Что такое lvds интерфейс

Введение в LVDS

1.0.0 Введение в LVDS

LVDS означает передачу информации дифференциальными сигналами малых напряжений ( Low Voltage Differential Signaling ). Это направление передачи данных использует очень малые перепады дифференциального напряжения ( до 350 мВ ) на двух линиях печатной платы или сбалансированного кабеля.

1.1.0 Тенденции в LVDS

Потребители требуют всё более достоверной передачи видеоинформации в пределах оффиса или домашней обстановки. Эта потребность вызвана необходимостью передачи видео, 3-D графики, фотоизображений от видеокамер к персональному компьютеру, данных на принтер через сетевые устройства типа LAN, телефонии, и сигналов спутниковых систем на домашний телеприёмник, сигналов цифровых камкордеров. Задача состоит сегодня в высокоскоростной передаче цифровых данных как на очень малые так и на очень большие расстояния, или в пределах одной печатной платы или по волоконным и спутниковым сетям. Передача таких данных от платы к плате или от прибора к прибору, как бы не требовала экстремально высокой производительности, тем не менее должна требовать минимальной мощности потребления, обеспечивать минимум внутренних шумов, быть относительно не чувствительной к внешним шумам и быть естественно дешёвой. Во всяком случае, существующие на сегодняшний день предложения являются компромиссными сочетаниями этих четырёх составляющих: производительности, мощности потребления, шума и цены.

1.2.0 Обеспечение скорости при малых шумах и потребляемой мошности

Малые перепады уровня и токовый режим выхода передатчика обеспечивают малый уровень шума и очень малую потребляемую мощность во всём диапазоне скоростей передачи.

1.2.1 Как LVDS действует

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс
Упрощенная схема соединения LVDS передатчика с приёмником через 100 Ом линию

LVDS выход, спроектированный фирмой National Semiconductor, содержит источник тока ( номиналом 3.5 мА) нагруженный на дифференциальную пару линии передачи.

Основной приёмник имеет высокий входной импеданс, поэтому основная часть выходного тока передатчика протекает через 100 Ом резистор терминатора линии, создавая на нём падение напряжения до 350 мВ, приложенное к входу приёмника. При переключении выхода передатчика направление протекания тока через терминатор меняется на противоположное, обеспечивая достоверные логические состояния “0” или “1”.

1.2.2 Почему метод дифференциальный с малыми перепадами?

Дифференциальный метод передачи используется в LVDS поскольку обладает меньшей чувствительностью к общим помехам чем простая однопроводная схема. Дифференциальный метод передачи использует двухпроводную схему соединения с формированием перепадов инверсией тока или напряжения в отличие от однопроводной простой схемы передачи информации.Достоинством дифференциального метода является то, что шумы наводящиеся на двухпроводной линии симметричны и не нарушают дифференциального сигнала к которому чувствителен приёмник. Дифференциальный метод так же обладает меньшей чувствительностью к искажениям сигнала от внешних магнитных полей. Токовый выход передатчика LVDS не склонен к “звону” и выбросам фронтов, что в целом снижает уровень шума в линии передачи.

Поскольку дифференциальные технологии, в том числе и LVDS, менее чувствительны к шумам, то в них возможно использование меньших перепадов напряжения. Это достоинство является решающим, т.к. невозможно достичь высокой производительности и минимума потребляемой мощности одновременно без снижения перепадов напряжения на входе. Формирование малых перепадов напряжения на выходе передатчика достижимо при более высоких скоростях. Токовый режим передатчика обеспечивает очень низкий, всегда постоянный уровень потребления во всём диапазоне частот. Выбросы фронтов передатчика очень незначительны, поэтому ток потребления не увеличивается экспоненциально при увеличении скорости передачи. В целом мощность потребления передатчика ( 3.5 мА350 мВ 1.2 мВт ) весьма низка.

1.2.3 Стандарты LVDS

Общий мультисистеммный LVDS стандарт ANSI/TIA/EIA-644 разработан комитетом TIA Data Transmission Interface TR30.2. Данный стандарт определяет выходные характеристики передатчиков и входные характеристики приёмников, т.е. он определяет только электрические характеристики. Он не ограничивает функциональные спецификации, протоколы, характеристики кабелей, соединений, т.е. он независим от конкретных применений.

ANSI/TIA/EIA стандарт требует поддержки другими стандартами специфицирующими законченный интерфейс (кабели, соединители, протоколы и т.д.). Это позволяет успешно адаптировать данный стандарт для различных применений.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Стандарт ANSI/TIA/EIA реккомендует максимальную производительность в 655Mbps, и оговаривает теоретическкий максимум в 1.923 Gbps ограниченный потерями в среде распространения. Это позволяет по стандарту специфицировать требуемую максимальную производительность зависящую от качества сигнала, длины и типа среды распространения.

