Что такое gpu clock
Memory clock – что это такое в видеокарте и стоит ли им пользоваться
Всем привет! Сегодня я расскажу, что такое Memory Clock в видеокарте, как влияет этот параметр на производительность, для чего его увеличивать и как сделать это правильно.
Memory clock — характеристика, которая отображает частоту видеопамяти в графической карте. Она не отображается в БИОСе, но ее можно посмотреть с помощью диагностических утилит — например, GPU-Z или Everest.
Второй важный параметр, который следует учитывать, это GPU Speed или GPU Clock, частота графического ядра. Обе частоты традиционно измеряются в Mhz.
Частота ядра — характеристика, которая определяет, насколько быстро графический процессор будет обрабатывать данные. Частота памяти — насколько быстро работает видеопамять, которая хранит всю промежуточную информацию, а также большинство объектов — например, в играх или программах для 3D моделирования.
Зачем их увеличивать? Естественно, для того чтобы поднять характеристики графической платы, сделав ее более производительной. Такая опция не всегда доступна: есть модели, у которых возможность разгона залочена производителем еще на заводе.
Те же видеоадаптеры, которые поддерживают такую возможность, разгоняются с помощью специальных утилит.
Интерфейс у них почти не отличается: в MSI Afterburner, ASUS GPU Tweak, Gigabute OC Guru или Riva Tuner для Memory Clock или GPU Clock есть отдельные ползунки и индикаторы с цифровым отображением текущего значения этих параметров.
Разгон видеокарты — процедура гораздо проще, чем может показаться неподготовленному юзеру. Благодаря грамотной реализации «защиты от дурака» очень сложно сломать видеокарту, так как при возникновении критических ошибок компьютер попросту отключится, страхуя дорогую аппаратуру.
Делается это так: перетаскиваете оба ползунка вправо, поднимая каждое из значений на 10-20 пунктов. Обязательно должна быть установлена галочка «Автоматически определять скорость вентилятора», иначе от недостатка охлаждения видеокарта может перегреться.
Так нужно повторить несколько раз, пока на экране не начнут появляться артефакты — абстрактные фигуры или вертикальные полосы отличного от основного изображения цвета. Как только вы их увидите, снизьте частоту ядра и памяти на 10-15 пунктов, чтобы артефакты пропали. Готовый пресет можно применить и сохранить.
В таком режиме видеокарта будет работать «на износ» и потреблять больше энергии, чем обычно.
Неприятно, но часто это единственный способ запустить новую игру, если ваш графический ускоритель ее не тянет. После чего можете проверить как увеличилась производительность, но это уже в отдельной статье.
Понравилась статья? Поделитесь ею в социальных сетях — так вы поможете другим пользователям получить качественную информацию. До скорой встречи!
Технические характеристики графических акселераторов
Модель и кодовое имя GPU
По названию модели нетрудно определить основные функциональные возможности акселератора. Когда ATI или NVIDIA выпускают новое поколение графических чипов, оно обычно сразу бывает представлено несколькими ревизиями (обозначаемыми кодовыми именами) со схожими характеристиками, но некоторыми различиями в производительности, а иногда и функциональности, за счет разных поддерживаемых частот, ширины шины памяти, количества рабочих конвейеров, техпроцесса. У NVIDIA кодовое имя имеет префикс NV (или G начиная с GeForce 7xxx). У ATI – префикс R или RV (например, R520 – GPU Radeon X1800 XT). Нет прямого соответствия между кодовым именем и моделью видеокарты. На одной ревизии чипа может выпускаться несколько моделей карт, например, на NV43 основаны все разновидности GeForce 6500 и 6600 (в том числе GT и LE-редакции), или наоборот: одна и та же модель – на разных чипах (AGP-версии разных GeForce 6800 GT базируются на ре-визии NV40, PCI-E-версия – на NV45). Впрочем, для потребителя, не интересующегося тонкостями разгона, окажется более понятным официальное название ядра, например GeForce 6800 GT, а не лежащая в его основе ревизия чипа, так как этим названием и будут определяться основные параметры видеокарты.
Производственный процесс, нм
Параметр, говорящий о минимальном размере элемента на кристалле GPU. Конечным пользователям может быть интересен прежде всего тем, что от него в немалой степени зависят тепловыделение и разгонный потенциал GPU. Чем меньше числовое значение техпроцесса, тем меньше площадь кристалла и тем меньшего тепловыделения можно ожидать, а значит, большего разгона достичь. При прочих равных характеристиках обычно стоит предпочесть акселератор на ревизии GPU с более тонким техпроцессом.
Интерфейс
Этим параметром определяется, на какой платформе и материнской плате способна работать та или иная модель акселератора. Сейчас, если отбросить совсем уж древние интерфейсы, остаются два варианта: AGP 8X либо PCI Express x16. На материнской плате имеется только один способ подключения видеокарт (кроме экзотических моделей), причем шина AGP является устаревшей и встречается лишь на платформах прошлого поколения. Новые модели акселераторов рассчитаны на PCI Express.
Частота GPU (core clock), MHz
Частота графического процессора, частота шины памяти и разрядность шины являются главными параметрами, определяющими быстродействие конкретной модели видеокарты по сравнению с другими акселераторами на этом же чипе. Производитель GPU устанавливает некую рекомендуемую («референсную») частоту для каждой модели чипа, на которой он должен стабильно работать и которой рекомендуется придерживаться изготовителям готовой продукции. В то же время многие топ-модели видеокарт уже протестированы на стабильную работу с повышенными частотами самими производителями. Рост частоты увеличивает нагрев GPU, а также риск появления артефактов в изображении, зависаний или даже выхода GPU из строя, но существует немало утилит для повышения штатной частоты, в том числе и таких, которые идут прямо с «оверклокерскими» моделями акселераторов и поддерживаются их производителями.
Частота шины памяти (memory clock), MHz
Частота памяти вместе с шириной шины памяти и типом памяти определяет пиковую пропускную способность видеопамяти в гигабайтах в секунду (GBps). Наряду с частотой GPU эта характеристика чаще и проще всего поддается изменению, причем разгон акселератора по памяти способен дать лучшие результаты, чем разгон самого GPU. Максимальный разгонный потенциал памяти (до появления проблем) во многом определяется временем доступа установленных на видеокарте микросхем памяти (задается в наносекундах). Его можно оценить, поделив единицу на это время.
Ширина шины памяти (memory bus width), bit
Шириной шины определяется, сколько информации может быть передано между GPU и видеопамятью за один цикл доступа. В зависимости от поколения и модели GPU выбор обычно стоит между 64 и 128 бит или (для новых поколений) 128 и 256 бит. Урезанные по ширине шины памяти модели видеокарт характеризуются серьезной потерей производительности, которая значительно более заметна, чем даже при снижении частоты памяти либо GPU. По возможности, таких моделей желательно избегать.
Объем видеопамяти, МB
Объемом видеопамяти будет определяться, сколько графических ресурсов сможет уместиться в локальную скоростную память видеоакселератора. Больше всего памяти занимают текстуры самого различного назначения, немного меньше – геометрия 3D-моделей. Десятка два и более мегабайт обычно уходит на организацию обязательных буферов кадров и хранение специальных промежуточных текстур – render targets, используемых при многопроходном рендеринге и для сложных эффектов. При нехватке локальной видеопамяти приложения вынуждены будут обращаться к технологии GART (Graphics Address Remapping Table), также иногда называемой AGP-текстурированием (однако применяется она и на PCI-E-ускорителях), для хранения части текстур в системной памяти, что может значительно ударить по производительности. Но и брать низкопроизводительную модель видеокарты с чрезмерно большим объемом видеопамяти тоже не стоит, на средних настройках качества она будет бесполезна. Кроме того, в такие модели зачастую ставят более медленные микросхемы памяти.
FFP (Fixed Function Pipeline)
До появления шейдеров и программируемой архитектуры GPU технология FFP была единственным доступным методом обработки 3D-графики на 3D-акселераторе. Как видно из названия, это жестко фиксированный набор простейших операций и алгоритмов, из которых можно выбирать необходимые в данный момент и иногда комбинировать их друг с другом, однако весьма ограниченным и нерасширяемым способом. В современных 3D-акселераторах отдельный аппаратный блок, отвечающий за поддержку FFP для старых приложений, отсутствует и полностью эмулируется драйвером с помощью шейдеров.
Шейдеры
Шейдеры – это небольшие программы, написанные непосредственно для графического процессора (GPU). Они загружаются в память видеокарты и используются на некоторых этапах 3D-конвейера, требующих особой гибкости. Применение шейдеров обеспечивает программируемую архитектуру GPU и предоставляет разработчику приложений большую свободу для реализации идей по сравнению с использованием FFP.
Типы шейдеров
По функциональному назначению и набору инструкций шейдеры делятся на две категории – вершинные (vertex shader) и пиксельные (pixel shader). Вершинные шейдеры обрабатывают геометрию 3D-моделей и отвечают, например, за такие задачи, как простейшая трансформация (поворот, масштабирование) модели, ее анимация и деформация, повертексное освещение. Пиксельные шейдеры подключаются к делу на более позднем этапе конвейера при растеризации изображения, т. е. отрисовке 2D-картинки. Они оперируют такими данными, как отдельные пиксели текстур, и итогом их работы будет результирующий цвет пикселя, вычисленный на основе этих данных. Вершинные и пиксельные шейдеры действуют в связке, и пиксельный использует данные, подготовленные для него вершинным (например, текстурные координаты, освещенность, цвет).
Версии шейдеров (или Shader Model)
Существует несколько поколений шейдеров, которые отличаются набором инструкций и их возможностями, количеством адресуемых регистров, определенными лимитами. Последняя актуальная версия – SM 3.0, соответствующая требованиям DirectX 9.0c. Поддержка поколений шейдеров является обратно совместимой, т. е. акселератор с поддержкой SM 3.0 также поддерживает и SM 2.0, и 1.x.
Поддерживаемый 3D API
Каждая следующая версия API Direct3D добавляет новые возможности и расширяет существующие. Кроме того, она предъявляет еще и набор технических требований, которые акселератор должен поддерживать аппаратно, чтобы быть полностью совместимым с данной версией (впрочем, иногда производители делают программную эмуляцию каких-то возможностей нового API в драйвере, но это более медленно и не всегда достижимо). Подобные требования относятся не только к версии шейдеров, но и, например, к поддерживаемым акселераторами форматам текстур (скажем, поддержка текстур floating point-формата нужна для HDR). Уже пару лет наиболее актуальным остается DirectX 9.0c, хотя выход десятой версии с немалым числом изменений ожидается в 2007 г.
В отличие от Direct3D версии OpenGL обновляются куда реже, так как основные нововведения принято реализовывать с помощью различных расширений, и только проверенные и наиболее полезные находят отражение в базовом API. Все акселераторы, поддерживающие DirectX 9.0c, также поддерживают и OpenGL 2.0, последнюю версию этого API.
Количество пиксельных и вершинных конвейеров (исполнительных блоков) GPU
От количества исполнительных блоков зависит вычислительный потенциал акселератора, его способность распараллеливать вычисления на различных этапах. Данное число определяется моделью установленного GPU (но не кодовым именем, так как бывает, что разные модели на одной ревизии GPU выпускаются за счет отбраковки и отключения части конвейеров). И в большинстве случаев, кроме моделей с отключенными конвейерами, изменить его нельзя. К тому же процедура эта нетривиальна и легко может привести к выходу акселератора из строя либо проблемам со стабильностью его работы.
Тип видеопамяти
DDR, GDDR2, GDDR3 – тип памяти, который определяет в основном возможность достижения более высоких частот. На сегодняшний день самыми скоростными являются чипы GDDR4, способные работать на частотах порядка 2 GHz.
Как разогнать видеокарту: все на максимум
Содержание
Содержание
Современную игровую сборку не хочется представлять без разгона. Студии рисуют графику с заделом на передовые графические ускорители, а производители железа будто специально выпускают поколение за поколением ровно под эти игры, не оставляя пользователям запаса прочности хотя бы на несколько лет. Так сложилась культура современного гейминга. Но почти любой юзер может вытащить из своей сборки дополнительную мощность, причем совершенно безопасно и безвозмездно. Если ее не вытащили на заводе за нас.
Первоначальное значение термина «оверклокинг» имеет несколько иное понимание разгона комплектующих. Вольтмоды, паяние перемычек, моддинг BIOS уже в прошлом. Сейчас разгон это жмакнул кнопку и готово. Но, какова работа, таков и результат. Если раньше с помощью разгона можно было добиться чуть ли не двукратной прибавки, то сейчас это не более 10–15 %. И то, учитывая полное отсутствие разгона из коробки. Тем не менее, если эта мощность есть и готова к работе, почему бы ею не воспользоваться.
Зачем гнать видеокарту
Так, оверклокинг превратился из разгона комплектующих в настройку комплектующих. Это так, потому что свежие модели видеокарт имеют ограничения, которые не снимаются штатными безопасными способами. А в рамках этих ограничений мы можем только управлять поведением карты, но не можем добраться до предельных возможностей кремния.
Новые видеокарты сильно напичканы автоматикой, которая берет полный контроль над управлением мощностью. Хваленый турбобуст Nvidia устроен таким образом, что максимальная частота графического чипа ограничена лишь температурными условиями. Ниже температура — выше стабильная частота. Выше температура — ниже частота. Цифры меняются порогами, где прописаны соотношения частот и вольтажей.
С AMD ситуация повторяется. Только вместо температурных рамок алгоритм ставит ограничение на энергопотребление. То есть, чем выше ватты, тем ниже частота. И все же, с радеонами разгон еще имеет отголоски прошлого, когда ограничение в частоте и вольтаже ставил кремний, а не прошивка. Только для этого нужно редактировать биос карты, зашивать новые соотношения частот и вольтажей.
Более того, производители комплектующих научились «плохому» и теперь разгоняют железки еще на конвейере. Например, RTX 2070 Super в исполнении Palit имеет базовую частоту выше заводской почти на 100 МГц. В нормальных температурных рамках частота и вовсе колеблется в пределах 1950–2050 МГц. Больше из этих карт не выжать, поэтому задача современного оверклокера — заставить турбобуст удержать стабильную частоту как можно выше. Ну и подкрутить память, у которой запас по мегагерцам не тронут заводом.
От чего зависит разгон
Видеокарта — как отдельный компьютер. У нее есть свой блок питания, свой процессор, свои материнская плата и оперативная память. Поэтому удача в разгоне ложится не только на плечи силиконовой лотереи, но и на качество обвязки графического чипа:
Раз — качество цепей питания. Видеокарты верхнего ценового сегмента потребляют от 200 Вт на заводских настройках. Это сказывается на температуре элементов системы питания, а также на стабильности регулировки вольтажа.
Два — силиконовая лотерея. Возможности графического чипа ограничены качеством кремния, из которого он построен. Чем оно выше, тем больше шансов стабилизировать высокую частоту на низком вольтаже и при меньшем нагреве.
Три — видеопамять. Хотя чипы памяти тоже принимают участие в силиконовой лотерее, основной частотный потенциал пока задается одним фактором: производитель. Так, для каждого производителя памяти есть примерная максимальная частота:
Три с половиной — система охлаждения. Мы заставляем графический чип и память работать на повышенных частотах, а значит тепловыделение будет тоже выше. Крайне желательно выбирать видеокарту с хорошим охлаждением не только чипов, но и с отдельным радиатором для мосфетов (системы питания).
Мы уже разобрались, что штатные возможности видеокарт хорошо контролируются автоматикой и не готовы отдать полное управление настройками пользователю. Тем не менее, эти лимиты можно обойти с помощью вольтмодов и модифицированных прошивок. Когда в конструкцию видеокарты вносятся изменения: впаиваются дополнительные элементы и ставятся перемычки. В этом случае можно обойти встроенные лимиты и вдоволь насладиться разгонным простором. Главное, держать поблизости огнетушитель. Остальные манипуляции с картой безопасны.
Перед настройкой
Для удобства понадобится такой набор программ:
MSI Afterburner — утилита-комбайн. Вообще, у каждого производителя есть свое ПО для управления видеокартой, но афтербернер твердо стоит в рядах разгонщиков и используется для всех графических ускорителей как универсальная утилита.
GPU-Z — показывает любую информацию о видеокарте, начиная от ревизии чипа и заканчивая энергопотреблением на втором разъеме дополнительного питания.
Unigine Heaven — довольно практичный тест стабильности. Вообще, это игровой бенчмарк, но его можно включить на бесконечную прокрутку и хорошенько прогреть видеокарту.
3DMark TimeSpy Stress Test — для окончательного тестирования видеокарты. Это тестовый отрезок из основного бенчмарка, который повторяется 20 раз. Система замеряет количество кадров во время каждого прогона и сравнивает итоговые цифры. Если отклонение в производительности между прогонами минимально — система стабильна. Если процент стабильности ниже 95 %, снижаем разгон.
Разгоняем — настраиваем
Настройка охлаждения. Чтобы видеокарта работала в прохладе и могла держать высокую частоту, необходимо подкрутить кривую вентиляторов в Afterburner. Для этого открываем программу и нажимаем на значок шестеренки, затем выбираем вкладку «кулер» и включаем пункт «Включить программный пользовательский режим»:
Настройка скорости вентиляторов индивидуальна для каждого типа системы охлаждения. Если это модель с одним вентилятором, то придется выкручивать обороты посильнее. Если топовая с несколькими вентиляторами и массивным радиатором — ориентируемся на такое соотношение температуры к оборотам вентиляторов: 40/60, 60/80, 70/95. С такой настройкой кулеры будут быстрее реагировать на изменения температуры и избавят от кратковременных скачков.
Снимаем температурные лимиты и ограничение энергопотребления. Для этого выставляем три верхних ползунка в AB, как на скриншоте, и нажимаем кнопку «применить»:
Находим максимум для графического чипа. Открываем бенчмарк Unigine Heaven и MSI Afterburner таким образом, чтобы во время теста было удобно менять настройки в AB:
Запускаем тест на таких настройках:
Как только видеокарта нагреется до рабочей температуры, переходим к подбору частоты. Для этого двигаем ползунок Core Clock вправо. Например, до цифры +40:
Тест не выключаем. После применения частоты замечаем, что максимальная частота поднялась с 1980 МГц до 2010 МГц. При этом температура поднялась на 3 градуса. Оставляем систему в таком режиме на несколько минут, чтобы удостовериться, что частота дается видеокарте без проблем. Далее прибавляем по 10-20 МГц и следим за тестом.
Как только он начнет зависать или показывать артефакты, снижаем частоту ядра на 10-20 МГц и снова запускаем тест. Если бенчмарк крутится без проблем 10 минут и дольше, считаем, что максимальная частота для графического процессора найдена.
Подбираем частоту памяти. Частота памяти подбирается аналогичным способом. Но мы знаем примерные возможности всех разновидностей чипов, поэтому с настройкой проще. Для этого переходим в GPU-Z на основную вкладку и находим графу Memory type:
В этом экземпляре установлены чипы Micron. Значит, примерный рабочий диапазон значений колеблется от +500 до +900. От этого и будем отталкиваться.
Снова запускаем тест и выставляем ползунок Memory Clock на значение +500:
Крутим тест пять минут, а затем прибавляем к памяти еще 100 МГц. И так, пока тест не начнет сыпать артефактами или вылетать. Запоминаем глючное значение и спускаемся на 100 МГц ниже. Тестируем 5–10 минут и считаем, что максимальная частота для памяти тоже найдена.
Для данного экземпляра RTX 2070 Super максимальная частота ядра составила 2050 Мгц при температуре 65 °C. Если температура находится ниже этой отметки, частота поднимается до 2080–2100 МГц. Это и есть работа того самого турбобуста Nvidia. Стабильная частота памяти получилась ровно 7900 МГц, то есть +900 по афтербернеру. Пропускная способность поднялась почти на 60 Гб/с:
Что на практике
Тестовый стенд
Assassin’s Creed Valhalla
Средний фпс в разгоне всего на 4 кадра выше, чем на автомате с Turboboost. Это заслуга высокой частоты памяти. При этом температура разогнанной карты отличается на 3 °C. Энергопотребление выше на 13 Вт. Стоит сказать, что игра новая и ведет себя странно. Виной тому слишком сырая версия или неоптимизированные драйверы. Тем не менее, прошлая Odyssey берет от видеокарты намного больше, чем Valhalla.
Assassin’s Creed Odyssey
Разница 7 кадров в среднем количестве кадров, то есть почти 10 %. Интересно, что разгон принес больше пользы в 1 % и 0.1 % кадров. Здесь разница до 60 %. Что удивляет сильнее, так это те же температуры, что и в Valhalla, при большем энергопотреблении. Одним словом, аномалия. Хотя фпс оправданно выше в этом ассассине при 10 Вт разницы с Valhalla.
Horizon Zero Dawn
Все как по книжке: 12 % прирост производительности, 14 % прибавка в ваттах. Привычные 3 °C разницы.
Shadow of the Tomb Raider
Удивительно, но на средний фпс настройка видеокарты влияет так себе. А 1 % и 0.1 % стабильно показывают 8–12 % прибавки во всех тестах. Видимо, частота памяти сильнее влияет на стабильность фреймрейта, нежели на максимальную мощность. Много кадров не выиграли, но подняли энергопотребление и температуру чипа. Так себе разгон, скорее «кукурузный».
Red Dead Redemption 2
Тут тоже без сюрпризов. Все те же 8–9 % прибавки фпс, но выше температура и энергопотребление.
World of Tanks Encore
Здесь и вовсе 6 % разницы, а нагрев как в RDR2. Но энергопотребление выше. То ли тест кукурузный, то ли разгон.
3DMark Fire Strike Extreme
Даже синтетика большой разницы не видит.
Вывод
Игровые тесты показывают мизерное увеличение производительности вместе с несоизмеримым повышением температуры и энергопотребления. Этим грешат все современные видеокарты, начиная с поколения Pascal, которые почти не дают дополнительные кадры в обмен на повышение частоты. Все потому, что максимальные возможности графического чипа уже используются автоматически «из коробки».
Но такой разгон может оказаться очень эффективным, если видеокарту не разгоняли на заводе. В таком случае она покажет больше производительности, чем модель от конкурентов:
Другое дело, если отключить турбобуст и обойти запреты, чтобы управлять частотой на низком уровне, не взирая на повышенные температуры и лимиты энергопотребления. Но с видеокартами Nvidia такое не пройдет из-за аппаратных ограничений. За неимением таковых, пользователи нашли способ настроить карту так, чтобы при меньших температурах и меньшем потреблении она работала даже лучше, чем в «умном» турбобусте. Способ избавиться от такого кукурузного разгона: снизить рабочий вольтаж и подобрать стабильную частоту. Это называется андервольтинг, о чем будет вторая часть материала.