Что такое cos f в электричестве
Что такое коэффициент мощности (косинус фи)
Физическая сущность коэффициента мощности (косинуса «фи») заключается в следующем. Как известно, в цепи переменного тока в общем случае имеются три вида нагрузки или три вида мощности (три вида тока, три вида сопротивлений). Активная Р, реактивная Q и полная S мощности соответственно ассоциируются с активным r, реактивным х и полным z сопротивлениями.
Реактивное сопротивление при прохождении по нему тока потерь не вызывает. Обусловливается это сопротивление индуктивностью L, а также емкостью С.
Индуктивное и емкостное сопротивления являются двумя видами реактивного сопротивления и выражаются следующими формулами:
реактивное сопротивление индуктивности, или индуктивное сопротивление,
реактивное сопротивление емкости, или емкостное сопротивление,
Как видно из треугольника, в цепи переменного тока в общем случае возникают три мощности: активная Р, реактивная Q и полная S
Активная мощность может быть названа рабочей, т. е. она «греет» (выделение тепла), «светит» (электрическое освещение), «двигает» (электродвигатели приводят в движение механизмы) и т. д. Измеряется она так же, как и мощность на постоянном токе, в ваттах.
Реактивная мощность Q не расходуется и представляет собой колебание электромагнитной энергии в электрической цепи. Переливание энергии из источника к приемнику и обратно связано с протеканием тока по проводам, а так как провода обладают активным сопротивлением, то в них имеются потери.
Пример. Определить потери мощности в линии с сопротивлением r л = 1 ом, если по ней передается мощность Р=10 кВт на напряжение 400 В один раз при cosфи 1 = 0,5, а второй раз при cosфи2=0,9.
Потери мощности dP1 = I1 2 r л = 50 2 •1 = 2500 Вт = 2,5 кВт.
Потери мощности dP2 = I 2 2 r л = 28 2 •1 = 784 Вт = 0,784 кВт, т.е. во втором случае потери мощности в 2,5/0,784 = 3,2 раза меньше только потому, что выше значение cosфи.
Расчет наглядно показывает, что чем выше величина косинус «фи», тем меньше потери энергии и тем меньше нужно закладывать цветного металла при монтаже новых установок.
Повышая косинус «фи», преследуем три основные цели:
1) экономию электрической энергии,
2) экономию цветных металлов,
3) максимальное использование установленной мощности генераторов, трансформаторов и вообще электродвигателей переменного тока.
Последнее обстоятельство подтверждается тем, что, например, от одного и того же трансформатора можно получить тем больше активной мощности, чем больше величина со sфи потребителей. Так, от трансформатора с номинальной мощностью Sн=1000 кВа при со sфи 1 = 0,7 можно получить активной мощности Р 1 = S нcosфи 1 = 1000•0,7=700 кВт, а при cosфи2 = 0,95 Р2 = S нcosфи2= 1000•0,95 = 950 кВт.
В обоих случаях трансформатор будет нагружен полностью до 1000 кВа. Причиной низкого коэффициента мощности на предприятиях являются недогруженные асинхронные двигатели и трансформаторы. Например, асинхронный двигатель при холостом ходе имеет cos фихх примерно равный 0,2, тогда как при загрузке до номинальной мощности со sфи н = 0,85.
Для наглядности рассмотрим приближенный треугольник мощности для асинхронного двигателя (рис. 1,г). При холостом ходе асинхронный двигатель потребляет реактивную мощность, примерно равную 30% номинальной мощности, тогда как потребляемая активная мощность при этом составляет около 15%. Коэффициент мощности поэтому очень низок. С возрастанием нагрузки активная мощность увеличивается, а реактивная меняется незначительно и поэтому cosфи возрастает. Подробнее об этом читайте здесь: Коэффициент мощности электропривода
Основным мероприятием, повышающим значение cosфи, является работа на полную производственную мощность. В этом случае асинхронные двигатели будут работать с коэффициентами мощности, близкими к номинальным величинам.