Стандарт так же оговаривает минимальные требования к линии связи, безопасные условия работы приёмника в случаях отказов аппаратуры и другие конфигурационные ограничения, такие как одновременная работа множества приёмников. Стандарт ANSI/TIA/EIA-644 был утверждён в Ноябре 1995 г. National Semiconductor является разработчиком этого стандарта и председательствует в подкомитете ответственном за электрические TIA интерфейсные стандарты. Настоящее издание стандарта 644 версии пересмотрено и дополнено информацией о работе на множество приёмников. Пересмотренный стандарт известный как TIA-644-A утверждён в 2000 г.

Другой LVDS стандарт относится к проектам IEEE. Этот стандарт является попыткой развития стандарта для целей объединения процессоров в мультипроцессорных системах или объединения рабочих станций в группу. Эта программа SCI интерфейса ( Scalable Coherent Interface) оригинально описывает дифференциальный интерфейс ECL обеспечивающий высокую скорость передачи информации, но не наклкдывает ограничений на потребляемую мощность и степень интеграции.

Стандарт SCI-LVDS малой мощности был позже определён как часть SCI и описан в IEEE1596.3 стандарте. Стандарт SCI-LVDS так же описывает уровни сигналов ( электрические спецификации) характеризующиеся по отношению к ANSI/TIA/EIA стандарту как высокоскоростной/ малой мощности SCI интерфейс физического уровня.Стандарт определяет и методы кодирования пакетов информации используемых в SCI передаче данных. Стандарт IEEE 1596.3 принят в Марте 1996. National Semiconductor возглавляет данный комитет стандартизации. Интерес представляет развитие широкого стандарта не определяющего однозначно технологию процесса комплектующих, среду распространения, напряжение питания определённых в перечисленных двух стандартах. Это означает, что LVDS сможет применяться в КМОП, Арсенид-Галлиевых или других первичных микросхеммных технологиях, преодолеет +5 В барьер питания до +3.3 В и даже ниже, сможет применяться не только для передачи информации на печатных платах и через кабель, и тем самым обеспечит чрезвычайно широкий круг применений во многих отраслях индустрии.

1.2.4 Сравнение технологий дифференциальной передачи данных

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Приведённая таблица позволяет быстро сравнить основные параметры LVDS метода с параметрами других наиболее часто используемых методов. Из таблицы видно, что LVDS имеет в два раза меньший уровень перепада напряжения по сравнению с PECL методом и одну десятую от перепада RS-422 и традиционных уровней ТТЛ/КМОП. Важным достоинством LVDS является то что характеристики приёмников и передатчиков не зависят на прямую от напряжения питания схемы, например от +5 В. Поэтому LVDS легко преодолевает барьеры по снижению напряжения питания до 3.3 В и даже 2.5 В без изменения электрических уровней сигналов передачи и производительности. И наоборот технологии ECL и PECL имеют большую зависимость от напряжения питания, что делает весьма затруднительным переход к более низким напряжениям питания в системах использующих данные технологии.

1.2.5 Простота согласования

Поскольку среда распространения LVDS сигналов состоит из кабеля или двухпроводной линии на печатной плате с легко контролируемым дифференциальным импедансом, то такая линия должна заканчиваться терминатором с импедансом данной линии для завершения токовой петли и подавления искажений коротких импульсов. При отсутствии согласования, сигналы отражаются от несогласованного конца линии и могут интерферироватьс другими сигналами. Правильное соласование так же подавляет нежелательные электромагнитные наводки, обеспечивая оптимальное качество сигналов.

Для предотвращения отражений, LVDS требует применения терминатора в виде простого резистора с расчётным значением сопротивления равным дифференциальному сопротивлению линии распространения. Наиболее часто используется 100 Ом среда и терминатор. Этот резистор заканчивает токовую петлю и предотвращает отражения сигналов, он располагается на конце линии передачи, по возможности на минимальном расстоянии от входа приёмника.

Простота схемы согласования LVDS позволяет лёгкое использование терминатора в большинстве применений.ECL и PECL может потребовать более сложного устройства согласования чем один резистор в LVDS. PECL передатчик обычно требует 220 Ом подтягивающего к земле резистора у каждого выхода передатчика и 100 Ом резистора на входе приёмника.

