Что такое lte advanced в смартфоне
LTE Advanced: обзор технологии
В этой статье мы рассмотрим технологию связи LTE Advanced. Приведем определение стандарта, рассмотрим основные возможности и характеристики. Кратко упомянем распространение технологии в нашей стране – какие оператора поддерживают, существует ли возможность подключения. Информация пригодится пользователям новых смартфонов (купленных после 2016 года).
Определение и характеристики
Что это – LTE Advanced? Вопрос не так сложен, как может показаться неискушенному пользователю. Эта технология представляет собой улучшенную версию привычного нам ЛТЕ, мобильной связи четвертого поколения, и стандартизирована 3GPP как главное улучшение стандарта Long Term Evolution.
Сеть предусматривает расширение полосы частот и агрегацию спектра – используются несколько каналов передачи данных, что позволяет ретранслировать сигнал и получать более быстрый и стабильный доступ к интернету.
Рабочие частоты технологии – 1800 и 2600 МГц.
Какие телефоны поддерживают LTE Advanced? Не нужно приобретать дорогие новинки – практически все смартфоны, выпущенные после 2016 года, могут работать в рамках сети.
Кстати, подключение не нужно настраивать – при возникновении возможности оно произойдет автоматически.
Развитие в РФ
Первый оператор, запустивший LTE Advanced в России – Yota. Технология была внедрена на коммерческой сети 9 октября 2012 года и обслуживалась одиннадцатью базовыми станциями.
Каково же развитие сети на территории нашей страны? Следом за Йотой подтянулись и другие игроки «Большой четверки» – Билайн, МТС и Мегафон.
В дальнейшем 4G Advanced LTE будет активно развиваться – об этом говорят прогнозы специалистов и позитивная оценка абонентов.
Мы рассказали всю необходимую информацию о современной сети – изучайте обзор, узнавайте много нового о работе мобильных устройств и технологиях связи и подключайте новинки для быстрого и стабильного доступа к интернету.
LTE и LTE-A: что это такое и зачем оно в телефонах
Стандарт беспроводной передачи данных LTE в России известен давно. При этом он нередко обозначается, как 4G LTE. Однако, к сведению многих, он не является полноценной сетью 4G.
LTE (3GPP Long Term Evolution) — это некий промежуточный стандарт между поколениями мобильной связи 3G (с последующими протоколами ее улучшений) и поколением 4G.
Несмотря на то, что операторы сотовой связи и производители смартфонов приписывают к стандарту LTE приставку 4G, LTE напрямую к четвертому поколению мобильной связи 4G не относится. Он основан на протоколах передачи данных GSM/EDGE и UMTS/HSPA, имеющих принадлежность к технологии мобильной связи 3G.
LTE не соответствует требованиям 4G. Это установил консорциум 3GPP, занимающийся разработкой всех спецификаций для мобильной телефонии. LTE позволяет осуществлять передачу данных со скоростью до 100 Мбит/с, что соответствует 12,5 Мегабайтам/с.
LTE-Advanced (сокращенно LTE-A) – это официально признанный стандарт беспроводной связи четвертого поколения 4G. Его утвердил Международный союз электросвязи еще в 2012 году. Таким образом, в настоящее время только стандарт LTE-Advanced соответствует возможностям мобильной сети четвертого поколения 4G. Саму же технологию 4G разработал консорциум 3GPP.
В отличие от обычного LTE, являющегося стандартом связи 3G, LTE-Advanced обеспечивает работу в сети 4G. LTE-A может обеспечивать передачу данных на скоростях от 100 Мбит/с (12,5 Мб/с) до 1 Гбит/с (125 Мб/с).
Смартфоны с LTE-A
В настоящее время в Россию большая часть смартфонов поступает с поддержкой LTE-Advanced, а не только LTE (или 4G LTE, подписанного так в исключительно маркетинговых целях). Чтобы убедиться в этом, нужно изучить поддерживаемые телефоном стандарты связи. Это обычно указывается в характеристиках смартфона. Если среди стандартов будет фигурировать LTE-A, то это станет свидетельством того, что мобильное устройство действительно может работать в сетях 4G.
Поддерживают ли операторы связи стандарт LTE-A
Операторы связи в РФ, конечно же, поддерживают LTE (4G LTE, как они любят подписывать этот стандарт). Причем работает он практически во всех городах, даже не самых крупных. Скорость, как и соответствует стандарту LTE, не превышает 100 Мбит/с.
Однако LTE-Advanced, который соответствует сетям 4G, был запущен в нашей стране уже в 2012 году компанией Yota (правда, работают только 11 станций, и только на коммерческой сети).
Двумя годами позже оператор сотовой связи МегаФон внедрил LTE-A в центре столицы нашей Родины, обеспечивая в сети 4G скорость загрузки данных в 300 Мбит/с (37,5 Мб/с) и скорость их выгрузки 50 Мбит/с (6,25 Мб/с). Но и здесь оператор не смог не пойти на уловки и назвал эту сеть маркетинговым названием 4G+.
Купить современный смартфон с LTE можно в нащем интернет-магазине по выгодной цене.
Мы запустили LTE-Advanced: барьер в 100 Мбит/с на абонента преодолен
Районы, где можно начинать YouTube-вечеринки. По крайней мере, других идей утилизации канала у меня нет. Вся территория Москвы и немного ближнего Подмосковья.
Разработчики LTE-Advanced задались целью обеспечить скорости до 1 Гбит/с. Понятно, что такие скорости достижимы пока только в идеальных лабораторных условиях. Но и те 110 Мбит/с, которые мы получили в нашей коммерческой 4G сети в Москве, впечатляют. Тем более, никаких особых усилий с нашей стороны это не потребовало – просто объединили ресурсы двух диапазонов частот.
Один из важнейших дополнительных плюсов – это перераспределение загрузки мобильной сети между диапазонами. Вы почувствуете это как ускорение мобильного интернета даже в сложных областях, в частности, в помещениях, а также в загруженных сотах, например, в пробках.
Увеличение пропускной способности
Стандарт LTE 8 релиза 3GPP позволяет абоненту получить скорость только до 150 Мбит/с при ширине полосы в 20 МГц. Методов достижения нужной пропускной способности два. Первый — это усложнение антенных систем и включение режима Multiple Input Multiple Output (MIMO). Обычно указывается порядок MIMO, например, MIMO 4×4 означает, что передается 4 независимых потока информации с четырёх передающих антенн на четыре приемные. Это примерно похоже на то, как если бы у вас было 4 SIM-карты, соединённых в мост.
Рис 1. MIMO 4×4.
Второй метод – расширение спектра за счёт объединения нескольких полос частот (Carrier aggregation):
Теперь расширение спектра. Стандарт 3GPP определяет следующие варианты ширины полосы LTE: 1,4, 3, 5, 10, 15 и 20 МГц. К сожалению, максимальная ширина полосы ограничена 20 МГц.
Означает ли это, что использовать частотный ресурс больше, чем в 20 МГц, невозможно? Нет, не означает. Расширить частотный ресурс как раз и помогает агрегация каналов – Carrier Aggregation (CA). Функционал работает как для LTE с частотным разделением (FDD), так и для временного разделения (TDD). Поскольку большинство сетей в России — это FDD, рассмотрим CA на примере вот этой иллюстрации:
Агрегация каналов в LTE FDD
Допустим, базовая станция (eNodeB) использует два частотных канала по 20 МГц каждый. Для абонентов с телефонами релизов R8/R9 данные соты будут выглядеть, как 2 отдельные соты и они могут использовать только одну из них. Для абонента, обладателя LTE-Advance девайса, картинка будет несколько иная.
Предположим, что мы зарегистрированы на соте и качаем очень тяжелый файл. Для нас данная сота (частотный канал) будет Primary. Базовая станция определяет, что нам требуется больше ресурсов, и назначает вторую соту, называемую, secondary cell. Телефон, объединяя ресурсы обеих сот, может получить до 300 Мбит/с (2 частотных канала передающих по 150 Мбит/с).
Агрегироваться могут различные полосы частот LTE, начиная с 1,4 МГц и заканчивая 20 МГц, но всего 5 несущих и до 100МГц общей шириной спектра. Количество агрегированных каналов в UL и DL может отличаться, но количество агрегированных UL каналов всегда будет меньше либо равно общему кол-ву несущих в DL.
Варианты агрегации спектра
Таблица 1. Частотные диапазоны LTE для РФ.
Номер диапазона | Название диапазона | Диапазон частот Uplink (МГц) | Диапазон частот Downlink (МГц) | Ширина диапазона (МГц) | Дуплексный разнос (МГц) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | DCS 1800 |
Type of CA and duplex type | CA configuration | Maximum aggregated bandwidth (MHz) | Max number of CC |
Intra-band contiguous FDD | CA_7C | 40 | 2 |
Inter-band FDD | CA_3A_7A | 40 | 1 + 1 |
CA_7A_20A | 30 | 1 + 1 |
Это агрегация двух полос в диапазоне 2600 МГц (Band 7 + Band 7), агрегация двух полос в диапазонах 1800 МГц и 2600 МГц (Band 3 + Band 7) и объединение полос в диапазонах 800 МГц и 2600 МГц (Band 20 + Band 7). Список возможных конфигураций расширяется от релиза к релизу, например в 12 релизе появляется возможность агрегировать UL. В будущем российские операторы получат возможность агрегировать полосы из 3 диапазонов, получив, таким образом, комбинации Band 20 + Band 3 + Band 7.
Россия
Рассмотрим актуальный вопрос для российских операторов: можно ли использовать Carrier Aggregation для диапазона 800 МГц, чтобы задействовать полностью нестандартную полосу в 7,5 МГц?
Ответ — нет. На это есть несколько причин. Во-первых, несмотря на то, что стандарт задает полосы в 1,4 и 3 МГц, для Band 20 (LTE800) они не определены. Во-вторых, агрегация двух полос в Band 20 также не возможна.
Таким образом, в настоящий момент операторы не могут полноценно использовать 7,5 МГц, выданные регулятором. Возможно, это будет доступно в будущем, но сейчас планов по стандартизации полосы в 7,5 МГц нет.
UPD: В России согласно полученным лицензиям для сетей LTE, операторы могут использовать полосу 10МГц в диапазоне 2600, и 5МГц в диапазоне 800
У Carrier Aggregation большой потенциал, но самым главным сдерживающим фактором остается необходимость поддержки мобильными терминалами этого функционала. Причем помимо простой поддержки телефон также должен уметь агрегировать именно наши диапазоны. Ожидается, что в России такие телефоны начнут появляться в конце 2014 – начале 2015.
Что всё это значит?
Что с запуском?
Запуск состоялся в Москве. В настоящий момент у вас не получится насладиться всеми прелестями высокой скорости из-за того, что нужны устройства, поддерживающие LTE-A. Мало того, в наших поддерживающие Carrier Aggregation для конкретных российских диапазонов Band 20 (800 МГц) и Band 7 (2600 МГц). К счастью, наши частоты соответствуют европейским стандартам поэтому уже в следующем году можно ожидать появления нужных терминалов.
Для запуска LTE-A на базе LTE-сети мы обновили оборудование некоторых базовых станций (сводя передатчики 800 и 2600 диапазонов в один цифровой модуль). В остальных случаях дело ограничилось установкой новых прошивок и апдейтами конфигураций.
Сейчас известен только один телефон с поддержкой LTE-A в нужном нам стандарте – это Samsung Galaxy Alpha, и уже 18 сентября он должен появиться в продаже. По прогнозам, в 2015 году большая часть новых телефонов будет иметь этот функционал «из коробки».
Мы жили в городах, и выживали в деревнях, а теперь живем мы в Интернете! aka@piv70
На сетевом уровне LTE работает полностью на базе IP технологий, а на физическом уровне (в радиоканале) применяется ортогональное частотное уплотнение, и, в результате, мы получаем высокую пропускную способность, маленькие задержки и фантастическую спектральную эффективность.
Это совершенно иной подход, а физика его такова:
По прогнозам экспертов, уже к 2020 году более 5 млрд. человек станут членами мирового сообщества, называемого “мобильный мир”. При этом половина всего населения планеты будет иметь постоянный доступ к услугам LTE сетей.
Дальнейший прогресс развития будет связан с технологией LTE Advanced, и мы заглянем за рубеж 2020 года!
Характеристики сетей LTE
Производительность и пропускная способность — одно из требований LTE заключается в обеспечении пиковой пропускной способности обратного канала не менее 100 Мбит/с.
Технология предусматривает поддержку скорости обмена данными более 300 Мбит/с, однако шведы уже продемонстрировали нам следующий этап развития LTE — с теоретически возможной пиковой пропускной способностью до 1,2 Гбит/с.
Простота — поддерживаются гибкие варианты полосы пропускания с несущей частотой от 1,4 МГц до 20 МГц и дуплексная передача с разделением по частоте (FDD *) и по времени (TDD *).
Задержка передачи данных в LTE меньше, чем в существующих технологиях 3G. Это преимущество является очень важным для обслуживания интерактивных сред с эффектом присутствия (например, многопользовательских игр) и обмена большими объемами медиаконтента.
Разнообразие устройств — кроме мобильных телефонов и периферийных устройств, встроенными LTE-модулями планируется оснащать многие компьютерные и бытовые электронные устройства. Это ноутбуки, планшеты, игровые приставки и set-top box-ы, видеокамеры и другие портативные устройства.
* При использовании TDD (Time Division Duplex) вся полоса попеременно отдается на загрузку или выгрузку данных. При использовании FDD (Frequency Division Duplex) входящий и исходящий трафик разделены частотно, загрузка данных идет на одной частоте, а выгрузка на другой.
Основные рабочие характеристики
Основы мультиплексирования и использование MIMO в LTE
В LTE используются системы MIMO для повышения надежности и для увеличения скорости передачи данных. Как правило, система MIMO состоит из m передающих антенн и n приемных антенн.
Проще говоря, приемник принимает сигнал Tx, который получается, когда вектор Rx входного сигнала умножается на матрицу Q передачи. Tx = Q * Rx. Матрица передачи Q содержит импульсные характеристики канала, которые ссылаются на канал между передающей антенной m и приемной антенной n. Многие алгоритмы MIMO основаны на анализе характеристик матрицы передачи Q. Ранг (матрицы канала) определяет количество линейно независимых строк или столбцов. Он указывает, сколько независимых потоков данных (уровней) может быть передано одновременно.
Когда одни и те же данные передаются избыточно по более чем одной передающей антенне, это называется разнесением передачи. Это увеличивает отношение сигнал / шум. Пространственно-временные коды используются для генерации избыточного сигнала. Аламути разработал первые коды для двух антенн. Сегодня разные коды доступны для более чем двух антенн.
Пространственное мультиплексирование увеличивает скорость передачи данных. Данные делятся на отдельные потоки, которые затем передаются одновременно по одним и тем же ресурсам радиоинтерфейса. Передача включает в себя специальные секции (также называемые пилот-сигналами или опорными сигналами), которые также известны приемнику. Приемник может выполнить оценку канала для сигнала каждой передающей антенны.
В методе с обратной связью приемник сообщает о состоянии канала передатчику через специальный канал обратной связи. Это позволяет быстро реагировать на изменение условий в канале, например, адаптация количества мультиплексированных потоков. Когда скорость передачи данных должна быть увеличена для однопользовательского оборудования (UE), это называется однопользовательским MIMO (SU-MIMO). Когда отдельные потоки назначаются различным пользователям, это называется многопользовательским MIMO (MU-MIMO).
Что такое MIMO и MU-MIMO, как работает эта технология и что это дает конечному пользователю?
При формировании луча используются несколько антенн для управления направлением фронта волны путем соответствующего взвешивания величины и фазы сигналов отдельных антенн (формирование луча передачи). Это позволяет лучше охватить конкретные области по краям сот. Поскольку каждая отдельная антенна в массиве вносит вклад в управляемый сигнал, достигается усиление сигнала (также называемое конструктивным формирования луча).
Формирование приемных лучей позволяет определить направление, куда будет приходить волновой фронт. Также имеется возможность подавить выбранные мешающие сигналы, применяя нулевую диаграмму направленности в направлении мешающего сигнала. Адаптивное формирование луча относится к технике постоянного применения формирования луча к движущемуся приемнику. Это требует быстрой обработки сигналов и мощных алгоритмов.
Формирование луча стало возможным благодаря изменению величины и / или фазы сигнала на отдельных антеннах. Сигналы обрабатываются таким образом, чтобы их можно было конструктивно (эффект усиления за счет сложения волн) добавлять в направлении предполагаемого передатчика / приемника и деструктивно (ослабление волн) в направлении источников помех.
Что такое Beamforming, история развития, и для чего нужно формирование диаграммы направленности луча.
Вдумайтесь в эти цифры:
Что будет с 3G сетями?
Еще совсем недавно мировое сообщество делало ставку на развитие сетей третьего поколения и возможности, которые дали нам эти технологии, казались чем-то из области научной фантастики. Процесс перехода на LTE растянется еще на несколько лет, а да этого времени 3G сети будут так же эффективно решать задачи по передаче широкополосных данных миллиардам мобильных пользователей.
Однако рано или поздно мы полностью перейдем на сети четвертого поколения, и тогда в полной мере можно будет говорить об удовлетворении потребности клиентов в быстродействии и высокой пропускной способности мобильной сети – того, что так необходимо для развития новых приложений.
Видеоблоги и интерактивное телевидение, системы удаленного видеонаблюдения через интернет в режиме реального времени, 3D игры нового поколения и другие профессиональные сервисы предъявляют высокие требования к скорости передачи данных, отсутствию задержек и минимальному джиттеру в работе телекоммуникационной сети, и LTE это главная движущая сила инновационного развития.
Сравнительная таблица сетей GPRS, 3G, 4G
Стандарт сети | Технология | Модуляция | Скорость передачи данных (макс.) к абоненту/от абонента | Полоса сигнала, МГц |
---|---|---|---|---|
GSM | GPRS | GMSK | 20/20 Kбит/с | 0,2 |
EDGE | 8PSK | 59,2/59,2 Kбит/с | 0,2 | |
UMTS | R99 WCDMA | QPSK | 384/384 Kбит/с | 5 |
HSDPA | 16QAM/QPSK | 14,4/5,76 Мбит/с | 5 | |
HSPA+ | 64QAM/16QAM | 21/11,5 Мбит/с | 5 | |
DC HSPA+ | 64QAM/16QAM | 42/23 Мбит/с | 10 | |
LTE Release 8 | MIMO 2\2 | 64QAM | 150/75 Мбит/с | 20 |
LTE-Advanced Rel. 10 | Downlink 8×8 MIMO / Uplink 4×4 MIMO | 64QAM | 3/1.5 Гбит/с | 100 |
LTE-Advanced Pro Rel. 13 (4.5G) | 8×8 MIMO | 256QAM | 25/12.5 Гбит/с | 640 |
В России для оборудования мобильных 4G сетей выделены стандартные диапазоны частот, так называемые бэнды (BAND):
Полосы частот и ширина каналов, используемые сотовыми операторами в России в 2019
№ | Оператор | Частотный диапазон (UL/DL), МГц | Ширина канала, МГц | Тип дуплекса | Номер в 3GPP |
---|---|---|---|---|---|
1 | Мегафон | 847-854.5 / 806-813.5 | 7.5 | FDD | Band 20 | 2 | Мегафон | 1835-1855 / 1730-1750 | 20 | FDD | Band 3 | 3 | Yota (Мегафон) | 2500-2530 / 2620-2650 | 30 | FDD | Band 7 |
4 | Мегафон | 2530-2540 / 2650-2660 | 10 | FDD | Band 7 |
5 | Мегафон | 2575-2595 | 20 | TDD | Band 38 |
6 | МТС | 839.5-847 / 798.5-806 | 7.5 | FDD | Band 20 |
7 | МТС | 1855-1875 / 1750-1775 | 20 | FDD | Band 3 | 8 | МТС | 2540-2550 / 2660-2670 | 10 | FDD | Band 7 |
9 | МТС | 2595-2615 | 20 | TDD | Band 38 |
10 | МТС | 2595-2620 | 25 | TDD | Band 38 |
11 | Билайн | 854.5-862 / 813.5-821 | 7.5 | FDD | Band 20 |
12 | Билайн | 1805-1825 / 1710-1730 | 20 | FDD | Band 3 | 13 | Билайн | 2550-2560 / 2670-2680 | 10 | FDD | Band 7 |
14 | Теле2 | 453-457.4 / 463-467.4 | 4.4 | FDD | Band 31 |
15 | Ростелеком/Теле2 | 2560-2570 / 2680-2690 | 10 | FDD | Band 7 |
16 | Ростелеком/Теле2 | 832-839.5 / 791-798.5 | 7.5 | FDD | Band 20 |
Частотное распределение каналов сотовой связи в России на 2019 год
Что даст LTE конечному пользователю?
Какая выгода от LTE для операторов?
Перспективные сетевые технологии с точки зрения мощности, пропускной способности и взаимодействия с пользователем. Это новые коммерческие возможности и источники дохода, как для старых операторов, так и для новых.
Так как новые сети можно использовать для технологий связи любого поколения – 2G, 3G и 4G это позволит снизить капитальные и эксплуатационные затраты операторов.
Что такое LTE-Advanced
Первый набор спецификаций LTE был завершен в марте 2009 года. Первая коммерческая сеть LTE была открыта в декабре 2009 года. По данным Ovum WCISК к концу 2019 года количество подключеней к LTE сетям будет насчитывать 5 млрд. Первые смартфоны с поддержкой LTE были представлены в 2011 году. Базовые технологические возможности развиваются дальше, что ведет к еще более высоким скоростям передачи данных и более высокой плотности размещения базовых станций, и следующий шаг в эволюции развития называется LTE-Advanced. Направлен он на получение скоростей свыше 1 Гбит/с. Развитие LTE-A начинается с 10 релиза, котрый был завершен в июне 2011 года.
6 основных особенностей LTE-Advanced
Принцип работы агрегации частот
На 2019 г 4G в России работает в 6-ти частотных диапазонах.
Каждый из них использует не одну конкретную частоту, а некий отрезок шириной: 1.4, 3, 5, 10, 15, 20 МГц. Сделано это для того, чтобы каждому оператору в каждом диапазоне досталось по частотному отрезку. Агрегация частот объединяет несколько таких отрезков в единый «коридор». Например, делает из 2-х или 3-х отрезков по 10 МГц один, многополосный, шириной 20 или 30 МГц. Используя данную технологию, смартфоны могут передавать/получать данные сразу по двум каналам, что значительно увеличивает скорость передачи данных. Таким образом, преодолевается ограничение по количеству подключенных абонентов и увеличивается полоса пропускания канала.
Принцип агрегации 3-х частотных каналов в LTE-Advanced
В Москве оператор Мегафон имеет 40 МГц непрерывного спектра в 7-м банде (диапазоне 2600 МГц), а МТС, Теле2 и Билайн всего по 10 МГц. Таким образом, у Мегафона значительное преимущество в емкости и скорости сети. В свою очередь, абонентам МТС важно проверить, поддерживает ли их телефон работу 38 банда (2600 TDD), потому что у данного оператора широкое покрытие в Москве – 20 МГц. Отстающими для столицы являются Билайн и Теле2.
На 2019 год в РФ операторы поддерживают следующие комбинации агрегации несущих:
Оператор | МегаФон | МТС | Билайн | Теле2 |
---|---|---|---|---|
Комбинации | 7+7, 3+7, 3+7+7 | 3+38, 3+7 | 3+7 | — |
У МегаФон в Москве и Санкт-Петербурге в максимальной конфигурации агрегация трех полос — 20 МГц из 3-го диапазона и 20+20 МГц из 7-го диапазона.
Три сценария объединения несущих (ОН)
Агрегация несущих в одном диапазоне: эта форма ОН использует один диапазон. Возможны два варианта:
Смежная. Это самая простая форма реализации агрегации несущих LTE. При этом несущие находятся на соседних каналах рядом друг с другом. В этом случае нужен только один приемопередатчик, так как сигнал рассматривается как один расширенный.
Несмежная: немного сложней в выполнении, несущие используют одну и ту же рабочую полосу, но не соседствуют друг с другом. Здесь уже нужны два приемопередатчика, потому что сигнал не может рассматриваться как один сигнал, что увеличивает сложность и стоимость решения.
Несмежная в разных диапазонах: эта форма агрегации несущих использует разные полосы. Это более сложная задача, так как несущие из разных рабочих диапазонов. Таким образом, нужно несколько приемопередатчиков для передачи / приема сигналов. Этот тип ОН самый затратный и сложный в реализации.
Три сценария агрегации несущих в LTE-Advanced
Эта технология может применяться к вариантам LTE с FDD или TDD с максимум пятью компонентными несущими, каждая с шириной полосы до 20 МГц, в результате чего общая ширина полосы передачи достигает до 100 МГц.
Какие смартфоны поддерживают LTE A
Какие скорости у LTE и LTE-A?
Скорость передачи данных до 100 Мбит в секунду. С поправкой на то, что этот показатель может меняться в зависимости от текущей сетевой нагрузки и местонахождения пользователя. В рамках технологии предусмотрены скорости более 300 Мбит/с. Дальнейшая эволюция развития (LTE Advanced) предусматривает пропускную способность до 3 Гбит/с к абоненту и до 1.5 Гбит/с от абонента.
И, примечательно то, что для перехода с LTE на LTE Advanced потребуется простое обновление программного обеспечения и дальнейшая перенастройка базовых станций оператора. Для внедрения функциональности MIMO 8×8 необходимо будет заменить радио-модули.
Категории мобильных устройств
Категория абонентского устройства | Макс. скорость DL, Мбит/с | Агрегация несущих | Дополнительные технологии |
---|---|---|---|
CAT4 | 150 | — | 2×2 MIMO |
CAT6 | 300 | 2х20 МГц | 2×2 MIMO |
CAT9 | 450 | 3Х20 МГц | 2×2 MIMO |
CAT12 | 600 | 3Х20 МГц | 4×4 MIMO, 256 QAM |
CAT16 | 980 | 4Х20 МГц | 4×4 MIMO, 256 QAM |
Плюсы и минусы агрегации частот
Основным преимуществом технологии для оператора это повышение пропускной способности канала и увеличение одновременного обслуживания абонентов с одной базовой станции. Например, флагман Самсунга Galaxy S10, что соответствует пятому поколению связи (5G).
Недостатком технологии является повышенный расход энергии, ввиду того, что сотовому устройству приходится поддерживать связь сразу с несколькими базовыми станциями.
Также операторы экономно используют частотный ресурс, редко устанавливая на одной вышке приемопередатчики для разных подсетей, что мешает мобильным устройствам достигать максимальной для категории скорости.
Сети LTE полностью основаны на IP-протоколе и поэтому в основной форме поддерживают только передачу данных. Существуют разработки, позволяющие операторам предложить своим абонентам решения для передачи голоса.
Это IP-решения, которые обеспечат такую же функциональную совместимость, гибкость и бесперебойную работу, какую предлагают современные беспроводные технологии 2G и 3G.
VoLTE как раз и является спецификацией передачи голосового трафика от систем канальной коммутации и SMS к системам пакетной коммутации, т.е. непосредственно через сети LTE с использованием IMS.
Большим преимуществом VoLTE является то, что качество вызовов превосходит соединения 2G и 3G, так как через 4G может передаваться в три раза больше данных, чем в 3G, и в шесть раз больше, чем в 2G. По сути, это голосовой вызов в формате HD. Он намного более насыщенный, используется речевой кодек HD-Voice. Но работает VoLTE только в том случае, если оба устройства, принимающее и выполняющее вызов, его поддерживают.
VoLTE также требует, чтобы оба участника разговора имели покрытие 4G. Это означает, что звонки VoLTE не всегда будут доступны, и если кто-то выходит из зоны покрытия 4G во время разговора, есть вероятность, что звонок будет сброшен.
Комментарии
Александр 2020-03-13 17:52:00
- Что такое lte 3g 2g авто
- Что такое lte advanced