Что такое h параметры и для чего они определяются
Параметры биполярного транзистора
Все описанное выше касалось работы транзистора при постоянных напряжениях и токах его электродов. При работе транзисторов в усилительных схемах важную роль играют переменные сигналы с малыми амплитудами. Свойства транзистора в этом случае определяются так называемыми малосигнальными параметрами.
На практике наибольшее применение получили малосигнальные h-параметры (читается: аш-параметры). Их называют также гибридными, или смешанными, из-за того, что одни из них имеют размерность проводимости, другие — сопротивления, а третьи — вообще безразмерные.
Всего h-параметров четыре: h11 (аш-один-один), h12 (аш-один-два), h21 (аш-два-один) и h22 (аш-два-два) и определяются они следующими выражениями:
при Uвх = const
Запись const является сокращением слова constanta, то есть постоянная величина. В данном случае это означает, что при определении параметра h11 приращения входного напряжения и входного тока
выбираются при неизменном (постоянном) значении выходного напряжения Uвых. Параметр h11 характеризует входное сопротивление биполярного транзистора и измеряется в омах. Более кратко выражение для определения параметра h11 записывают в виде:
при Uвых = const
Параметры h12, h21 и h22 определяются следующими выражениями:
Iвх = const пряжению, безразмерная величина;
— коэффициент прямой передачи по
Uвых = const току, безразмерная величина;
— выходная проводимость, измеряется
Iвх = const в сименсах (См).
Знак означает небольшое изменение напряжения U или тока I относительно их значений в статическом режиме.
Все h-параметры можно определить по статическим характеристикам. При этом параметры h11 и h12 определяются по входным, a h21 и h22 — по выходным характеристикам. Необходимо только иметь в виду, что значения h-параметров зависят от схемы включения транзистора. Для указания схемы включения к цифровым индексам h-параметров добавляется буквенный индекс: б — если транзистор включен по схеме ОБ, или э — если транзистор включен по схеме ОЭ. Кроме того, приращения входных и выходных токов и напряжений нужно заменить приращениями напряжений и токов соответствующих электродов транзистора с учетом конкретной схемы включения (рис. 9).
Значения h-параметров зависят от режима работы транзистора, т. е. от
а б Рис. 9. Токи и напряжения транзистора в схемах с ОЭ (а) и ОБ (б) |
напряжений и токов его электродов. Режим работы транзистора опре-
Рис. 10. Определение статических h-параметров транзистора по его статическим характеристикам деляется на характеристиках положением рабочей точки, которую будем обозначать в дальнейшем буквой А. Если указано положение рабочей точки А на семействе статических входных характеристик транзистора, включенного по схеме ОЭ (рис. 10, а), параметры h11ээ и h12э определяются следующим образом:
Параметры h21э и h22э определяются в рабочей точке А по выходным характеристикам (рис. 10, б) в соответствии с формулами:
Аналогично рассчитываются h-параметры для схемы ОБ.
При расчете параметров h12 и h21 надо токи и напряжения подставлять в формулы в основных единицах измерения.
Параметр h21б называют коэффициентом передачи тока в схеме ОБ, a h21э — коэффициентом передачи тока в схеме ОЭ. В отличие от статических коэффициентов передачи h21Б и h21Е, рассчитываемых как отношение выходного тока к входному в схемах ОБ и ОЭ, параметры h21б и h21э определяются как отношения изменений выходных токов к вызвавшим их изменениям входных токов. Иными словами, параметры h21б и h21э характеризуют усилительные свойства транзистора по току для переменных сигналов.
Что такое h параметры и для чего они определяются
Биполярный транзистор в схемотехнических приложениях представляют как четырехполюсник и рассчитывают его параметры для такой схемы. Для транзистора как четырехполюсника характерны два значения тока I1 и I2 и два значения напряжения U1 и U2 (рис. 5.23).
Рис. 5.23. Схема четырехполюсника
В зависимости от того, какие из этих параметров выбраны в качестве входных, а какие в качестве выходных, можно построить три системы формальных параметров транзистора как четырехполюсника. Это системы z-параметров, y-параметров и h-параметров. Рассмотрим их более подробно, используя линейное приближение.
Система z-параметров
Зададим в качестве входных параметров биполярного транзистора как четырехполюсника токи I1 и I2, а напряжения U1 и U2 будем определять как функции этих токов. Тогда связь напряжений и токов в линейном приближении будет иметь вид:
Коэффициенты zik в этих уравнениях определяются следующим образом:
— определяются как входное и выходное сопротивления.
— сопротивления обратной и прямой передач.
Измерения z-параметров осуществляются в режиме холостого хода на входе (I1 = 0) и выходе (I2 = 0). Реализовать режим разомкнутого входа I1 = 0 для биполярного транзистора достаточно просто (сопротивление эмиттерного перехода составляет всего десятки Ом и поэтому размыкающее сопротивление в цепи эмиттера в несколько кОм уже позволяет считать I1 = 0). Реализовать режим разомкнутого выхода I2 = 0 для биполярного транзистора сложно (сопротивление коллекторного перехода равняется десяткам МОм и размыкающее сопротивление в цепи коллектора в силу этого должно быть порядка ГОм).
Система y-параметров
Зададим в качестве входных параметров биполярного транзистора как четырехполюсника напряжения U1 и U2, а токи I1 и I2 будем определять как функции этих напряжений. Тогда связь токов и напряжений в линейном приближении будет иметь вид:
Коэффициенты в уравнениях имеют размерность проводимости и определяются следующим образом:
— входная и выходная проводимости.
— проводимости обратной и прямой передач.
Измерение y-параметров происходит в режиме короткого замыкания на входе (U1 = 0) и выходе (U2 = 0). Реализовать режим короткого замыкания на входе (U1 = 0) для биполярного транзистора достаточно сложно (сопротивление эмиттерного перехода составляет всего десятки Ом и поэтому замыкающее сопротивление в цепи эмиттера должно составлять доли Ома, что достаточно сложно). Реализовать режим короткого замыкания на выходе U2 = 0 для биполярного транзистора просто (сопротивление коллекторного перехода равняется десяткам МОм и замыкающие сопротивления в цепи коллектора могут быть даже сотни Ом).
Система h-параметров
Система h-параметров используется как комбинированная система из двух предыдущих, причем из соображений удобства измерения параметров биполярного транзистора выбирается режим короткого замыкания на выходе (U2 = 0) и режим холостого хода на входе (I1 = 0). Поэтому для системы h-параметров в качестве входных параметров задаются ток I1 и напряжение U2, а в качестве выходных параметров рассчитываются ток I2 и напряжение U1, при этом система, описывающая связь входных I1, U2 и выходных I2, U1 параметров, выглядит следующим образом:
Значения коэффициентов в уравнении для h-параметров имеют следующий вид:
— входное сопротивление при коротком замыкании на выходе;
— выходная проводимость при холостом ходе во входной цепи;
— коэффициент обратной связи при холостом ходе во входной цепи;
— коэффициент передачи тока при коротком замыкании на выходе.
Эквивалентная схема четырехполюсника с h-параметрами приведена на рисунке 5.24а, б. Из этой схемы легко увидеть, что режим короткого замыкания на выходе или холостого хода на входе позволяет измерить тот или иной h-параметр.
Рис. 5.24. Эквивалентная схема четырехполюсника:
а) биполярный транзистор в схеме с общей базой; б) биполярный транзистор в схеме с общим эмиттером
Рассмотрим связь h-параметров биполярного транзистора в схеме с общей базой с дифференциальными параметрами. Для этого воспользуемся эквивалентной схемой биполярного транзистора на низких частотах, показанной на рисунке 5.24а, а также выражениями для вольт-амперных характеристик транзистора в активном режиме. Получаем:
Для биполярного транзистора в схеме с общим эмиттером (рис. 5.24б) выражения, описывающие связь h-параметров с дифференциальными параметрами, будут иметь следующий вид:
Для различных схем включения биполярного транзистора (схема с общей базой, общим эмиттером и общим коллектором) h-параметры связаны друг с другом. В таблице 2 приведены эти связи, позволяющие рассчитывать h-параметры для схемы включения с общей базой, если известны эти параметры для схемы с общим эмиттером.
Таблица 2. Связи между h параметрами
h-параметр транзистора: что это такое, формула, описание
При определении переменных составляющих токов и напряжений (т. е. при анализе на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рис. 1.81). В четырехполюснике условно изображен транзистор, включенный по схеме с общим эмиттером.
Для разных схем включения транзистора токи и напряжения этого-четырехполюсника обозначают различные токи и напряжения транзистора. Например, для схемы с общим эмиттером эти токи и напряжения следующие:
i1 — переменная составляющая тока базы; u1— переменная составляющая напряжения между базой и эмиттером;
i2 — переменная составляющая тока коллектора; u2— переменная составляющая напряжения между коллектором и эмиттером.
Транзистор удобно описывать, используя так называемые h-параметры. При этом
т. е. u1=h11·i1+h12·u2i1=h21·i1+h22·u2
Как легко заметить, коэффициент h11 представляет собой входное сопротивление транзистора для переменного сигнала.
Аналогично h12=u1/u2|i1= 0h12 — коэффициент обратной связи по напряжению. Режим работы при i1 = 0 называют холостым ходом на входе. Далее h21=i2/i1|u2= 0h21 — коэффициент передачи тока.
Параметры, соответствующие схеме с общим эмиттером, обозначают буквой «э», а схеме с общей базой — буквой «б».
Можно показать, что h11э≈ rб+ (1 +β) · rэh12э≈ rэ/ (2 · r′к)h21≈βh22≈ 1/r′к
Для создания математической модели транзистора полный набор h-параметров часто не требуется.
Что такое h параметры и для чего они определяются
При определении переменных составляющих токов и напряжений (т. е. при анализе на переменном токе) и при условии, что транзистор работает в активном режиме, его часто представляют в виде линейного четырехполюсника (рис. 3.8). В четырехполюснике условно изображен транзистор с общим эмиттером.
Рис. 3.8. Транзистор в виде четырехполюсника
Для разных схем включения транзистора токи и напряжения этого четырехполюсника обозначают различные токи и напряжения транзистора. Например, для схемы с общим эмиттером эти токи и напряжения следующие:
i 1 – переменная составляющая тока базы;
u 1 – переменная составляющая напряжения между базой и эмиттером;
i 2 – переменная составляющая тока коллектора;
u 2 – переменная составляющая напряжения между коллектором и эмиттером.
Входное сопротивление транзистора для переменного сигнала (при закороченном выходе: u 2 =0) :
Режим работы при i 1 =0 называют холостым ходом на входе.
Система h-параметров биполярных транзисторов
Связь между малыми приращениями токов и напряжений, действующих в транзисторе, устанавливается так называемыми характеристическими параметрами. Эти параметры определяются схемой включения транзистора. Существует несколько систем характеристических параметров. Наибольшее распространение получила система h-параметров, называемая смешанной или гибридной, так как среди параметров этой системы имеется одно сопротивление, одна проводимость и две безразмерные величины.
h-параметры связывают входные и выходные токи и напряжения. Зависимости между входным напряжением U1=UБЭ, входным током I1=IБ, выходным напряжением U2=UКЭ и выходным током I2=IК могут быть выражены системой двух уравнений:
h11Э – входное сопротивление транзистора при коротком замыкании (по переменному току) на выходе транзистора;
h12Э – коэффициент обратной связи по напряжению при холостом ходе (разомкнутом входе по переменному току);
h21Э – коэффициент усиления по току при коротком замыкании (по переменному току) на выходе транзистора;
h22Э – выходная проводимость транзистора при разомкнутом (по переменному току) входе.
Индекс «Э» обозначает, что данная система параметров относится к схеме с общим эмиттером. Для любой схемы включения транзисторов h-параметры могут быть определены по статическим характеристикам транзистора: параметры h11 и h12 – по входным (рис. 4.3.1, а, б), параметры h21 и h22 – по выходным (рис. 4.3.1 в, г).
Рисунок 4.3.1. Определение h-параметров биполярного транзистора
по семействам входных и выходных характеристик.
Схемы включения биполярных транзисторов.
Как отмечалось выше, обобщенная схема включения транзистора для усиления электрических колебаний представляет собой четырехполюсник; из трех его электродов один – входной, другой – выходной, а третий – общий для цепей входа и выхода, и в зависимости от того, какой электрод является общим, возможны три схемы включения транзистора – с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК) (рис.4.4.1, а, б и в, соответственно).
На всех схемах кроме источников питания ЕЭ, ЕБ и ЕК присутствует источник сигнала
UBX (источник переменного тока), включенный последовательно с источником ЕЭ или ЕБ, причем ЕК>>ЕЭ или ЕБ, а амплитуда
UBX IВЫХ (с учетом малого значения IБ можно считать IВХ≈IВЫХ). Таким образом, в схеме ОБ усиления тока не происходит.
При малых напряжениях во входной цепи возникают токи значительной величины. Это возможно, если входное сопротивление схемы ОБ низкое.
Выходной ток, практически равный входному, протекает через большое сопротивление нагрузки RH, при этом в выходной цепи должны действовать напряжения, значительно превышающие входные. Таким образом, в схеме ОБ происходит значительное усиление напряжения при высоком выходном сопротивлении схемы ОБ.
Схема с общим эмиттером.
В схеме рис. 4.4.1, б к базе транзистора относительно общего эмиттера приложены напряжения
UBX и ЕБ. При положительном полупериоде
UBX напряжение UБЭ=ЕБ+UBX, т. е. напряжение UБЭ увеличивается. Это вызовет увеличение IБ, а следовательно, IЭ и IК, что приведет к увеличению падения напряжения на RH, при этом выходное напряжение (напряжение на коллекторе) уменьшится. Рассуждая аналогично, можно показать, что при отрицательном полупериоде
UBX выходное напряжение будет увеличиваться. Таким образом, в схеме ОЭ входной и выходной сигналы парафазны (сдвиг фаз между входным и выходным сигналами равен 180 О ).
Входным током является ток базы, выходным – ток коллектора. Так как IБ