1.2.6 Максимальная скорость переключения

Вопрос максимальной скорости переключения LVDS интерфейса достаточно сложен и ответ на него зависит от нескольких факторов. Этими факторами являются производительность передатчика и приёмника, полоса пропускания среды распространения и требуемое качество сигнала в применении.

В случае использования LVDS драйвера DS90LV047A скорость ограничена только темпом выдачи ТТЛ данных на вход драйвера.

Устройства формирования канальных сигналов фирмы National Semiconductor ограничивают скорость передачи в процессе формирования группового канального сигнала из множества ТТЛ сигналов путём их последовательной передачи в едином LVDS канале.

Помимо малой рассеиваемой мощности на нагрузке и статического потребляемого тока, LVDS имеет меньшее потребление и благодаря токовому режиму работы схемы передатчика. Эта схема сильно подавляет составляющие тока потребления зависящие от частоты переключения передатчика. Зависимость тока потребления LVDS передатчика от частоты переключения практически постоянна в диапазоне частот от 10МГц до 100 МГц, и для счетверённого передатчика DS90C031132 составляет менее 50 мА.Для сравнения ТТЛ/КМОП передатчик потребляет мощность возрастающую по экспоненциальному закону от частоты.

1.2.8 Конфигурации LVDS

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Наиболее часто LVDS передатчик и приёмник используются в конфигурации точка- точка, как показано на рисунке. Однако возможны и другие топологии- конфигурации.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

На данном рисунке приведена топология двунаправленной передачи сигнала через витую пару.

Одновременно данные могут передаваться только в одном направлении. Необходимость в двух терминаторах ослабляет сигналы ( и запас по дифференциальным шумам), поэтому данная конфигурация может применяться в случае малых шумов и дальность передачи не превышает 10 метров.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Многоточечная конфигурация объединяет множество приёмников с одним передатчиком. Данная конфигурация встречается в системах распределения информации, а так же в системах с множеством близко расположенных приёмников.

Надо отметить что LVDS технология обеспечиват наивысшее качество стгналов в конфигурации точка-точка, ради которой и создавалась. Но в целом LVDS имеет множество достоинств и может стать очередным важным стандартом передачи данных со скоростями от постоянного тока до сотен мегабит в секунду, на небольшие расстояния до десятков метров.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Оригинальный чипсет National Semiconductor Channel Link конвертирует ТТЛ шину в компактный поток LVDS и обратно.

Достоверно известно что во многих применениях стоимость дополнительных микросхем LVDS значительно ниже стоимости заменяемых ими плат, кабелей и соединителей. Кроме того, отсутствие дополнительных механических деталей упрощает и удешевляет изделие в целом.

1.4.0 Применения LVDS

Высокая производительность и малые мощность / шум / стоимость LVDS расширяют границы её применения взамен традиционных технологий.

1.5.0 Широкий спектр LVDS продукции National Semiconductor

National Semiconductor предлагает LVDS технологии в нескольких формах. Например 5 В микросхемы DS90С032 и 3 В DS90LV047A/048A счетверённые линейные приёмники/передатчики встраивают LVDS технологию в изделия дискретной техники обшего назначения. Эти семейства приёмников/передатчиков содержат так же одиночные и сдвоенные устройства.

Для соединения переносных компьютеров с LCD панелями высокого разрешения, NS предлагает микросхемы шины FPD-Link ( Flat Panel Display Link) и LDI интерфейса ( LVDS Display Interface). Эти изделия обеспечивают широкую полосу пропускания, малую потребляемую мощность, малые геометрические размеры, для мониторов XGA/SXGA/UXGA как переносных ноутбуков так и PC.

Другим наиболее важным применением LVDS является семейство микросхем Channel Link, которые преобразуют 21, 28 или 48 бит ТТЛ данных в 3, 4 или 8 LVDS каналов данных плюс тактовый сигнал. Эти устройства обеспечивают формирование высокоскоростного потока данных ( до 5.4 Gbps) и используются в супербыстродействующих сетевых серверах или маршрутизаторах, или везде где требуются дешёвые, скоростные шины данных. Эти формирователи потоков LVDS везде позволяют экономить затраты на систему за счёт экономии кабелей, соединителей, физических размеров.

Демультиплексеры функционируют непосредственно от потока и не требуют фазовой автоподстройки частоты.

Множество специальных изделий проектируются с использованием технологии LVDS.

Такие микросхемы обеспечивают дополнительную функциональность по сравнению с обычными изделиями. Например, изготавливается специальный тактируемый трансивер с 6 КМОП выходами ( DS92CK16), анонсирован линейный многоточечный переключатель.