Мероприятия по повышению коэффициента мощности делятся на две основные группы:
1) не требующие установки компенсирующих устройств и целесообразные во всех случаях (естественные способы);
2) связанные с применением компенсирующих устройств (искусственные способы).
К мероприятиям первой группы согласно действующим руководящим указаниям относится упорядочение технологического процесса, ведущее к улучшению энергетического режима оборудования и повышению коэффициента мощности. К этим же мероприятиям относится применение синхронных двигателей вместо некоторых асинхронных (установка синхронных двигателей рекомендуется вместо асинхронных всюду, где требуется повышать соsфи).
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое коэффициент мощности
При проектировании электрических сетей для расчета различных значимых показателей используют коэффициенты. В частности, электрику необходимо знать, что такое коэффициент мощности (косинус фи), с опорой на какие параметры определяют его значение, и в чем его физический смысл.
Что такое коэффициент мощности (косинус фи)
Что такое коэффициент мощности? В электротехнике косинус фи – это параметр, характеризующий потребителя электротока в роли реактивного компонента сетевой нагрузки. Этот показатель, равный косинусу от сдвига фазы относительно прикладываемого напряжения, используется только применительно к переменному току. В случае отставания его от напряжения значение сдвига считается положительным, в обратной ситуации – отрицательным.
Формула коэффициента мощности
Отношение, выражающее коэффициент, считается по следующей формуле:
где Р – усредненная мощность переменного тока, U и I – эффективные показатели, соответственно, напряжения и силы электротока.
Практическое значение
В электроэнергетике при проектировании сетей cos коэффициент фи стремятся повысить как можно больше. Соотношение cos угла fi подразумевает, что в случае его малого показателя для обеспечения нужной мощности цепи потребуется использовать электрический ток очень большой силы. Существует корреляция между применением высокого тока и потерями энергии в подводящих кабелях: если показания электросчетчика заметно выше ожидаемых, всегда проверяют правильность расчетов угла фи.
Показатель может быть выяснен с помощью специального прибора – фазометра. При недостаточности коэффициента в дело идут усилители и другие установки, призванные скомпенсировать энергетические потери. Если угол фи рассчитан неправильно, будут иметь место снижение эффективности работы электрооборудования и рост энергопотребления.
Сдвиг фаз между напряжением и током
Фазовый сдвиг – показатель, описывающий разность исходных фаз двух параметров, имеющих свойство меняться во времени с одинаковыми скоростями и периодами. Именно сдвиг между силой и напряжением определяет, сколько будет значение угла фи.
В радиотехнической промышленности используются цепочки для получения асинхронного хода. Одна RC-цепь создает 60-градусный сдвиг, для получения 180-градусного для трехфазной структуры организуют последовательное соединение трех цепочек.
При трансформации электродвижущей силы во вторичных обмотках прибора для всех вариаций тока ее значение идентично по фазе таковому для первичной обмотки. Если обмотки трансформатора включить в противофазе, значение напряжения получает обратный знак. Если напряжение идет по синусоиде, происходит сдвиг на 180 градусов.
В простом случае (к примеру, включение электрического чайника) фазы двух показателей совпадают, и они в одно и то же время достигают пиковых значений. Тогда при расчете потребительской мощности применять угол фи не требуется. Когда к переменному току подключен электродвигатель с составной нагрузкой, содержащей активный и индуктивный компоненты (двигатель стиральной машинки и т.д.), напряжение сразу подается на обмотки, а ток отстает вследствие действия индуктивности. Таким образом, между ними возникает сдвиг. Если индуктивный компонент (обмотки) подменен использованием достижений химии в виде емкостного аккумулятора, отстающей величиной, напротив, оказывается напряжение.
Косинус фи не следует путать с другим показателем, рассчитываемым для комплексных нагрузок, – коэффициентом демпфирования. Он широко используется в усилителях мощности и равен частному номинального сопротивлению прибора и выходному – усилка.
Треугольник мощностей
Рассматриваемый коэффициент может быть измерен так же, как частное полезного активного значения мощности к общей (S=I*U). Для иллюстрации влияния фазового сдвига на косинус фи применяется прямоугольный треугольник мощностей. Катеты, образующие прямо угол, представляют реактивное и активное значение, гипотенуза – общее. Косинус выделенного угла равен частному активной и общей мощностей, то есть он является коэффициентом, демонстрирующим, какой процент от полной мощности требуется для нагрузки, имеющей место в данный момент. Чем меньший вес имеет реактивный компонент, тем больше полезная мощность.
Важно! Строго говоря, данный параметр полностью соответствует коэффициенту мощности только при идеально синусоидальном движении тока в электросети. Для получения максимально точной цифры требуется анализ искажений нелинейного характера, присущих переменным току и напряжению. В практических подсчетах эти искажения чаще всего игнорируют и полагают показатель cos fi примерно равным требуемому коэффициенту.
Усредненные значения коэффициента мощности
ГОСТы указывают на необходимость корректного указания данной цифры. Для разных типов электроприборов характерные значения находятся в определенных границах:
Низкий коэффициент мощности, его последствия
Из-за низких значений угла фи возможны следующие неприятные явления:
Способы расчета
Данный параметр можно представить, как отношение мощностей: полезной нагрузочной и общей. В формульном виде это записывается так:
У асинхронного электродвигателя с тремя фазами можно посчитать коэффициент так:
Помимо этого, для вычисления показателя можно применять мощностный треугольник.
Единицы измерения
Иногда встает вопрос, в чем измеряется данный коэффициент, если его описывают, как безразмерную величину. Его обычно указывают в процентах или в сотых долях, во втором случае значения находятся в диапазоне от 0 до 1.
Чтобы приборы, подсоединенные к электрической сети, эксплуатировались возможно более долгий срок, необходимо знать, что такое показатель cos f в электричестве, и как его правильно определять. Его значение нужно учитывать в процессе подключения устройств и их дальнейшей эксплуатации.
Видео
Коэффициент мощности cos φ: определение, назначение, физический смысл
Коэффициент мощности – это скалярная физическая величина, показывающая насколько рационально потребителями расходуется электрическая энергия. Другими словами, коэффициент мощности описывает электроприемники с точки зрения присутствия в потребляемом токе реактивной составляющей.
В этой статье мы рассмотрим физическую сущность и основные методы определения cos φ.
Математически cos φ
Математически cos φ определяется как отношение активной мощности к полной или равен отношению косинуса этих величин (отсюда и название параметра).
Величина коэффициента мощности может изменяться в интервале 0 — 1 (либо в диапазоне 0 — 100%). Чем ближе его величина к 1, тем лучше, поскольку при величине cos φ = 1 – потребителем реактивная мощность не потребляется (равняется 0), следовательно, меньше потребляемая полная мощность в общем.
Низкий cos φ указывает на то, что на внутреннем сопротивлении потребителя выделяется повышенная реактивная мощность.
Когда токи / напряжения являются идеальными сигналами синусоидальной формы, то коэффициент мощности составляет 1.
Геометрически коэффициент мощности можно изобразить, как косинус угла на векторной диаграмме между током, напряжением между током, напряжением. В связи с чем при синусоидальной форме токов и напряжений величина cos φ совпадает с косинусом угла, от которого отстают эти фазы.
Короткое видео о кратким объяснением, что такое коэффициент мощности:
Повышение коэффициента мощности
Значение коэффициента мощности рассчитывают при проектировании сетей. Поскольку низкое его значение является следствием увеличения величины общих потерь электроэнергии. Для его увеличения в сетях используют различные способы коррекции, повышая его значение до 1.
Повышение cos φ преследует 3 основные задачи:
Технически коррекция реализуется в виде введения различных дополнительных схем на вход устройств. Эта техника требуется для равномерного использования мощности фазы, устранения перегрузок нулевого провода 3-х-фазной сети, и является обязательной для импульсных источников питания, установленной мощностью 100 Вт и более.
Основные способы коррекции cos φ
1. Коррекция реактивной составляющей мощности производится путём включения реактивного элемента, имеющего противоположное действие. К примеру, для компенсации работы асинхронной машины, обладающей высокой индуктивной реактивной составляющей мощности, в параллель включается конденсатор.
2. Корректировка нелинейности электропотребления. При потреблении тока нагрузкой непропорционально основной гармонике напряжения, для повышения коэффициента мощности в схему вводят пассивный (активный) корректор коэффициента мощности. Наиболее простым примером пассивного корректора cos φ является дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой. Дроссель производит сглаживание импульсного потребления нагрузки и создание низшей, основной гармоники тока.
3. Корректировка естественным способом, не предусматривающая установку дополнительных устройств, предполагает упорядочение технологического процесса, рациональное распределение нагрузок, ведущее к улучшению режима потребления электроэнергии оборудованием, повышению коэффициента мощности.
Подробное видео с объяснением, что такое cosφ :
ОБОРУДОВАНИЕ
ТЕХНОЛОГИИ
РАЗРАБОТКИ
Блог технической поддержки моих разработок
Коэффициент мощности (cos φ). Понятие, физический смысл, измерение.
Коэффициент мощности (cos φ) это параметр, характеризующий искажения формы тока, потребляемого от электросети переменного тока. Важный показатель потребителя электроэнергии. Во многом он определяет требования к питающей сети. От него зависят потери в проводах и на внутреннем сопротивлении сети.
В цепях постоянного тока мощность, впрочем, как и все остальные параметры, не меняет своего значения в течение определенного отрезка времени. Поэтому, при постоянном токе, существует единственное понятие электрической мощности как произведение значений тока и напряжения.
При переменном токе значения тока и напряжения постоянно меняются с течением времени. Мощность тоже меняется. Поэтому вводится понятие мгновенной мощности.
Мгновенная мощность.
Мгновенная мощность это произведение значения мгновенного напряжения цепи на значение мгновенного тока. На практике мощность связана с выделением тепла, механической работой и т.п. А эти явления имеют инерционный характер. Поэтому понятие мгновенной мощности не имеет практического значения, а используется для расчетов и понимания происходящих процессов.
Действующие значения тока и напряжения.
Для оценки и расчетов цепей переменного тока используются действующие значения тока и напряжения.
Действующее значение переменного тока определяется как величина такого эквивалентного постоянного тока, который проходя через то же активное сопротивление, что и переменный ток, выделяет на нем за период то же количества тепла. Математически действующее значение определяется как среднеквадратичное за период.
Вольтметры и амперметры переменного тока показывают именно действующие значения. Все операции по тепловым расчетам происходят так же, как и на постоянном токе, только с использованием действующих значений. Но это не всегда правильно.
Полная мощность.
Полная мощность вычисляется как произведение действующих значений тока и напряжения цепи.
В случае синусоидальной формы тока и напряжения, а также отсутствия фазового сдвига, вся полная мощность выделяется на нагрузке. Расчеты для переменного тока соответствуют анализу цепей постоянного тока, только используются действующие значения тока и напряжения.
Реактивная мощность.
Как только в цепи переменного тока появляются реактивные элементы ( индуктивность и емкость) все меняется. Реактивные элементы обладают способностью накапливать энергию и отдавать ее в цепь обратно. Появляется реактивная мощность.
Реактивная мощность не выделяется на нагрузке, не создает полезной работы. Она накапливается на реактивных элементах нагрузки ( конденсаторах, катушках индуктивности), а затем возвращается обратно в питающую сеть. Понятно, что возвращается она с потерями на проводах, на внутреннем сопротивлении питающей сети и т.п. Поэтому в любой энергосистеме стремятся уменьшить реактивную мощность до минимума.
Реактивная мощность может быть как положительной (для индуктивных цепей), так и отрицательной (для емкостной составляющей).
Единица измерения – вольт-ампер реактивный (ВАР).
Активная мощность.
На нагрузке остается активная мощность. Она и совершает полезную работу. Активная мощность это среднее значение мгновенной мощности за период.
Основные соотношения между параметрами.
Полная мощность в цепях переменного тока равна квадратному корню из суммы квадратов активной и реактивной мощностей.
Активная мощность вычисляется как:
I и U это действующие значения тока и напряжения.
cos φ – это косинус угла сдвига между напряжением питающей сети и током, потребляемым нагрузкой. Это соотношение верно только для синусоидальной формы тока и напряжения. При cos φ = 1 активная мощность на нагрузке равна полной. Вся энергия питающей сети используется для полезной работы. Происходит это только на чисто активной нагрузке, без реактивной составляющей.
cos φ и есть коэффициент мощности (КМ) для переменных цепей с током и напряжением синусоидальной формы.
Но многие потребители энергии не только сдвигают фазу, но искажают форму тока. Примером может служить блок питания с бестрансформаторным входом. Это эквивалентная схема подключения его к питающей сети.
В подобных устройствах напряжение питающей сети выпрямляется и сглаживается на конденсаторе большой емкости. Полученное постоянное напряжение с малым уровнем пульсаций используется для дальнейшего преобразования.
Для питающей сети эта схема представляет нагрузку активно-емкостного характера. Но диоды выпрямительного моста имеют нелинейную характеристику. В начале и в конце периода они закрыты и нагрузка отключена. А в середине периода диоды открываются и кроме активной нагрузки подключают к сети значительную емкость сглаживающего фильтра. В результате ток имеет искаженную форму, показанную на рисунке.
Коэффициент мощности (КМ) в переменных цепях с искаженной формой тока определяется как отношение активной мощности к полной.
Следующие диаграммы иллюстрируют, как КМ влияет на работу потребителей электроэнергии.
На этом рисунке показаны осциллограммы чисто активной нагрузки. Фазового сдвига нет, cos φ = 1, вся энергия из сети переходит в активную мощность на нагрузке.
На втором рисунке крайний, самый плохой вариант.
Значимость КМ можно показать простейшими расчетами.
Два потребителя электроэнергии с одинаковой активной (полезной) мощностью. У первого cos φ = 1, а у второго 0,5. Это означает, что второй потребитель потребляет от сети ток в два раза больше, чем первый. Т.к. зависимость потерь в проводах от тока имеет квадратичный характер (P = I 2 * R), то потери на активном сопротивлении проводов во втором случае будут в 4 раза больше. Потребуются провода большего сечения.
Для мощных нагрузок, длинных линий электропередач высокий КМ особенно важен.
Измерение коэффициента мощности.
Для измерения cos φ используются специальные приборы – фазометры. Они применяются в сетях с потребляемым током синусоидальной формы, без искажения.
Для измерения КМ у нагрузок, искажающих ток, обычно пользуются следующей методикой.
Схема измерения коэффициента мощности.
Необходимо вычислить полную мощность, как произведение показаний вольтметра и амперметра.
Теперь надо активную мощность (показания ваттметра) разделить на полную.
При отсутствии ваттметра можно использовать счетчик электроэнергии.
Для этого необходимо замерить время 10 калибровочных импульсов (миганий светодиода на корпусе счетчика). Вычислить время периода одного импульса (разделить на 10). Зная коэффициент счетчика (обычно 3200 импульсов на кВт) можно посчитать активную мощность нагрузки. С учетом того, что счетчики электроэнергии имеют класс точности 1.0, измерение получится довольно точным.
Коррекция коэффициента мощности.
Для увеличения КМ существуют специальные устройства – корректоры коэффициента мощности (ККМ). Они бываю пассивными и активными.
Для пассивной коррекции КМ в цепь питания последовательно включают дроссель. Такое решение часто применяется для трансформаторных станций катодной защиты. Но это от безвыходности. Других решений для трансформаторных станций не существует. Дроссель требуется громадных размеров, не меньше чем силовой трансформатор станции. Размеры, вес, цена станции увеличиваются практически в 2 раза, а коэффициент мощности удается поднять только до 0,85.
Активные корректоры повышают КМ до 0,95 – 0,99.
Пример активного ККМ 2000 Вт для инверторной станции катодной защиты серии «ТИЭЛЛА».
Схемотехнике активных ККМ я посвящу отдельную статью.