Что такое http и как работают http запросы

Глава 1. Введение в протоколы HTTP и HTTPS

Протокол HTTP предназначен для передачи содержимого в Интернете. HTTP — это простой протокол, который использует для передачи содержимого надежные службы протокола TCP. Благодаря этому HTTP считается очень надежным протоколом для обмена содержимым. Также HTTP является одним из самых часто используемых протоколов приложений. Все операции в Интернете используют протокол HTTP.

HTTPS — это безопасная версия протокола HTTP, которая реализует протокол HTTP с использованием протокола TLS для защиты базового TCP-подключения. За исключением дополнительной конфигурации, необходимой для настройки TLS, использование протокола HTTPS по сути не отличается от протокола HTTP.

Общие требования для протокола HTTP

Для правильной работы пакета NetX Web HTTP требуется установить NetX Duo 5.10 или более поздней версии. Кроме того, должен быть создан экземпляр IP, для которого включено использование протокола TCP. Для поддержки HTTPS также необходимо установить NetX Secure TLS 5.11 или более поздней версии (см. следующий раздел). Этот процесс показан в демонстрационном файле в разделе «Пример небольшой системы» главы 2.

Для HTTP-клиента из пакета NetX Web HTTP больше нет дополнительных требований.

Но HTTP-сервер из пакета NetX Web HTTP определяет еще несколько дополнительных требований. Во-первых, ему требуется полный доступ к известному TCP-порту 80 для обработки всех запросов HTTP-клиента (приложение может указать любой другой допустимый порт TCP). HTTP-сервер также разработан для работы с внедренной файловой системой FileX. Если система FileX недоступна, пользователь может перенести используемые разделы FileX в собственную среду. Этот процесс рассматривается в последующих разделах этого руководства.

Требования для протокола HTTPS

Для правильной работы протокола HTTPS на основе пакета NetX Web HTTP требуется, чтобы были установлены NetX Duo 5.10 или более поздней версии и NetX Secure TLS 5.11 или более поздней версии. Кроме того, должен быть создан экземпляр IP, для которого включено использование протокола TCP для работы с протоколом TLS. Сеанс TLS необходимо будет инициализировать с помощью соответствующих криптографических процедур и сертификата доверенного ЦС. Кроме того, потребуется выделить пространство для сертификатов, которые будут предоставляться удаленными узлами сервера во время подтверждения TLS. Этот процесс показан в демонстрационном файле в разделе «Пример небольшой системы HTTPS» главы 2.

Для HTTPS-клиента из пакета NetX Web HTTP больше нет дополнительных требований.

Но HTTPS-сервер из пакета NetX Web HTTP определяет еще несколько дополнительных требований. Во-первых, ему требуется полный доступ к известному TCP-порту 443 для обработки всех HTTPS-запросов клиента (как и в случае протокола HTTP без шифрования, приложение может изменить этот порт). Во-вторых, потребуется инициализировать сеанс TLS с помощью соответствующих криптографических процедур и сертификата удостоверения сервера (или общего ключа). HTTPS-сервер также разработан для работы с внедренной файловой системой FileX. Если система FileX недоступна, пользователь может перенести используемые разделы FileX в собственную среду. Использование FileX рассматривается в последующих разделах этого руководства.

Дополнительные сведения о параметрах конфигурации TLS см. в документации по NetX Secure.

Если не указано иное, все функции HTTP, описанные в этом документе, также относятся к протоколу HTTPS.

Ограничения протоколов HTTP и HTTPS

NetX Web HTTP реализует стандарт HTTP 1.1. Но существует ряд ограничений, которые приведены ниже:

URL-адрес HTTP (имена ресурсов)

Протокол HTTP разработан для передачи содержимого через Интернет. Запрашиваемое содержимое определяется URL-адресом. Это основной компонент каждого HTTP-запроса. URL-адреса всегда начинаются с символа «/» и обычно обозначают определенные файлы на HTTP-сервере. Ниже приведены типичные расширения файлов, используемые с протоколом HTTP:

Запросы HTTP-клиента

Эти команды ASCII обычно генерируются веб-браузерами и службами клиента NetX Web HTTP для выполнения операций HTTP на HTTP-сервере.

Ответы HTTP-сервера

Например, в ответ на успешно выполненный запрос PUT клиента для файла test.htm будет возвращено сообщение «HTTP/1.1 200 OK».

Взаимодействие по протоколу HTTP

HTTP-запрос GET

HTTP-запрос PUT

Проверка подлинности HTTP

Проверка подлинности HTTP является необязательной, то есть требуется не для всех веб-запросов. Существуют две разновидности проверки подлинности: обычная и на основе дайджеста. Обычная проверка подлинности по имени и паролю работает точно так же, как во многих других протоколах. При обычной проверке подлинности HTTP имя и пароли объединяются в одну строку и кодируются в формате Base64. Основным недостатком обычной проверки подлинности является то, что имя и пароль передаются в запросе в открытом виде. Это позволяет достаточно легко похищать такие имена и пароли. Дайджест-проверка подлинности устраняет эту проблему, так как при ней имя и пароль не передаются вместе с запросом. Вместо этого применяется специальный механизм вычисления 128-разрядного дайджеста по имени пользователя, паролю и некоторым другим параметрам. Сервер NetX Web HTTP поддерживает стандартный алгоритм дайджестов MD5.

Когда нужна проверка подлинности? HTTP-сервер самостоятельно решает, требуется ли проверка подлинности для запрошенного ресурса. Если проверка подлинности нужна, но в запросе от клиента нет необходимых данных проверки подлинности, то клиенту возвращается ответ «HTTP/1.1 401 Unauthorized» с указанием требуемого типа проверки подлинности. Ожидается, что клиент в этом случае сформирует новый запрос с правильными данными проверки подлинности.

При использовании протокола HTTPS HTTPS-сервер по-прежнему может использовать проверку подлинности HTTP. В этом случае для шифрования всего трафика HTTP используется протокол TLS, поэтому использование обычной проверки подлинности HTTP не обуславливает угрозу безопасности. Дайджест-проверка подлинности также допускается, но не обеспечивает значительного повышения безопасности по сравнению с обычной проверкой подлинности на основе протокола TLS.

Обратный вызов проверки подлинности HTTP

Как уже упоминалось, проверка подлинности HTTP является необязательной, то есть используется не при любой передаче данных через Интернет. Кроме того, проверка подлинности обычно зависит от конкретного ресурса. Один и тот же сервер может требовать проверку подлинности для доступа к некоторым ресурсам и не требовать для доступа к другим. Пакет HTTP-сервера Неткс позволяет приложению указать (с помощью вызова nx_web_http_server_create ) подпрограммы обратного вызова проверки подлинности, которая вызывается в начале обработки каждого HTTP-запроса клиента.

Эта подпрограмма обратного вызова предоставляет серверу NetX Web HTTP строковые значения имени пользователя, пароля и области, которые связаны с конкретным ресурсом, и возвращает необходимый тип проверки подлинности. Если для ресурса не требуется проверка подлинности, обратный вызов проверки подлинности должен возвращать значение NX_WEB_HTTP_DONT_AUTHENTICATE. Если для указанного ресурса требуется обычная проверка подлинности, эта подпрограмма должна возвращать NX_WEB_HTTP_BASIC_AUTHENTICATE. Наконец, если требуется дайджест-проверка подлинности MD5, подпрограмма обратного вызова должна возвращать NX_WEB_HTTP_DIGEST_AUTHENTICATE. Если ни для одного из ресурсов, предоставляемого HTTP-сервером, не требуется проверка подлинности, обратный вызов можно не указывать, передав в вызов для создания HTTP-сервера пустой указатель.

Формат подпрограммы обратного вызова проверки подлинности для приложения достаточно прост и определен ниже.

Входные параметры определяются следующим образом.

Возвращаемое значение подпрограммы проверки подлинности указывает, требуется ли проверка подлинности. Указатели на имя, пароль и область определения приложения не используются, если подпрограмма обратного вызова проверки подлинности возвращает значение NX_WEB_HTTP_DONT_AUTHENTICATE. В противном случае разработчик HTTP-сервера должен убедиться, что значения NX_WEB_HTTP_MAX_USERNAME и NX_WEB_HTTP_MAX_PASSWORD, определенные в файле nx_web_http_server.h, достаточно велики для размещения имени пользователя и пароля, указанных в обратном вызове проверки подлинности. По умолчанию оба значения равны 20 символам.

Обратный вызов для недопустимых значений имени пользователя или пароля HTTP

Чтобы зарегистрировать обратный вызов на HTTP-сервере, используется приведенная ниже служба, которая определена на сервере NetX Web HTTP.

Определены следующие типы запроса:

Обратный вызов для добавления заголовка даты GMT в HTTP

Этот необязательный обратный вызов на сервере NetX Web HTTP позволяет добавлять в ответные сообщения заголовок со значением даты. Он вызывается, когда HTTP-сервер отвечает на запрос PUT или GET.

Чтобы зарегистрировать обратный вызов для добавления даты GMT на HTTP-сервере, определена приведенная ниже служба.

Тип данных NX_WEB_HTTP_SERVER_DATE определяется следующим образом:

Обратный вызов для получения сведений из кэша HTTP

HTTP-сервер поддерживает обратный вызов для запроса ограничений по возрасту и датам для определенного ресурса в приложении HTTP. Эти сведения позволяют определить, будет ли HTTP-сервер отправлять всю страницу клиенту по запросу GET. Если в запросе клиента нет строки «if modified since» (если изменено позднее) или это значение не совпадает с датой «last modified» (последнее изменение), полученной в обратном вызове запроса сведений из кэша, то клиенту отправляется вся страница.

Чтобы зарегистрировать обратный вызов на HTTP-сервере, определена приведенная ниже служба.

Поддержка поблочного кодирования HTTP

Если определить общую длину сообщения HTTP перед отправкой невозможно, то можно использовать функцию поблочного кодирования для отправки сообщений в виде серий блоков без поля заголовка Content-Length. Эта функция поддерживается во всех сообщениях HTTP-запросов и HTTP-ответов. Эта функция поддерживается на стороне получателя, а заголовок блока автоматически обрабатывается внутренней логикой. На стороне отправителя клиентом и сервером должны вызываться интерфейсы API nx_web_http_client_request_chunked_set и nx_web_http_server_response_chunked_set соответственно.

Дополнительные сведения об использовании этих служб можно найти в главе 3 «Описание служб HTTP».

Поддержка многокомпонентных сообщений HTTP

Протокол MIME изначально предназначался для взаимодействия с протоколом SMTP, но теперь он используется и с протоколом HTTP. Протокол MIME позволяет включать в одно сообщение смешанные типы данных (например, image/jpg и text/plain). Сервер NetX Web HTTP включает в себя службы для определения типа содержимого в полученных от клиента сообщениях HTTP, содержащих данные MIME. Чтобы включить поддержку многокомпонентных сообщений HTTP и использовать эти службы, необходимо определить параметр конфигурации NX_WEB_HTTP_MULTIPART_ENABLE.

Дополнительные сведения об использовании этих служб можно найти в главе 3 «Описание служб HTTP».

Поддержка многопоточности HTTP

Службы клиента NetX Web HTTP можно вызывать из нескольких потоков одновременно. Но запросы на чтение или запись для конкретного экземпляра HTTP-клиента должны выполняться последовательно из одного потока.

При использовании протокола HTTPS службы клиента NetX Web HTTP могут вызываться из нескольких потоков, но ввиду повышенной сложности базовых функций TLS каждый поток должен использовать отдельный, независимый экземпляр HTTP-клиента (структуру управления NX_WEB_HTTP_CLIENT).

Соответствие протокола HTTP положениям документов RFC

NetX Web HTTP соответствует требованиям документов RFC 1945 «Hypertext Transfer Protocol/1.0» (Протокол передачи гипертекста, версия 1.0), RFC 2616 «Hypertext Transfer Protocol/1.1» (Протокол передачи гипертекста, версия 1.1), RFC 2581 «TCP Congestion Control» (Контроль перегрузки TCP), RFC 1122 «Requirements for Internet Hosts» (Требования к Интернет-узлам) и других связанных с ними документов RFC.

Реализация протокола HTTPS в NetX Web HTTP соответствует требованиям документа RFC 2818 «HTTP over TLS» (Передача данных HTTP по протоколу TLS).

Источник

Протокол HTTP¶

HTTP (HyperText Transfer Protocol — протокол передачи гипертекста) — символьно-ориентированный клиент-серверный протокол прикладного уровня без сохранения состояния, используемый сервисом World Wide Web.

Основным объектом манипуляции в HTTP является ресурс, на который указывает URI (Uniform Resource Identifier – уникальный идентификатор ресурса) в запросе клиента. Основными ресурсами являются хранящиеся на сервере файлы, но ими могут быть и другие логические (напр. каталог на сервере) или абстрактные объекты (напр. ISBN). Протокол HTTP позволяет указать способ представления (кодирования) одного и того же ресурса по различным параметрам: mime-типу, языку и т. д. Благодаря этой возможности клиент и веб-сервер могут обмениваться двоичными данными, хотя данный протокол является текстовым.

Структура протокола¶

Структура протокола определяет, что каждое HTTP-сообщение состоит из трёх частей (рис. 1), которые передаются в следующем порядке:

Что такое http и как работают http запросы. Смотреть фото Что такое http и как работают http запросы. Смотреть картинку Что такое http и как работают http запросы. Картинка про Что такое http и как работают http запросы. Фото Что такое http и как работают http запросы

Рис. 1. Структура протокола HTTP (дамп пакета, полученный сниффером Wireshark)

Стартовая строка HTTP¶

Cтартовая строка является обязательным элементом, так как указывает на тип запроса/ответа, заголовки и тело сообщения могут отсутствовать.

Стартовые строки различаются для запроса и ответа. Строка запроса выглядит так:

Стартовая строка ответа сервера имеет следующий формат:

Например, на предыдущий наш запрос клиентом данной страницы сервер ответил строкой:

Методы протокола¶

Метод HTTP (англ. HTTP Method) — последовательность из любых символов, кроме управляющих и разделителей, указывающая на основную операцию над ресурсом. Обычно метод представляет собой короткое английское слово, записанное заглавными буквами (Табл. 1). Названия метода чувствительны к регистру.

Таблица 1. Методы протокола HTTP

Используется для определения возможностей веб-сервера или параметров соединения для конкретного ресурса. Предполагается, что запрос клиента может содержать тело сообщения для указания интересующих его сведений. Формат тела и порядок работы с ним в настоящий момент не определён. Сервер пока должен его игнорировать. Аналогичная ситуация и с телом в ответе сервера.

Для того чтобы узнать возможности всего сервера, клиент должен указать в URI звёздочку — «*». Запросы «OPTIONS * HTTP/1.1» могут также применяться для проверки работоспособности сервера (аналогично «пингованию») и тестирования на предмет поддержки сервером протокола HTTP версии 1.1.

Результат выполнения этого метода не кэшируется.

Используется для запроса содержимого указанного ресурса. С помощью метода GET можно также начать какой-либо процесс. В этом случае в тело ответного сообщения следует включить информацию о ходе выполнения процесса. Клиент может передавать параметры выполнения запроса в URI целевого ресурса после символа «?»: GET /path/resource?param1=value1¶m2=value2 HTTP/1.1

Согласно стандарту HTTP, запросы типа GET считаются идемпотентными[4] — многократное повторение одного и того же запроса GET должно приводить к одинаковым результатам (при условии, что сам ресурс не изменился за время между запросами). Это позволяет кэшировать ответы на запросы GET.

Кроме обычного метода GET, различают ещё условный GET и частичный GET. Условные запросы GET содержат заголовки If-Modified-Since, If-Match, If-Range и подобные. Частичные GET содержат в запросе Range. Порядок выполнения подобных запросов определён стандартами отдельно.

Аналогичен методу GET, за исключением того, что в ответе сервера отсутствует тело. Запрос HEAD обычно применяется для извлечения метаданных, проверки наличия ресурса (валидация URL) и чтобы узнать, не изменился ли он с момента последнего обращения.

Заголовки ответа могут кэшироваться. При несовпадении метаданных ресурса с соответствующей информацией в кэше копия ресурса помечается как устаревшая.

Применяется для передачи пользовательских данных заданному ресурсу. Например, в блогах посетители обычно могут вводить свои комментарии к записям в HTML-форму, после чего они передаются серверу методом POST и он помещает их на страницу. При этом передаваемые данные (в примере с блогами — текст комментария) включаются в тело запроса. Аналогично с помощью метода POST обычно загружаются файлы.

В отличие от метода GET, метод POST не считается идемпотентным[4], то есть многократное повторение одних и тех же запросов POST может возвращать разные результаты (например, после каждой отправки комментария будет появляться одна копия этого комментария).

При результатах выполнения 200 (Ok) и 204 (No Content) в тело ответа следует включить сообщение об итоге выполнения запроса. Если был создан ресурс, то серверу следует вернуть ответ 201 (Created) с указанием URI нового ресурса в заголовке Location.

Сообщение ответа сервера на выполнение метода POST не кэшируется.

Применяется для загрузки содержимого запроса на указанный в запросе URI. Если по заданному URI не существовало ресурса, то сервер создаёт его и возвращает статус 201 (Created). Если же был изменён ресурс, то сервер возвращает 200 (Ok) или 204 (No Content). Сервер не должен игнорировать некорректные заголовки Content-* передаваемые клиентом вместе с сообщением. Если какой-то из этих заголовков не может быть распознан или не допустим при текущих условиях, то необходимо вернуть код ошибки 501 (Not Implemented).

Фундаментальное различие методов POST и PUT заключается в понимании предназначений URI ресурсов. Метод POST предполагает, что по указанному URI будет производиться обработка передаваемого клиентом содержимого. Используя PUT, клиент предполагает, что загружаемое содержимое соответствуют находящемуся по данному URI ресурсу.

Сообщения ответов сервера на метод PUT не кэшируются.

Аналогично PUT, но применяется только к фрагменту ресурса.

Удаляет указанный ресурс.

Возвращает полученный запрос так, что клиент может увидеть, что промежуточные сервера добавляют или изменяют в запросе.

Устанавливает связь указанного ресурса с другими.

Убирает связь указанного ресурса с другими.

Каждый сервер обязан поддерживать как минимум методы GET и HEAD. Если сервер не распознал указанный клиентом метод, то он должен вернуть статус 501 (Not Implemented). Если серверу метод известен, но он не применим к конкретному ресурсу, то возвращается сообщение с кодом 405 (Method Not Allowed). В обоих случаях серверу следует включить в сообщение ответа заголовок Allow со списком поддерживаемых методов.

Наиболее востребованными являются методы GET и POST — на человеко-ориентированных ресурсах, POST — роботами поисковых машин и оффлайн-браузерами.

Прокси-сервер

Коды состояния¶

Код состояния информирует клиента о результатах выполнения запроса и определяет его дальнейшее поведение. Набор кодов состояния является стандартом, и все они описаны в соответствующих документах RFC.

Что такое http и как работают http запросы. Смотреть фото Что такое http и как работают http запросы. Смотреть картинку Что такое http и как работают http запросы. Картинка про Что такое http и как работают http запросы. Фото Что такое http и как работают http запросы

Рис. 1. Структура кода состояния HTTP

Введение новых кодов должно производиться только после согласования с IETF. Клиент может не знать все коды состояния, но он обязан отреагировать в соответствии с классом кода.

Применяемые в настоящее время классы кодов состояния и некоторые примеры ответов сервера приведены в табл. 2.

Таблица 2. Коды состояния протокола HTTP

МетодКраткое описание
OPTIONS

В этот класс выделены коды, информирующие о процессе передачи. В HTTP/1.0 сообщения с такими кодами должны игнорироваться. В HTTP/1.1 клиент должен быть готов принять этот класс сообщений как обычный ответ, но ничего отправлять серверу не нужно. Сами сообщения от сервера содержат только стартовую строку ответа и, если требуется, несколько специфичных для ответа полей заголовка. Прокси-сервера подобные сообщения должны отправлять дальше от сервера к клиенту.

Примеры ответов сервера:

Сообщения данного класса информируют о случаях успешного принятия и обработки запроса клиента. В зависимости от статуса сервер может ещё передать заголовки и тело сообщения.

Примеры ответов сервера:

Коды статуса класса 3xx сообщают клиенту, что для успешного выполнения операции нужно произвести следующий запрос к другому URI. В большинстве случаев новый адрес указывается в поле Location заголовка. Клиент в этом случае должен, как правило, произвести автоматический переход (жарг. «редирект»).

Обратите внимание, что при обращении к следующему ресурсу можно получить ответ из этого же класса кодов. Может получиться даже длинная цепочка из перенаправлений, которые, если будут производиться автоматически, создадут чрезмерную нагрузку на оборудование. Поэтому разработчики протокола HTTP настоятельно рекомендуют после второго подряд подобного ответа обязательно запрашивать подтверждение на перенаправление у пользователя (раньше рекомендовалось после 5-го). За этим следить обязан клиент, так как текущий сервер может перенаправить клиента на ресурс другого сервера. Клиент также должен предотвратить попадание в круговые перенаправления.

Примеры ответов сервера:

Класс кодов 4xx предназначен для указания ошибок со стороны клиента. При использовании всех методов, кроме HEAD, сервер должен вернуть в теле сообщения гипертекстовое пояснение для пользователя.

Примеры ответов сервера:

Коды 5xx выделены под случаи неудачного выполнения операции по вине сервера. Для всех ситуаций, кроме использования метода HEAD, сервер должен включать в тело сообщения объяснение, которое клиент отобразит пользователю.

Примеры ответов сервера:

Заголовки HTTP¶

Заголовок HTTP (HTTP Header) — это строка в HTTP-сообщении, содержащая разделённую двоеточием пару вида «параметр-значение». Формат заголовка соответствует общему формату заголовков текстовых сетевых сообщений ARPA (RFC 822). Как правило, браузер и веб-сервер включают в сообщения более чем по одному заголовку. Заголовки должны отправляться раньше тела сообщения и отделяться от него хотя бы одной пустой строкой (CRLF).

Название параметра должно состоять минимум из одного печатного символа (ASCII-коды от 33 до 126). После названия сразу должен следовать символ двоеточия. Значение может содержать любые символы ASCII, кроме перевода строки (CR, код 10) и возврата каретки (LF, код 13).

Пробельные символы в начале и конце значения обрезаются. Последовательность нескольких пробельных символов внутри значения может восприниматься как один пробел. Регистр символов в названии и значении не имеет значения (если иное не предусмотрено форматом поля).

Пример заголовков ответа сервера:

Все HTTP-заголовки разделяются на четыре основных группы:

Сущности (entity, в переводах также встречается название “объект”) — это полезная информация, передаваемая в запросе или ответе. Сущность состоит из метаинформации (заголовки) и непосредственно содержания (тело сообщения).

В отдельный класс заголовки сущности выделены, чтобы не путать их с заголовками запроса или заголовками ответа при передаче множественного содержимого (multipart/ * ). Заголовки запроса и ответа, как и основные заголовки, описывают всё сообщение в целом и размещаются только в начальном блоке заголовков, в то время как заголовки сущности характеризуют содержимое каждой части в отдельности, располагаясь непосредственно перед её телом.

В таблице 3 приведено краткое описание некоторых HTTP-заголовков.

Таблица 3. Заголовки HTTP

В листинге 1 приведен фрагмент дампа заголовков при подключении к серверу http://example.org

Листинг 1. Заголовки HTTP

Тело сообщения¶

Тело HTTP сообщения (message-body), если оно присутствует, используется для передачи сущности, связанной с запросом или ответом. Тело сообщения (message-body) отличается от тела сущности (entity-body) только в том случае, когда при передаче применяется кодирование, указанное в заголовке Transfer-Encoding. В остальных случаях тело сообщения идентично телу сущности.

Присутствие тела сообщения в запросе отмечается добавлением к заголовкам запроса поля заголовка Content-Length или Transfer-Encoding. Тело сообщения (message-body) может быть добавлено в запрос только когда метод запроса допускает тело объекта (entity-body).

Все ответы содержат тело сообщения, возможно нулевой длины, кроме ответов на запрос методом HEAD и ответов с кодами статуса 1xx (Информационные), 204 (Нет содержимого, No Content), и 304 (Не модифицирован, Not Modified).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Класс кодовКраткое описание
1xx Informational (Информационный)