Более 75 LVDS изделий предлагает рынку National Semiconductor. Для получения последних новостей и дополнительной информации по технологии LVDS можно посетить специальный сайт: www.national.com/appinfo/lvds/

Изделия LVDS технологии фирмы National Semiconductor изменяют наши представления о скоростях, мощности, шума, и цен в области высокопроизводительной передачи цифровой информации. Поэтому, LVDS не только улучшает существующие достижения но и открывают новые перспективы в развитии цифровой техники.

Источник

Что такое LVDS (30 пиновый широкий и 40 пиновый разъем матриц)

Низковольтная дифференциальная передача сигналов (англ. low-voltage differential signaling или LVDS) — способ передачи электрических сигналов, позволяющий передавать информацию на высоких частотах при помощи дешёвых соединений на основе медной витой пары. Стандарт разрабатывался и продвигался компанией Texas Instruments. Начиная с 1994 года низковольтная дифференциальная передача сигналов используется в компьютерной индустрии, где нашла широкое применение для создания высокоскоростных компьютерных сетей и компьютерных шин.

Отличия от несимметричной передачи сигналов
При дифференциальной передаче для передачи одного сигнала используется дифференциальная пара (сигналов); это означает, что передающая сторона подаёт на проводники пары различные уровни напряжения, которые сравниваются на приёмной стороне: для декодирования информации используется разница напряжений на проводниках пары. Передатчик направляет небольшой ток (порядка 3,5 мА) в один из сигнальных проводников, в зависимости от того, какой логический уровень надо передать. На приёмной стороне ток проходит через резистор сопротивлением 100—120 Ом (равным волновому сопротивлению кабеля для уменьшения отраженного сигнала) и возвращается к отправителю сигнала по другому проводнику, образуя таким образом замкнутую электрическую цепь. В соответствии с законом Ома напряжение на резисторе будет составлять около 350 мВ. Принимающая сторона определяет полярность этого напряжения для того, чтобы определить логический уровень. Такой тип передачи называется токовая петля.

Небольшая амплитуда сигнала LVDS, а также высокая электромагнитная связь проводов дифференциальной пары друг с другом позволяют уменьшить излучаемые вовне помехи и рассеиваемую мощность.

LVDS — не единственная используемая дифференциальная система. Но она остается единственной, сочетающей в себе высокие скорости и небольшое рассеивание энергии.
LVDS используется в таких компьютерных шинах как HyperTransport, FireWire, USB 3.0, PCI Express, DVI, Serial ATA, SAS и RapidIO, а так же интерфейс LVDS на текущий момент времени является самым распространенным интерфейсом из всех используемых в мониторах настольного типа и в матрицах для ноутбуков. По сравнению с TMDS, интерфейсом LVDS обеспечивается более высокая пропускная способность, что и привело к тому, что LVDS, фактически, стал стандартом внешнего интерфейса для современной LCD-панели.

LVDS способен передавать до 24 битов информации за один пиксельный такт, что соответствует режиму True Color (16.7 млн. цветов). При этом исходный поток параллельных данных (18 бит или 24 бита) конвертируется в 4 дифференциальные пары последовательных сигналов с умножением исходной частоты в семь раз. Тактовая частота передается по отдельной дифференциальной паре. Уровни рабочих сигналов составляют 345 мВ, выходной ток передатчика имеет величину от 2.47 до 4.54 мА, а стандартная нагрузка равна 100 Ом. Данный интерфейс позволяет обеспечить надежную передачу данных с полосой пропускания свыше 455 МГц без искажений на расстояние до нескольких метров.

Трансмиттер LVDS состоит из четырех 7-разрядных сдвиговых регистров, умножителя частоты и выходных дифференциальных усилителей

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Достаточно часто в литературе, в документации и на схемах можно встретить и несколько другое обозначение сигналов интерфейса LVDS. Так, в частности, широко применяется такое обозначение, как RX0+/-, RX1+/-, RX2+/-, RX3+/- и RXC+/-.

Входной сигнал CLK представляет собой сигнал пиксельной частоты (Pixel Clock) и он определяет частоту формирования сигналов R/G/B на входе трансмиттера. Умножитель частоты умножает частоту CLK в 7 раз. Полученный тактовый сигнал (7xCLK) используется для тактирования сдвиговых регистров, а также передается по дифференциальным линиям CLKP/CLKM.

7-разрядный параллельный код загружается в сдвиговые регистры трансмиттера по стробирующему сигналу, вырабатываемому внутренней управляющей логикой трансмиттера. После загрузки начинается поочередное «выталкивание» битов на соответствующую дифференциальную линию, и этот процесс тактируется сигналом 7xCLK.

Таким образом, на каждой из четырех дифференциальных линий данных (Y0P/YOM, Y1P/Y1M, Y2P/Y2M, Y3P/Y3M ) формируется 7-разрядный последовательный код, передаваемый синхронно с тактовыми сигналами на линии CLKP/CLKM.

Обратное преобразование последовательного кода в параллельный осуществляется ресивером, входящим в состав LCD-панели, а поэтому вполне естественно, что ресивер, фактически, является зеркальным отражением трансмиттера.

Интерфейс LVDS используется для передачи как 18-разрябного цветового кода (3 цвета по 6 бит на каждый), так и 24-разрядного цвета (3 базовых цвета по 8 бит). Но в отличие от интерфейса TMDS, здесь каждому цвету не выделяется отдельная дифференциальная пара, т.е. каждый дифференциальный канал LVDS предназначен для передачи отдельных битов разных цветов. Кроме сигналов цвета, на LCD-панель должны передаваться еще:

— сигнал строчной синхронизации (HSYNC);

— сигнал кадровой синхронизации (VSYNC);

— сигнал разрешения данных (DE).

Эти управляющие сигналы также передаются по дифференциальным каналам, предназначенным для передачи данных, т.е. по линиям YnP/YnM. Таким образом, существует два варианта формата данных, передаваемых на LCD-матрицу.

Первый вариант соответствует 18-разрядному цветовому коду, и при этом на вход трансмиттера подается 21 разряд данных. Второй вариант – это 24-разрядный цветовой код, при котором на входе трансмиттера должно быть 27 бит данных.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Итак, стандартный вариант распределения входных сигналов трансмиттера между его сдвиговыми регистрами представлен на рис

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

В принципе, интерфейс LVDS может использоваться для передачи любых цифровых данных, о чем говорит широкое применение LVDS в телекоммуникационной отрасли. Однако, все-таки, наибольшее распространение он получил именно как дисплейный интерфейс. Для увеличения пропускной способности этого интерфейса, компания разработчик (National Semiconductor) расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных, т.е. теперь их стало восемь

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Это расширение получило название LDI – LVDS Display Interface. Кроме того, в спецификации LDI улучшен баланс линий по постоянному току за счет введения избыточного кодирования, а стробирование производится каждым фронтом такового сигнала (что позволяет вдвое повысить объем передаваемых данных без увеличения тактовой частоты). LDI поддерживает скорость передачи данных до 112 МГц. В документации данная спецификация встречается также и под наименованием OpenLDITM, а в массах специалистов отклик в душе нашел термин «двухканальный LVDS».

Использование одноканального или двухканального LVDS определяется такими характеристиками LCD-панели и монитора, как:

— частота кадровой развертки, т.е. определяется режимом работы.

На сегодняшний день в подавляющей массе 1-канальный LVDS используется в матрицах с разрешением до 1366х768, а начиная с 1600х900 и выше используется 2-х канальный LVDS.

Источник

Интерфейс LVDS и его применение

В предыдущей части статьи были рассмотрены общие принципы работы LVDS-канала, его составные части и общие параметры. Сейчас мы продолжим описание рекомендаций по разработке LVDS-интерфейсов. Общие требования и требования к топологии печатных плат были описаны ранее. Теперь приведем рекомендации для оставшихся составных частей LVDS-канала — разъемов и соединительных кабелей.

Кабели

Соединительные кабели являются важной частью LVDS-канала. От их параметров во многом зависит скорость и надежность передачи данных. При выборе кабеля желательно соблюдать ряд рекомендаций. Всегда надо помнить, что кабель и соединительные разъемы должны образовывать согласованную систему передачи с дифференциальным сопротивлением, максимально приближенным к 100 Ом. Для передачи дифференциального интерфейса LVDS желательно использовать сбалансированные симметричные кабели типа витой пары. Такие кабели позволяют достичь лучшего качества передаваемого сигнала за счет постоянного сопротивления и идентичности влияния внешних наводок, которые подавляются на приемном конце, на витую пару. Кроме того, симметричные пары имеют меньшее излучение, что благоприятно сказывается как на общем уровне наводок системы, так и на качестве передачи за счет снижения уровня перекрестных наводок.

Стандартом LVDS тип и параметры кабеля и соединителей жестко не регламентируются. Однако в нем есть ссылки на сопутствующие документы, определяющие требования к параметрам кабеля, разъемов, разбивки по контактам и т. п.

Выбор типа кабеля во многом зависит от требуемой дальности и скорости передачи. На дистанциях до 0,5 м. подходят практически все типы кабелей. С соблюдением ряда требований, которые будут раскрыты ниже, можно использовать недорогие и популярные плоские кабели (шлейфы) и распространенные в портативных устройствах ленточные кабели.

Плоский кабель (шлейф), хотя и не является идеальным решением для высокоскоростных интерфейсов, однако имеет реальное применение. Для плоского кабеля рекомендации просты и очевидны из рисунка 8. Сигнальные линии одной дифференциальной пары должны располагаться рядом. Между разными парами помещается разделительный заземленный провод. Не рекомендуется располагать сигнальные линии крайними — для них должно быть сделано обрамление из заземленных проводов. Общая рекомендация — кабель желательно поместить в заземленный экран.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

При использовании ленточного кабеля следует соблюдать те же правила, что и для согласованной линии на печатной плате (рис. 6, a).

На дистанциях от 0,5 до 10 м. очень хорошо зарекомендовали себя широко используемые недорогие и доступные кабели типа витая пара — CAT3, CAT5 и CAT5Plus. Получаемые с использованием таких кабелей параметры линии позволяют передавать данные с удовлетворением всех требований стандарта по одной паре со скоростью до 400 Мбит/c на расстояние до 10 м. В качестве примера приведем данные по разбросу фронтов для неэкранированного кабеля CAT5.

Как видно из рисунка 9, графики дрожания фронтов для разной длины кабеля расположены близко друг от друга и практически параллельны. Очевидно, что для согласованной симметричной линии качество мало зависит от длины линии, а в гораздо большей степени от ее частотных параметров, в данном случае граничной частоты.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Еще одним менее распространенным, но применяемым в скоростных решениях является попарно экранированный (twin-ax) кабель (рис. 10)

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Он обеспечивает большее разделение пар и лучшие условия передачи, что позволяет достигать предельно возможных для стандарта значений скорости, дальности и надежности передачи.

Приведенные данные касаются кабеля, который является важной, но одной из составляющих LVDS-канала. Следует помнить, что и остальные части — разводка платы и разъемы, должны быть выдержаны в рамках требований стандарта.

Разъемы

При построении LVDS-линков можно использовать различные типы соединительных разъемов. Конкретный тип разъема определяется требуемыми параметрами линии, скоростью передачи и типом используемого кабеля.

Необходимо учитывать, что LVDS — скоростной интерфейс, использующий достаточно высокие частоты, и поэтому требуется выбирать соответствующие разъемы. Рекомендуется группировать пары LVDS-линий для уменьшения как внешних наводок на LVDS- канал, так и электромагнитных излучений. LVDS — дифференциальный интерфейс, и оба его провода должны располагаться в максимально идентичных условиях.

Далее отметим характерную именно для LVDS особенность выбора расположения сигнальных линий на контактах разъема — различные выводы разъемов могут иметь различную длину, что приводит к потенциальным искажениям LVDS-сигнала, как показано на рис. 11. При построении LVDS-линий, особенно скоростных, рекомендуется выбирать для проводов одной пары максимально идентичные по длине выводы.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

На разъеме (см. рис. 11) LVDS-линии расположены правильно, а на нижнем разница в длине выводов разъема может вызвать потенциальные искажения. В настоящее время существуют даже специально разработанные для LVDS разъемы, у которых выводы разбиты на пары и разделены экранирующими контактами. На рис. 12 показан пример такого разъема, выпускаемого фирмой TERADYNE.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Как иллюстрацию влияния приведенных выше правил приведем пример тестовых испытаний, проведенных фирмой AMP для своих разъемов серии MICTOR. При этом тестировании проводились оценки взаимовлияния LVDS-пар при различном взаимном расположении их на разъеме. На рис. 13 показаны три варианта расположения LVDS-пар на разъеме.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Рис.13. Три варианта расположения LVDS- линий на разъеме:

a — рекомендованное расположение

б — две пары не разделены экраном

в — максимально уплотненные пары

Для каждого из трех случаев измерялся уровень взаимных наводок на ближнем и дальнем конце кабеля, которые и показаны на рис. 14. При этом на соседние пары подавались сигналы со сдвигом 0,05 нс амплитудой 400 мВ и временем нарастания/спада (1/9) 0,25 нс.

На рис. 14, а показаны уровни наводок на ближнем и на рис. 14, б — на дальнем конце кабеля. Красным цветом выделена кривая дифференциального шума для случая расположения LVDS-линий, как показано на рис. 13, а; зеленым цветом — для случая показанного на рис. 13, б; синим цветом — на рис. 13, в.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Из графиков видно, что несоблюдение рекомендаций по расположению и экранированию LVDS- линков увеличивает уровень перекрестных наводок в несколько раз, это существенно снижает возможную скорость передачи данных по каналу.

Подача и снятие потока данных

Еще одним из факторов, определяющих быстродействие LVDS-интерфейса, а также одной из проблем разработки скоростных каналов является проблема подвода потока данных, как правило, по-обычному TTL или LVTTL-интерфейсу к LVDS-передатчику. Для решения этой проблемы уже выработан ряд технологических приемов. Во-первых, наборы для построения LVDS-каналов строятся уже не на базе отдельных LVDS-передатчиков, а на базе микросхем сериалайзеров — параллельно-последовательных преобразователей, преобразующих сигналы от нескольких параллельно подводимых линий в один высокоскоростной LVDS-канал. На приемном конце, в свою очередь, устанавливается десериалайзер — чип обратного преобразования из последовательного канала в параллельный. Использование, например, 10-разрядного сериалайзера позволяет при канале со скоростью 622 Мбит/c снизить частоту подводимых данных до 62,2 МГц, что вполне приемлемо с точки зрения использования TTL-интерфейса.

Еще одним вариантом решения проблемы подачи и снятия данных для LVDS является интеграция LVDS-приемников и передатчиков непосредственно в состав устройств источников и приемников данных. Так, производитель программируемой логики фирма Xilinx интегрирует в состав FPGA последних семейств определенное количество LVDS-портов. Такой вариант имеет и еще одно функциональное преимущество: сочетание в одном корпусе программируемой логики и LVDS-интерфейсов позволяет легко выполнять построение LVDS-каналов требуемой архитектуры, скорости и типа внешнего интерфейса.

Шинные LVDS-решения

Кроме передачи точка — точка, топология интерфейса LVDS предусматривает еще ряд возможных топологий, показанных на рис. 15.На рис. 15, a показана базовая топология точка — точка, которую мы уже рассматривали ранее. На одну линию можно подключить не один, а несколько приемников при одном LVDS-передатчике и получить топологию точка — многоточка (multidrop), показанную на рис. 15, б. При этом линия терминируется на одном приемном конце.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Рис. 15. Возможные топологии LVDS-канала

a — точка — точка (point-to-point)

b — точка — многоточка (multidrop)

c — шинная топология (multipoint)

Возможность подключения на одну пару нескольких приемников и нескольких передатчиков позволяет организовывать на базе LVDS-стандарта шинные решения с использованием всех его преимуществ. На рис. 15, в, каждая линия шины представляет собой согласованную 100-омную линию с терминаторами на концах. На эту линию подключается несколько LVDS-приемников и несколько LVDS-передатчиков. При таком включении по одной паре LVDS возможна организация двухстороннего полудуплексного канала, то есть в каждый момент времени активен только один из передатчиков. Для удобства построения шин выпускаются микросхемы, которые включают в себя и передатчик и приемник для каждой пары внешних LVDS-выводов.

Применение LVDS

Рассмотрев особенности построения самих LVDS-каналов, приведем несколько конкретных примеров LVDS-решений.

Скоростной многоканальный LVDS-линк на базе FPGA Virtex-E фирмы Xilinx

Для примера приведем структуру построения скоростного 622 Мб/с LVDS-канала на базе ПЛИС Xilinx серии Virtex-E. Особенностью данного примера является передача параллельного потока данных, непосредственно между ПЛИС Xilinx с использованием встроенных LVDS-приемопередатчиков.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

На рис. 16 показана схема построения законченного LVDS-канала из двух каналов данных по 622 Мбит/c и одного тактового сигнала частотой 311 МГц. При передаче используются оба фронта тактового сигнала. Задержки сигнала такта и данных одинаковы, поскольку эти сигналы генерируются одинаковыми мультиплексорами. Терминирование передатчиков со стороны источника приводит уровни в полное соответствие со стандартом LVDS и согласует выходы с используемой в данном примере 50-омной несимметричной или 100-омной симметричной линией. Параллельные терминаторы на приемном конце в соответствии со стандартом LVDS представляют собой 100-омные резисторы (рис. 17).

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Для обеспечения лучших условий приема тактовый сигнал задерживается на 1,1 нс с использованием специальной разводки платы или дополнительного внешнего буфера с соответствующей задержкой.

На приемном конце сигнал принимается дифференциальными LVDS-приемниками и подается на триггеры, которые защелкивают данные по принятому тактовому сигналу частотой 311 МГц.

Отметим, что использование такой высокой скорости передачи требует весьма тщательного подхода к выполнению схемы и к разводке печатной платы.

Полное описание приведенного выше примера доступно на FTP-сервере фирмы Xilinx: ftp://ftp.xilinx.com/pub/applications/xapp/xapp233.zip

Благодаря своим высоким характеристикам интерфейс LVDS находит все большее применение в бюджетных разработках. Все большей популярностью пользуются наборы решений для замены параллельных TTL-линий высокоскоростным последовательным LVDS-каналом. Примером такого решения может служить набор MuxIt, выпускаемый Texas Instruments. Набор включает в себя три микросхемы:

На рис. 18 приведен простейший базовый вариант структуры системы на базе набора MuxIt.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Передатчиком SN65LVDS151 от 4 до 10 разрядов данных преобразуются в последовательный канал и передаются через LVDS-линк. Параллельный тактовый сигнал используется умножителем частоты SN65LVDS150 для генерирования скоростного тактового сигнала, который используется для передачи данных и передается на приемный конец системы по отдельному LVDS-линку. Сигналы M1…M5 используются для определения количества разрядов данных, преобразуемых в LVDS-канал. Параллельные данные загружаются в сдвиговый сигнал передатчика по низкочастотному тактовому сигналу. Из сдвигового сигнала данные выдаются в LVDS-линк по синтезированному умножителем частоты высокочастотному тактовому сигналу.

На приемном конце канала данные по принятому высокочастотному тактовому сигналу загружаются в сдвиговый регистр приемника SN65LVDS152, где приводятся к параллельному виду и выдаются на параллельные выходы данных D0 — D9. Принятый тактовый сигнал также используется умножителем частоты SN65LVDS150 для восстановления исходного низкочастотного тактового сигнала.Компоненты набора MuxIt образуют законченное решение для преобразования параллельной шины в LVDS-канал и обратно.

Показанная на рис. 18 конфигурация компонентов набора является простейшей базовой, но не единственной возможной конфигурацией канала. Умножитель частоты допускает коэффициент умножения до 40, что позволяет последовательно объединять в один канал до 4 сериалайзеров, преобразуя в один последовательный канал 40-разрядную параллельную шину. Кроме того, возможно параллельное подключение нескольких сериалайзеров и десериалайзеров для образования единого более скоростного линка с несколькими каналами данных и одним тактовым каналом. Сочетание параллельного и последовательного подключения элементов набора позволяет подобрать оптимальную конфигурацию системы для получения оптимального сочетания пропускной способности канала и количества линий передачи.Компоненты набора MuxIt могут поддерживать и многоточечный шинный режим работы.

Более подробную информацию по набору MuxIt можно получить на сервере TI по адресу http://www.ti.com/sc/docs/products/msp/intrface/muxit/overview.htm

Существуют и одночиповые решения, рассчитанные на фиксированную конфигурацию LVDS-канала. Примером такой пары для передачи точка — точка до 28 параллельных линий по пяти LVDS-каналам может служить пара из передатчика/сериалайзера SN65LVDS93 и приемника/десериалайзера SN65LVDS94.

Совместно эти две микросхемы образуют канал со скоростью передачи до 1,82 Гбит/c (именно 1,82 Гигабита в секунду, то есть 227,5 Мегабайта в секунду). При этом входная тактовая частота параллельной шины может достигать 65 МГц. Микросхемы SN54LVDS93/94 используют питание напряжением 3,3 В, но при этом их входы являются совместимыми с уровнями TTL- логики 0,5 В. Типичная потребляемая мощность в рабочем режиме составляет около 250 мВт.

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Более подробную информацию по микросхемам SN65LVDS93/94 можно получить на сервере TI по адресам: http://focus.ti.com/docs/prod/folders/print/ sn65lvds93.html и http://focus.ti.com/docs/prod/folders/print/sn65lvds94.html.

Еще одним интересным решением по интеграции LVDS-каналов является предлагаемый TI набор из одиночных LVDS-приемника и LVDS-передатчика, каждый из которых выпускается в корпусе SOT-23, — SN65LVDS1/ S2/T2 (рис. 20).

Что такое lvds интерфейс. Смотреть фото Что такое lvds интерфейс. Смотреть картинку Что такое lvds интерфейс. Картинка про Что такое lvds интерфейс. Фото Что такое lvds интерфейс

Основные параметры передатчика:

Основные параметры приемника:

Приемник и передатчик этой серии представляют собой законченные узлы, которые позволяют преобразовать к LVDS любую, даже одиночную линию.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *