть предскажет наибольшую награду. Это классический Model-Based Reinforcement Learning. Однако при больших размерностях и длинных временных цепочках, число возможных действий получается слишком велико чтобы их все перебрать (или даже угадать хотя бы немного оптимальные).

По этой причине Model-Based методы обычно уступают Model-Free, которые градиентным спуском напрямую сходятся к самым оптимальным действиям.

Улучшенная версия, применимая к движениям в робототехнике — это использовать не случайные actions, а сохранять предыдущее движение, добавляя случайность по нормальному распределению. Так как движения роботов обычно плавные, это позволяет сократить число переборов. Но при этом можно упустить важное резкое изменение.

Конечным вариантом развития такого подхода можно считать CEM вариант, в котором используется не фиксированное нормальное распределение, вносящее случайности в текущую траекторию actions, а подбирающее параметры случайного распределения с помощью кросс-энтропии. Для этого запускается популяция расчетов actions и лучшие из них используются для уточнения разброса параметров в следующем поколении. Что-то вроде эволюционного алгоритма.

Такое длинное вступление понадобилось для того, чтобы объяснить что происходит в новом предложенном PDDM Model-Based алгоритме обучения с подкреплением. Прочитав статью в Berkeley AI блоге (или расширенную версию), и даже оригинальную статью arxiv.org/abs/1909.11652, это могло быть не очевидно.

PDDM метод повторяет идею CEM при выборе случайных действий actions, которые надо прогнать через Model-Based нейросеть, чтобы выбрать действия с максимальной предсказываемой наградой. Только вместо подбора параметров случайного распределения, как это делается в CEM, PDDM использует временную корреляцию между actions и более мягкое (soft) правило обновления случайного распределения. Формула приведена в оригинальной статье. Это позволяет проверить большее число подходящих actions на длинных временных дистанциях, особенно если движения требуют точной координации. Дополнительно авторы алгоритма фильтруют кандидатов в actions, получая тем самым более плавную траекторию движений.

Проще говоря, разботчики просто предложили более удачную формулу для выбора случайных actions для проверки в классическом Model-Based Reinforcement Learning.

Но результат получился очень хорошим.

Всего за 4 часа тренировки на реальном роботе, роборука с 24 степенями свободы научилась удерживать два шара и вращать их в ладони, не роняя. Недостижимый результат для любых современных Model-Free методов на таком малом числе примеров.

Что интересно, для обучения они использовали вторую роборуку с 7 степенями свободы, которая подбирала уроненные мячи и возвращала их в ладонь основной роборуке:

Что такое modeling based learning. Смотреть фото Что такое modeling based learning. Смотреть картинку Что такое modeling based learning. Картинка про Что такое modeling based learning. Фото Что такое modeling based learning

В итоге уже через 1-2 часа роборука могла уверенно удерживать шары и передвигать их в ладони, а 4 часов оказалось достаточно для полного обучения.

Что такое modeling based learning. Смотреть фото Что такое modeling based learning. Смотреть картинку Что такое modeling based learning. Картинка про Что такое modeling based learning. Фото Что такое modeling based learning

Обратите внимание на дерганные движения пальцев. Это характерная особенность Model-Based подходов. Так как предполагаемые actions выбираются случайно, то не всегда совпадают с оптимальными. Model-Free алгоритм потенциально мог бы сойтись на действительно оптимальных плавных движениях.

Однако Model-Based подход позволяет с одной обученной нейросетью, моделирующей мир, решать разные задачи без ее переобучения. В статье есть несколько примеров, например можно без проблем поменять направление вращения шаров в руке (в Model-Free пришлось бы заново обучать нейросеть для этого). Или удерживать мяч в конкретной точке ладони, следуя за красной точкой.

Что такое modeling based learning. Смотреть фото Что такое modeling based learning. Смотреть картинку Что такое modeling based learning. Картинка про Что такое modeling based learning. Фото Что такое modeling based learning

Также можно заставить роборуку рисовать карандашом произвольные траектории, обучение чему для Model-Free методов очень сложная задача.

Что такое modeling based learning. Смотреть фото Что такое modeling based learning. Смотреть картинку Что такое modeling based learning. Картинка про Что такое modeling based learning. Фото Что такое modeling based learning

Хотя предложенный алгоритм не является панацеей, и даже не является ИИ алгоритмом в полном смысле этого слова (в PDDM нейросеть просто заменяет аналитическую модель, а решения принимаются случайным поиском с хитрым правилом, уменьшающем число переборов вариантов), он может быть полезен в робототехнике. Так как показал заметное улучшение результатов и обучается на очень маленьком числе примеров.

Источник

Задачи и инструменты ML и их практическое применение

Машинное обучение – распространившийся термин, но не все понимают его верно. В этом материале эксперты направления аналитических решений ГК «КОРУС Консалтинг» Алена Гайбатова и Екатерина Степанова расскажут, что же на самом деле такое machine learning (ML), в каких случаях эту технологию стоит использовать в проектах, а также где машинное обучение активно применяется на практике.

Как работают с данными

Уже давно на встречах с заказчиками мы стали замечать, что все путают машинное обучение, искусственный интеллект (ИИ), большие данные и другие термины из этой области.

Итак, общее название технологии – искусственный интеллект. Он бывает двух типов – сильный (он же общий) и слабый. Мы не будем особенно обсуждать сильный ИИ, так как это решения уровня Терминатора. Мы к нему потихонечку приближаемся, но до сих пор он существует только в виде собранных вместе фрагментов слабого ИИ (как, например, в «умных» колонках).

Намного интереснее поговорить о слабом искусственном интеллекте. Он тоже делится на два типа. Первый – экспертные системы, алгоритмы, запрограммированные вручную (например, запрограммированный группой лингвистом алгоритм перевода слов из одного языка в другой).

Второй – так называемые data-driven системы, которые извлекают логику работы из каких-то исторических данных. У этого типа есть много терминов-синонимов, которые возникали с течением времени:

модные в 90-е и нулевые data mining и knowledge discovery from database (KDD),

data science, вошедший в обиход ближе к 2010-м,

big data популярная ныне. Единственное исключение, точнее дополнение, которое привносит именно этот термин – наличие огромного количества сложноструктурированных данных.

Для разных задач – разные алгоритмы

В соответствии с двумя типами слабого ИИ выводы из данных мы можем сделать вручную (при экспертных системах) и с помощью машинного обучения. Оно же в свою очередь подразделяется на два типа: классический ML и deep learning (с использованием глубоких нейронных сетей с большим количеством слоев).

В проектах на базе ML используются модели. Прежде всего, прогнозные, которые отвечают на базовые вопросы: к какой группе относится объект, какое числовое значение у него будет и так далее. В зависимости от того, на какой вопрос мы отвечаем, это могут быть модель классификатора или регресcии.

Классификаторы

Классификатор — это процесс, позволяющий сказать, к какой группе будет относиться тот или иной объект. Например, у кошек есть разные характеристики: длина хвоста, цвет шерсти, масса тела и другие параметры. По ним мы можем определить, к какой породе относится кошка. Если мы решаем эту задачу с помощью алгоритма, то этот алгоритм будет называться классификатором.

Алгоритм, часто применяемый для классификации — дерево принятия решений. Если мы хотим построить дерево условий для распределения котов по породам, на моменте обучения алгоритм строит дерево условий, задавая первый вопрос.

Рыжая ли у кота шерсть? Да: мы относим его сразу к классу персидских котов, все персидские коты оказываются в одной ветке. Нет: у нас возникает следующее условие — весит ли кот меньше 3 кг. Дерево условий создается в момент обучения алгоритма, а все новые элементы проходят по нему и оказываться в той или иной группе.

Этот алгоритм удобен с точки зрения бизнес-интерпретации результатов, так как мы не всегда можем сразу определить, по каким свойствам у нас разделились группы.

Регрессоры

Регрессор – это алгоритм, который не относит предмет исследования к определенному классу, а присваивает ему определенное число. Пример — алгоритм кредитного скоринга: у нас есть возраст заемщика, трудовой стаж, зарплата — и требуется рассчитать, через какое время клиент сможет выплатить кредит.

Кластеризация

Кластеризация отвечает на вопросы о том, как разбить исследуемые объекты на группы и чем объекты внутри одной группы похожи.

Самый популярный алгоритм кластеризации – метод ближайших соседей. Cнова к кошкам. Мы хотим разбить наших зверей на 4 группы. Наши объекты – снова точки на плоскости. Мы выбираем случайным образом центры наших групп, затем смотрим расстояние от центра группы до точек, ближайших к этому центру группы. После мы смещаем центры таким образом, чтобы расстояние до точек своей группы оказывалось меньше, чем до точек другой группы. Через нескольких итераций у нас получатся хорошо разделенные группы.

Cложность этого алгоритма заключается в том, что объекты не всегда хорошо делятся на группы — в связи с этим трудно оценить корректность результата даже с помощью специальной оценки.

Нейронные сети

Первая нейронная сеть появилась еще в 1950-х гг. Сейчас при помощи нейронных сетей можно ответить на любой вопрос, но лишь с одной оговоркой: ответ не всегда можно интерпретировать.

При работе с нейросетью на вход подается большой объем данных в виде числовых значений, у каждого из которых есть определенный вес. Мы суммируем эти значения и к этой сумме применяем операцию активации, после этого получаем некий прогноз. Так как нейросети используют большое количество скрытых слоев, операции активаций и сумм может быть много. В связи с тем, что этим алгоритмом можно обрабатывать большие объемы данных, модель хорошо работает с текстом, изображением и звуком.

Дополнительно в проектах ML используются оптимизационные методы для минимизации ошибок. В условиях ограничений они стараются найти лучшее решение задачи с помощью нахождения экстремумов функции и применения статистических методов.

Обучение с подкреплением

Это и есть тот самый сильный искусственный интеллект, о котором мы уже говорили выше. К примеру, по этому принципу работают беспилотные автомобили.

Система состоит из агента и среды. Для агента задано конечное число операций (на примере машины – максимальная скорость, торможение, поворот направо или налево и так далее). После совершения действия агент получает либо вознаграждение, если его действие приводит к правильному выполнению задачи, либо наказание, если действие, наоборот, отдаляет его от выполнения задания.

Мы также пользуемся алгоритмами Uplift, нейролингвистического программирования и рекомендательными моделями. Uplift позволяет понять, нужно ли коммуницировать с объектом, НЛП использует алгоритмы для анализа текста (к примеру, на этом принципе работает функция подсказки слов в смартфоне), а рекмодели могут быть персонализированными и не персонализированными.

Теория – на практике

Посмотрим, как эти модели используются на для решения реальных задач. Мы сформулировали предпосылки для использования ML в проектах. Безусловно, они не гарантируют стопроцентного успеха, но на старте могут значительно снизить риски.

Экономический эффект, который может принести оптимизация бизнес-процесса в несколько процентов;

Регулярный технический или бизнесовый процесс, при оптимизации которого регулярное принятие решений на среднем уровне и/или действия по заданному алгоритму могут значительно улучшиться;

Наличие данных, при которых может быть осуществлена оптимизация, за счет их анализа и обработки.

Одна из самых успешных отраслей в плане применения машинного обучения – это розничная торговля. Cвязано это с тем, что в ней много регулярных процессов

Например, категорийные менеджеры ежедневно занимаются управлением ассортиментом, промоакциями, ценообразованием, прогнозированием спроса, управлением логистикой. Оптимизация на доли процентов даже одного такого бизнес-процесса в масштабе торговой сети приобретает существенный эффект.

Задачи, которые решает ML в ритейле, включают в себя предсказание оттока клиентов, анализ продуктовых корзин, прогнозирование товаров в следующем чеке, распознавание ценников и товаров, прогноз закупок и спроса, оптимизация закупок и логистики, планирование промо, цен и ассортимента — или это лишь малая часть.

Ритейл не испытывает недостатка как в наличия разных данных, так и в их глубине истории. У ритейлеров есть история продаж, статистика поведения клиентов, история промоакций, исторический ассортимент, параметры товаров и магазинов, изображения ценников и товаров, история доставок и поступления товаров и многое другое. Оцифровка всего этого, чаще всего, не требуется.

Похуже с данными в сфере промышленности — хотя и там они есть. Это и исторические данные с датчиков о производительности, поломках, работе бригад, данные по расходу и поставкам сырья, отгрузкам и доставкам. Для производств каждый процент простоя – это существенные потери, поэтому именно способы его сокращения, как и сокращение запасов, становятся основными задачами для оптимизации. Поэтому в числе главных задач для ML здесь — предсказание поломок оборудования, маркировка похожих поломок, выявление закономерностей поломок, выявление факторов на снижения производительности, оптимизация расхода сырья в производстве, оптимизация заказов и времени поставок сырья, прогноз скорости доставки.

Еще две отрасли, в которых распространены проекты на базе искусственного интеллекта, это банки и телекоммуникации. Это и управление клиентскими рисками (кредитный скоринг), и оптимизация регулярных рассылок клиентам. Задачи, стоящие в этих проектах, разношерстны – от предсказания оттока клиентов до маркировки клиентов, от кросс-сейл кредитов и депозитов до предсказания крупных транзакций.

Cреди данных, которыми обладают подобные компании, статистика по поведению клиентов, их реакция на прошлую коммуникацию, история получения и возвратов кредитов, анкеты клиентов, параметры сотрудников, история эффективности работы персонала и другое.

Количество примеров проектов, реализуемых на базе машинного обучения, множество, и успешные кейсы будут появляться все чаще. Но главное усвоить базовые знания о том, что в действительности используют специалисты по машинному обучению, и заранее просчитать, будет ли от вашего будущего ML-проекта бизнес-эффект.

В настоящее время крупные компании вкладывают большие средства в машинное обучение, потому что данная технология не только окупается, но и помогает найти новые подходы к реализации рутинных задач. Действительно, ИИ занимает все более значимое место на рынке, но это не значит, что машины нас заменят. Мы успешно расширяем наши способности за счет машин, именно для этого и существует машинное обучение.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *