Что такое http соединение
Протокол HTTP: обзор для чайников
Каждый раз, когда вы посещаете страницу в интернете, ваш компьютер использует протокол передачи гипертекста (HTTP) для загрузки этой страницы. HTTP — это набор правил для передачи файлов: текста, изображений, звука, видео и других мультимедиа. HTTP работает поверх набора протоколов TCP/IP, которые составляют основу интернета.
Составляющие HTTP
В HTTP-протоколе есть две разные роли: сервер и клиент. Запрос всегда инициирует клиент, а сервер на него отвечает. Клиентом может быть как браузер, так и, к примеру, поисковый робот, который просматривает страницы в интернете и индексирует их согласно релевантности ключевого запроса. HTTP основан на тексте — сообщения между клиентом и сервером по сути представляют собой фрагменты текста, хотя в теле сообщения могут быть другие элементы: видео, фото, аудио и т.д.
Каждый отдельный запрос отправляется на сервер, который обрабатывает его и предоставляет ответ. Между клиентом и сервером существует множество объектов, которые называются прокси-серверами. Они обеспечивают различные уровни функциональности, безопасности и конфиденциальности в зависимости от ваших потребностей или политики компании.
Схематичное изображение работы HTTP-протокола
Итак, мы выяснили, что HTTP содержит три основных элемента:
Рассмотрим подробнее, что это такое и как они работают.
Клиент
Клиент — это любой инструмент, который действует от имени пользователя. В основном эту роль выполняет веб-браузер, но помимо браузера это быть программы, используемые инженерами или веб-разработчиками для отладки своих приложений. Клиент всегда инициирует запрос, это никогда не делает сервер.
Веб-сервер
На другой стороне канала связи находится сервер, который обслуживает документ по запросу клиента. Хотя для пользователя сервер выглядит как одна виртуальная машина, на самом деле это может быть набор серверов, разделяющих нагрузку. С другой стороны, несколько серверов могут быть расположены на одной и той же машине. При HTTP/1.1 и заголовке Host они могут даже использовать один и тот же IP-адрес.
Прокси
Прокси-серверы — это серверы, компьютеры или другие машины уровня приложений, которые находятся между клиентским устройством и непосредственно сервером. Они ретранслируют HTTP-запросы и ответы. Обычно для каждого взаимодействия клиент-сервер используется один или несколько прокси.
Веб-разработчики могут использовать прокси для следующих целей:
Как работает HTTP-протокол
Шаг первый: направляем URL в браузер.
Когда мы хотим посмотреть веб-страницу, мы можем использовать разные типы девайсов: ноутбук, стационарный компьютер или телефон. Главное, чтобы на устройстве было приложение браузера. Пользователь либо вводит унифицированный указатель ресурса (URL) в поисковую строку браузера, либо переходит по ссылке с уже открытой страницы:
URL-адрес начинается с HTTP. Это сигнал браузеру, что ему необходимо использовать HTTP-протокол для получения документа по этому адресу.
Шаг второй: браузер ищет нужный IP-адрес.
Обычно IP-адреса содержат удобные и читабельные для человека названия доменов, например «highload.today» или «wikipedia.org». Браузер использует преобразователь DNS для сопоставления домена с IP-адресом.
Шаг третий: браузер посылает HTTP-запрос.
Как только браузер определяет IP-адрес компьютера, на котором размещен запрошенный URL, он отправляет HTTP-запрос.
HTTP-запрос может состоять всего из двух строк текста:
Кроме GET в HTTP-протоколе существует еще два вида запросов. Разберем их отличия:
Шаг четвертый: сервер отправляет HTTP-ответ.
Как только хост-компьютер получает HTTP-запрос, он отправляет клиенту ответ с содержанием и метаданными.
HTTP-ответ начинается аналогично запросу:
Ответ начинается с указания версии HTTP-протокола — 1.1. Следующее число — это код статуса HTTP, в примере это число 200. Этот код значит, что запрашиваемый документ был успешно извлечен.
Следующая часть ответа HTTP — это заголовки. Они предоставляют браузеру дополнительные сведения и помогают ему отображать контент. Эти два заголовка являются общими для большинства запросов:
Content-length показывает длину документа в байтах, что помогает браузеру узнать, сколько времени потребуется для загрузки файла.
Кроме кода 200, в случае если загрузка страницы прошла успешно, есть еще несколько статусов:
Шаг пятый: отображается нужная веб-страница. После выполнения всех шагов, браузер получает всю необходимую информацию, для отображения запрошенного документа.
Основные характеристики HTTP-протокола
Есть три основные особенности, которые делают HTTP простым, но мощным протоколом.
HTTP-протокол — простой, но многофункциональный
HTTP — это основа всего интернета. Он быстрый, легкий и многофункциональный. Подводя итоги, рассмотрим преимущества и особенности HTTP-протокола.
Для закрепления материала можно посмотреть эти два образовательные видео:
🕸 Что такое HTTP и HTTPS?
a.akhunov
Что такое HTTP?
HTTP – широко распространённый протокол передачи данных, изначально предназначенный для гипертекстовых документов, то есть документов, которые могут содержать ссылки, позволяющие организовать переход к другим документам.
HTTP 1.1
Также HTTP часто используется как протокол передачи информации для других протоколов прикладного уровня, таких как SOAP, XML-RPC и WebDAV. В таком случае говорят, что протокол HTTP используется как «транспорт». API многих программных продуктов также подразумевает использование HTTP для передачи данных – сами данные при этом могут иметь любой формат, например, XML или JSON. Как правило, передача данных по протоколу HTTP осуществляется через TCP/IP-соединения. Серверное программное обеспечение при этом обычно использует TCP-порт 80 (и, если порт не указан явно, то обычно клиентское программное обеспечение по умолчанию использует именно 80-й порт для открываемых HTTP-соединений), хотя может использовать и любой другой.
Как отправить HTTP-запрос?
Чтобы сформировать HTTP-запрос, необходимо составить стартовую строку, а также задать по крайней мере один заголовок – это заголовок Host, который является обязательным, и должен присутствовать в каждом запросе. Дело в том, что преобразование доменного имени в IP-адрес осуществляется на стороне клиента, и, соответственно, когда вы открываете TCP-соединение, то удалённый сервер не обладает никакой информацией о том, какой именно адрес использовался для соединения. Однако фактически сетевое соединение во всех случаях открывается с узлом 212.24.43.44, и даже если первоначально при открытии соединения был задан не этот IP-адрес, а какое-либо доменное имя, то сервер об этом никак не информируется — и именно поэтому этот адрес необходимо передать в заголовке Host.
Метод (в англоязычной тематической литературе используется слово method, а также иногда слово verb – «глагол») представляет собой последовательность из любых символов, кроме управляющих и разделителей, и определяет операцию, которую нужно осуществить с указанным ресурсом. Спецификация HTTP 1.1 не ограничивает количество разных методов, которые могут быть использованы, однако в целях соответствия общим стандартам и сохранения совместимости с максимально широким спектром программного обеспечения как правило используются лишь некоторые, наиболее стандартные методы, смысл которых однозначно раскрыт в спецификации протокола.
URI (Uniform Resource Identifier, унифицированный идентификатор ресурса) – путь до конкретного ресурса (например, документа), над которым необходимо осуществить операцию (например, в случае использования метода GET подразумевается получение ресурса). Некоторые запросы могут не относиться к какому-либо ресурсу, в этом случае вместо URI в стартовую строку может быть добавлена звёздочка (астериск, символ «*»). Например, это может быть запрос, который относится к самому веб-серверу, а не какому-либо конкретному ресурсу.
Как прочитать отчет HTTP-запроса?
Версия протокола здесь задаётся так же, как в запросе.
Код состояния (Status Code) – три цифры (первая из которых указывает на класс состояния), которые определяют результат совершения запроса. Например, в случае, если был использован метод GET, и сервер предоставляет ресурс с указанным идентификатором, то такое состояние задаётся с помощью кода 200. Если сервер сообщает о том, что такого ресурса не существует – 404. Если сервер сообщает о том, что не может предоставить доступ к данному ресурсу по причине отсутствия необходимых привилегий у клиента, то используется код 403. Спецификация HTTP 1.1 определяет 40 различных кодов HTTP, а также допускается расширение протокола и использование дополнительных кодов состояний.
Безопасность HTTP-запроса
Сам по себе протокол HTTP не предполагает использование шифрования для передачи информации. Тем не менее, для HTTP есть распространённое расширение, которое реализует упаковку передаваемых данных в криптографический протокол SSL или TLS.
На данный момент HTTPS поддерживается всеми популярными веб-браузерами.
Что такое HTTPS?
HTTPS (Hypertext Transport Protocol Secure) – это протокол, который обеспечивает конфиденциальность обмена данными между сайтом и пользовательским устройством. Безопасность информации обеспечивается за счет использования криптографических протоколов SSL/TLS, имеющих 3 уровня защиты:
В каких случаях необходим сертификат HTTPS?
Обязательное использование защищенного протокола передачи данных требует вся информация, касающаяся проведения платежей в интернете: оплата товаров в интернет-магазинах любым способом (индивидуальная платежная карта, онлайн системы платежей и пр.), оплата услуг через интернет-банкинг, совершение платежей в онлайн сервисах (казино, online-курсы и т.п.) и многое другое.
Если на вашем сайте используется что-либо похожее, то вам стоит серьезно задуматься над переходом на HTTPS. Поэтому далее мы рассмотрим, что для этого необходимо.
Что нужно для перехода сайта на HTTPS?
Работа протокола HTTPS основана на том, что компьютер пользователя и сервер выбирают общий секретный ключ, с помощью которого и происходит шифрование передаваемой информации. Этот ключ уникальный и генерируется для каждого сеанса. Считается, что его подделать невозможно, так как в нем содержится более 100 символов. Во избежание перехвата данных третьим лицом используется цифровой сертификат – это электронный документ, который идентифицирует сервер. Каждый владелец сайта (сервера) для установки защищенного соединения с пользователем должен иметь такой сертификат.
В этом электронном документе указываются данные владельца и подпись. С помощью сертификата вы подтверждаете, что:
Первое, что делает браузер при установке соединения по протоколу HTTPS – проверку подлинности сертификата, и только в случае успешного ответа начинается обмен данными.
Сертификатов существует несколько видов в зависимости от следующих факторов:
Это уже тема для отдельной статьи. Выдают их специализированные центры сертификации на возмездной основе и на определенный период, поэтому важно не забывать продлевать действие сертификата.
Для начинающих пользователей также интересна тема про инструменты, которые необходимы для тестирования своего API – я готов продолжить серию публикаций.
Путь к HTTP/2
От переводчика: перед вами краткий обзор протокола HTTP и его истории — от версии 0.9 к версии 2.
HTTP — протокол, пронизывающий веб. Знать его обязан каждый веб-разработчик. Понимание работы HTTP поможет вам делать более качественные веб-приложения.
В этой статье мы обсудим, что такое HTTP, и как он стал именно таким, каким мы видим его сегодня.
Что такое HTTP?
Итак, рассмотрим для начала, что же такое HTTP? HTTP — протокол прикладного уровня, реализованный поверх протокола TCP/IP. HTTP определяет, как взаимодействуют между собой клиент и сервер, как запрашивается и передаётся контент по интернету. Под протоколом прикладного уровня я понимаю, что это лишь абстракция, стандартизующая, как узлы сети (клиенты и серверы) взаимодействуют друг с другом. Сам HTTP зависит от протокола TCP/IP, позволяющего посылать и отправлять запросы между клиентом и сервером. По умолчанию используется 80 порт TCP, но могут использоваться и другие. HTTPS, например, использует 443 порт.
HTTP/0.9 — первый стандарт (1991)
Первой задокументированной версией HTTP стал HTTP/0.9, выпущенный в 1991 году. Это был самый простой протокол на свете, c одним-единственным методом — GET. Если клиенту нужно было получить какую-либо страницу на сервере, он делал запрос:
А от сервера приходил примерно такой ответ:
Вот и всё. Сервер получает запрос, посылает HTML в ответ, и как только весь контент будет передан, закрывает соединение. В HTTP/0.9 нет никаких заголовков, единственный метод — GET, а ответ приходит в HTML.
Итак, HTTP/0.9 стал первым шагом во всей дальнейшей истории.
HTTP/1.0 — 1996
В отличие от HTTP/0.9, спроектированного только для HTML-ответов, HTTP/1.0 справляется и с другими форматами: изображения, видео, текст и другие типы контента. В него добавлены новые методы (такие, как POST и HEAD). Изменился формат запросов/ответов. К запросам и ответам добавились HTTP-заголовки. Добавлены коды состояний, чтобы различать разные ответы сервера. Введена поддержка кодировок. Добавлены составные типы данных (multi-part types), авторизация, кэширование, различные кодировки контента и ещё многое другое.
Вот так выглядели простые запрос и ответ по протоколу HTTP/1.0:
Помимо запроса клиент посылал персональную информацию, требуемый тип ответа и т.д. В HTTP/0.9 клиент не послал бы такую информацию, поскольку заголовков попросту не существовало.
Пример ответа на подобный запрос:
В начале ответа стоит HTTP/1.0 (HTTP и номер версии), затем код состояния — 200, затем — описание кода состояния.
В новой версии заголовки запросов и ответов были закодированы в ASCII (HTTP/0.9 весь был закодирован в ASCII), а вот тело ответа могло быть любого контентного типа — изображением, видео, HTML, обычным текстом и т. п. Теперь сервер мог послать любой тип контента клиенту, поэтому словосочетание «Hyper Text» в аббревиатуре HTTP стало искажением. HMTP, или Hypermedia Transfer Protocol, пожалуй, стало бы более уместным названием, но все к тому времени уже привыкли к HTTP.
Один из главных недостатков HTTP/1.0 — то, что вы не можете послать несколько запросов во время одного соединения. Если клиенту надо что-либо получить от сервера, ему нужно открыть новое TCP-соединение, и, как только запрос будет выполнен, это соединение закроется. Для каждого следующего запроса нужно создавать новое соединение.
Почему это плохо? Давайте предположим, что вы открываете страницу, содержащую 10 изображений, 5 файлов стилей и 5 JavaScript файлов. В общей сложности при запросе к этой странице вам нужно получить 20 ресурсов — а это значит, что серверу придётся создать 20 отдельных соединений. Такое число соединений значительно сказывается на производительности, поскольку каждое новое TCP-соединение требует «тройного рукопожатия», за которым следует медленный старт.
Тройное рукопожатие
«Тройное рукопожатие» — это обмен последовательностью пакетов между клиентом и сервером, позволяющий установить TCP-соединение для начала передачи данных.
Примечание переводчика: SYN — синхронизация номеров последовательности, (англ. Synchronize sequence numbers). ACK — поле «Номер подтверждения» задействовано (англ. Acknowledgement field is significant).
Только после завершения тройного рукопожатия начинается передача данных между клиентом и сервером. Стоит заметить, что клиент может посылать данные сразу же после отправки последнего ACK-пакета, однако сервер всё равно ожидает ACK-пакет, чтобы выполнить запрос.
Тем не менее, некоторые реализации HTTP/1.0 старались преодолеть эту проблему, добавив новый заголовок Connection: keep-alive, который говорил бы серверу «Эй, дружище, не закрывай это соединение, оно нам ещё пригодится». Однако эта возможность не была широко распространена, поэтому проблема оставалась актуальна.
Помимо того, что HTTP — протокол без установления соединения, в нём также не предусмотрена поддержка состояний. Иными словами, сервер не хранит информации о клиенте, поэтому каждому запросу приходится включать в себя всю необходимую серверу информацию, без учёта прошлых запросов. И это только подливает масла в огонь: помимо огромного числа соединений, которые открывает клиент, он также посылает повторяющиеся данные, излишне перегружая сеть.
HTTP/1.1 – 1999
Прошло 3 года со времён HTTP/1.0, и в 1999 вышла новая версия протокола — HTTP/1.1, включающая множество улучшений:
Замечу, что для того, чтобы ощутить пользу постоянных соединений или потоковой передачи данных, заголовок Content-Length должен быть доступен в ответе. Это позволит клиенту понять, когда завершится передача и можно будет отправить следующий запрос (в случае обычных последовательных запросов) или начинать ожидание следующего ответа (в случае потоковой передачи).
Но в таком подходе по-прежнему оставались проблемы. Что, если данные динамичны, и сервер не может перед отправкой узнать длину контента? Получается, в этом случае мы не можем пользоваться постоянными соединениями? Чтобы разрешить эту задачу, HTTP/1.1 ввёл сhunked encoding — механизм разбиения информации на небольшие части (chunks) и их передачу.
Особенности HTTP/1.1 — отдельная тема для разговора, и в этой статье я не буду задерживаться на ней надолго. Вы можете найти огромное количество материалов по этой теме. Рекомендую к прочтению Key differences between HTTP/1.0 and HTTP/1.1 и, для супергероев, ссылку на RFC.
HTTP/1.1 появился в 1999 и пробыл стандартом долгие годы. И, хотя он и был намного лучше своего предшественника, со временем начал устаревать. Веб постоянно растёт и меняется, и с каждым днём загрузка веб-страниц требует всё больших ресурсов. Сегодня стандартной веб-странице приходится открывать более 30 соединений. Вы скажете: «Но… ведь… в HTTP/1.1 существуют постоянные соединения…». Однако, дело в том, что HTTP/1.1 поддерживает лишь одно внешнее соединение в любой момент времени. HTTP/1.1 пытался исправить это потоковой передачей данных, однако это не решало задачу полностью. Возникала проблема блокировки начала очереди (head-of-line blocking) — когда медленный или большой запрос блокировал все последующие (ведь они выполнялись в порядке очереди). Чтобы преодолеть эти недостатки HTTP/1.1, разработчики изобретали обходные пути. Примером тому служат спрайты, закодированные в CSS изображения, конкатенация CSS и JS файлов, доменное шардирование и другие.
SPDY — 2009
Google пошёл дальше и стал экспериментировать с альтернативными протоколами, поставив цель сделать веб быстрее и улучшить уровень безопасности за счёт уменьшения времени задержек веб-страниц. В 2009 году они представили протокол SPDY.
Казалось, что если мы будем продолжать увеличивать пропускную способность сети, увеличится её производительность. Однако выяснилось, что с определенного момента рост пропускной способности перестаёт влиять на производительность. С другой стороны, если оперировать величиной задержки, то есть уменьшать время отклика, прирост производительности будет постоянным. В этом и заключалась основная идея SPDY.
Следует пояснить, в чём разница: время задержки — величина, показывающая, сколько времени займёт передача данных от отправителя к получателю (в миллисекундах), а пропускная способность — количество данных, переданных в секунду (бит в секунду).
SPDY включал в себя мультиплексирование, сжатие, приоритизацию, безопасность и т.д… Я не хочу погружаться в рассказ про SPDY, поскольку в следующем разделе мы разберём типичные свойства HTTP/2, а HTTP/2 многое перенял от SPDY.
SPDY не старался заменить собой HTTP. Он был переходным уровнем над HTTP, существовавшим на прикладном уровне, и изменял запрос перед его отправкой по проводам. Он начал становиться стандартом дефакто, и большинство браузеров стали его поддерживать.
В 2015 в Google решили, что не должно быть двух конкурирующих стандартов, и объединили SPDY с HTTP, дав начало HTTP/2.
HTTP/2 — 2015
Думаю, вы уже убедились, что нам нужна новая версия HTTP-протокола. HTTP/2 разрабатывался для транспортировки контента с низким временем задержки. Главные отличия от HTTP/1.1:
1. Бинарный протокол
HTTP/2 пытается решить проблему выросшей задержки, существовавшую в HTTP/1.x, переходом на бинарный формат. Бинарные сообщения быстрее разбираются автоматически, но, в отличие от HTTP/1.x, не удобны для чтения человеком. Основные составляющие HTTP/2 — фреймы (Frames) и потоки (Streams).
Фреймы и потоки.
Сейчас HTTP-сообщения состоят из одного или более фреймов. Для метаданных используется фрейм HEADERS, для основных данных — фрейм DATA, и ещё существуют другие типы фреймов (RST_STREAM, SETTINGS, PRIORITY и т.д.), с которыми можно ознакомиться в спецификации HTTP/2.
Каждый запрос и ответ HTTP/2 получает уникальный идентификатор потока и разделяется на фреймы. Фреймы представляют собой просто бинарные части данных. Коллекция фреймов называется потоком (Stream). Каждый фрейм содержит идентификатор потока, показывающий, к какому потоку он принадлежит, а также каждый фрейм содержит общий заголовок. Также, помимо того, что идентификатор потока уникален, стоит упомянуть, что каждый клиентский запрос использует нечётные id, а ответ от сервера — чётные.
Помимо HEADERS и DATA, стоит упомянуть ещё и RST_STREAM — специальный тип фреймов, использующийся для прерывания потоков. Клиент может послать этот фрейм серверу, сигнализируя, что данный поток ему больше не нужен. В HTTP/1.1 единственным способом заставить сервер перестать посылать ответы было закрытие соединения, что увеличивало время задержки, ведь нужно было открыть новое соединение для любых дальнейших запросов. А в HTTP/2 клиент может отправить RST_STREAM и перестать получать определённый поток. При этом соединение останется открытым, что позволяет работать остальным потокам.
2. Мультиплексирование
Поскольку HTTP/2 является бинарным протоколом, использующим для запросов и ответов фреймы и потоки, как было упомянуто выше, все потоки посылаются в едином TCP-соединении, без создания дополнительных. Сервер, в свою очередь, отвечает аналогичным асинхронным образом. Это значит, что ответ не имеет порядка, и клиент использует идентификатор потока, чтобы понять, к какому потоку принадлежит тот или иной пакет. Это решает проблему блокировки начала очереди (head-of-line blocking) — клиенту не придётся простаивать, ожидая обработки длинного запроса, ведь во время ожидания могут обрабатываться остальные запросы.
3. Сжатие заголовков методом HPACK
Это было частью отдельного RFC, специально нацеленного на оптимизацию отправляемых заголовков. В основе лежало то, что если мы постоянного обращаемся к серверу из одного и того же клиента, то в заголовках раз за разом посылается огромное количество повторяющихся данных. А иногда к этому добавляются ещё и куки, раздувающие размер заголовков, что снижает пропускную способность сети и увеличивает время задержки. Чтобы решить эту проблему, в HTTP/2 появилось сжатие заголовков.
В отличие от запросов и ответов, заголовки не сжимаются в gzip или подобные форматы. Для сжатия используется иной механизм — литеральные значения сжимаются по алгоритму Хаффмана, а клиент и сервер поддерживают единую таблицу заголовков. Повторяющиеся заголовки (например, user agent) опускаются при повторных запросах и ссылаются на их позицию в таблице заголовков.
Раз уж зашла речь о заголовках, позвольте добавить, что они не отличаются от HTTP/1.1, за исключением того, что добавилось несколько псевдозаголовков, таких как :method, :scheme, :host, :path и прочие.
4. Server Push
Server push — ещё одна потрясающая особенность HTTP/2. Сервер, зная, что клиент собирается запросить определённый ресурс, может отправить его, не дожидаясь запроса. Вот, например, когда это будет полезно: браузер загружает веб-страницу, он разбирает её и находит, какой ещё контент необходимо загрузить с сервера, а затем отправляет соответствующие запросы.
Server push позволяет серверу снизить количество дополнительных запросов. Если он знает, что клиент собирается запросить данные, он сразу их посылает. Сервер отправляет специальный фрейм PUSH_PROMISE, говоря клиенту: «Эй, дружище, сейчас я тебе отправлю вот этот ресурс. И не надо лишний раз беспокоить.» Фрейм PUSH_PROMISE связан с потоком, который вызвал отправку push-а, и содержит идентификатор потока, по которому сервер отправит нужный ресурс.
5. Приоритизация запросов
Клиент может назначить приоритет потоку, добавив информацию о приоритете во фрейм HEADERS, которым открывается поток. В любое другое время клиент может отправить фрейм PRIORITY, меняющий приоритет потока.
Если никакой информации о приоритете не указанно, сервер обрабатывает запрос асинхронно, т.е. без какого-либо порядка. Если приоритет назначен, то, на основе информации о приоритетах, сервер принимает решение, сколько ресурсов выделяется для обработки того или иного потока.
6. Безопасность
Насчёт того, должна ли безопасность (передача поверх протокола TLS) быть обязательной для HTTP/2 или нет, развилась обширная дискуссия. В конце концов было решено не делать это обязательным. Однако большинство производителей браузеров заявило, что они будут поддерживать HTTP/2 только тогда, когда он будет использоваться поверх TLS. Таким образом, хотя спецификация не требует шифрования для HTTP/2, оно всё равно станет обязательным по умолчанию. При этом HTTP/2, реализованный поверх TLS, накладывает некоторые ограничения: необходим TLS версии 1.2 или выше, есть ограничения на минимальный размер ключей, требуются эфемерные ключи и так далее.
Заключение
HTTP/2 уже здесь, и уже обошёл SPDY в поддержке, которая постепенно растёт. Для всех, кому интересно узнать больше, вот ссылка на спецификацию и ссылка на демо, показывающее преимущества скорости HTTP/2.
HTTP/2 может многое предложить для увеличения производительности, и, похоже, самое время начать его использовать.
Перевод: Андрей Алексеев, редактура: Анатолий Тутов, Jabher, Игорь Пелехань, Наталья Ёркина, Тимофей Маринин, Чайка Чурсина, Яна Крикливая.