Что такое addr led
990x.top
Простой компьютерный блог для души)
ADDR_LED1 на материнской плате — что это такое? (Addressable LED Header)
Приветствую. Современные компьютерные устройства, включая корпус, вентиляторы, видеокарты, материнские платы, даже накопитель SSD — могут иметь подсветку, которую необходимо правильно подключить. Кроме свечения, светодиоды должны поддерживать управление, например изменение оттенка.
ADDR_LED1 на материнской плате
Подключение адресной светодиодной ленты (5v).
Название разьема расшифровывается как Addressable LED Header.
Распиновка разьема ADDR_LED1:
Расположение на материнской плате AsRock:
Подключать кабель необходимо строго по инструкции, в противном случае можете повредить коннектор.
На материнской плате может располагаться также разьем RGB_LED1 (RGB LED Header) в нескольких количествах. Предназначения — использование стандартной подсветки с потреблением 12 вольт.
Внимательно смотрите требуемое напряжение ленты и разьема на плате. Подключение ленты 5v в разьем 12v выведет устройство из строя.
Пример фирменного софта AsRock для управления подсветкой (включая синхронизацию, изменения цвета, режима):
Указываются разные эффекты подсветки, поддерживается управление светодиодами отдельного элемента материнки.
Порты подключения подсветки разного напряжения:
Отсутствующий контакт это норма.
ADDR_LED1 используется именно для подключения устройств, содержащих светодиоды, например вентиляторы охлаждения. Обычный вентилятор, без светодиодов — подключается в обычный разьем, название которого содержит слово FAN, например CHA_FAN1.
Адресная светодиодная лента — что это?
Состоящая из адресных светодиодов.
Подключаться к специальному контроллеру на материнкой плате (однако существуют и сторонние). Переключение возможно также используя устройство Android.
Обычна состоит из напаянных светодиодов, резисторов. Питание подается по двум проводам плюс/минус. Напряжение ленты 5/12 вольт требует блока питания. 220В — розетка. Свечение зависит от цвета подсветки, изменить цвет нельзя.
Адресная содержит адресные диоды, состоящие из RGB-светодиода и контроллера. Контроллер содержит три транзистора, используя которые можно менять цвет/яркость светодиода. Результат — технология управления цветов, яркостью каждого светодиода, на практике позволяет получать интересные световые эффекты. Адресная лента содержит обычно 4 или 3 контакта. 2 — питание (+/-), остальные — логика управления.
Заключение
Как работает адресная светодиодная лента?
Наверное этот вопрос «как работает» очень многим покажется глупым. Ответ почти очевиден: адресная светодиодная лента состоит из множества последовательно соединенных «умных светодиодов». Это можно увидеть просто рассматривая устройство ленты. Видны отдельные микросхемы, припаянные к гибкому шлейфу, видны соединения: микросхемы соединены последовательно всего тремя проводами, при этом два из них это питание и земля. Только один провод передает данные о цвете пикселей. Как же это? Что такое «умный светодиод»?
Дальше я расскажу о протоколе передачи данных, используемом в светодиодной ленте на базе WS2812B, и, более того, я почти создам свою «микросхему светодиодной ленты» в микросхеме ПЛИС.
Итак, в ленте используется последовательная передача через один единственный сигнал данных.
Бит ноль передается, как короткий положительный импульс и пауза, которая примерно в два раза шире импульса. Бит единица передается как широкий положительный импульс и короткая пауза:
При отсутствии передачи более 50 микросекунд лента переходит в исходное состояние, готова принимать пиксели начиная с первого.
Каждые 24 бита в последовательности — это 3 байта для трех цветов RGB. Причем на самом деле последовательность будет G-R-B. Старший бит G7 идет первым.
Последовательность из первых 24х бит представляет из себя один пиксель, который получит самый первый светодиод в ленте. Пока первый светодиод не насытится он не передает данные дальше к следующему светодиоду. После того, как первый светодиод получит свою порцию из 24х бит RGB он открывает передачу следующему. Примитивно можно последовательность светодиодов представить, как каскад из кувшинов, последовательно наполняемых водой:
Заполнится первый, потом второй, потом третий и так все по очереди.
Таким образом, я считаю, что с протоколом передачи разобрались.
Можно ли попробовать самому спроектировать такой «умный светодиод»? Практического смысла в этом конечно мало, но для самообразования и расширения кругозора — задача интересная. Попробуем описать логику чипа на языке проектирования аппраратуры Verilog HDL. Конечно, это будет не настоящий дизайн микросхемы, будут ограничения. Одно из самых важных ограничений — мне для моей микросхемы будет нужен внешний тактовый генератор. В настоящем умном светодиоде такой генератор тоже есть, но он встроен уже в чип.
Модуль на Verilog начнем вот так:
Здесь думаю все понятно: тактовая частота clk, входной и выходной сигналы «умного светодиода» in и out, ну и, конечно, выходные сигналы r, g, b через которые я буду управлять реальными внешними светодиодами красным, зеленым и синим.
Входной сигнал я буду захватывать в двухбитный сдвиговый регистр и по текущему состоянию в этих захваченных битах смогу определить начало положительного фронта сигнала in:
Кроме этого, важно определить состояние сброса ленты, когда управляющий контроллер выдерживает паузу перед началом новой передачи:
Дальше, от положительного фронта in_pos_edge нужно выдержать некоторую паузу, чтобы получить момент фиксации нового бита:
Количество уже принятых бит в чипе считаем так:
Здесь вводится еще важный сигнал pass, который как раз и определяет перенаправление входного потока на выход. После принятия 24х бит пикселя сигнал pass устанавливается в единицу:
На выход out мультиплексируются входные данные, когда сигнал pass_final в единице.
Ну и, конечно, нужен сдвиговый регистр, где накапливаются принятые 24 бита пикселя:
По приему всех 24х бит они переписываются в итоговый так же 24х битный регистр.
Теперь остается дело за малым. Нужно реализовать ШИМ (Широтно Импульсную Модуляцию) сигнала для передачи яркости реальным внешним светодиодам согласно принятым байтам RGB:
Остается маленькая деталь — как это все испытать?
Я взял несколько простых плат с ПЛИС MAX II (это платы серии Марсоход) и прошил их все проектом с вот этим Verilog кодом. На платах уже было 8 светодиодов, но они были все желтые. На каждой из плат я заменил 3 светодиода на R, G, B. Платы соединил последовательно и более того подключил их к настоящей светодиодной ленте. Таким образом, я удлинил настоящую ленту своими самодельными светодиодами.
Получилось вот такое соединение:
В реальности это выглядит вот так:
Теперь, подавая на ленту некоторое изображение я вижу, что мои «умные светодиоды» ведут себе точно так же, как и настоящие из ленты:
Получается, что реализованная мною в ПЛИС логика вполне работоспособна! Я смог в первом приближении сделать нечто похожее на реальный чип «умного светодиода».
Вообще, мне нравятся светодиодные ленты. На их основе каждый может изобрести что-то свое: интеллектуальное освещение, экраны, амбилайт эффекты. Однажды я даже реализовал цветомузыку на светодионой ленте под управлением FPGA. Но это уже другая история.
Что такое адресная светодиодная лента
Адресные светодиоды входят в состав адресной ленты – это основное ее отличие от обычной. Каждый светодиодный элемент подключен к цепи параллельно, но получает команду на включение или выключение в индивидуальном порядке. Так образуется один из 1,500,000 возможных оттенков. Каждый такой светодиод имеет свой собственный уникальный адрес, то есть месторасположение.
Драйвер управляет им с помощью специальных команд. Каждый из этих элементов имеет собственный микрочип, который обладает тремя выходами – выход и вход для данных, выбор режима работы. В статье разобраны вопросы устройства, строения и использования адресной светодиодной ленты. В качестве дополнения, в статье размещено два ролика и одна подробная научная статья.
Технические характеристики
Адресная светодиодная лента состоит из RGB-светодиодов в SMD корпусе 5050 и микрочипов ШИМ-драйверов. В настоящее время наиболее популярными являются адресные LED-ленты с использованием чипов WS2811 и WS2812B. Модификация WS2811 представляет собой интегральную микросхему (ИМС) в корпусе DIP-8 (9,2х6,4 мм) или SOP-8 (5,1х4,0 мм). Данный 3-канальный драйвер имеет следующую конфигурацию выводов:
Адресная светодиодная лента – каждый светодиод получает питание от общего источника, но включается по индивидуальной команде.
В адресной ленте с использованием чипа WS2811 и питанием 5 вольт микросхема драйвера располагается в непосредственной близости перед каждым RGB-светодиодом SMD 5050, рядом с которым также установлены токоограничивающие резисторы и конденсатор, защищающий от помех. Но на сегодняшний момент такие модели устарели и встречаются крайне редко. Сегодня в продаже имеются адресные светодиодные ленты на чипах WS2811 только с питанием от +12 В. В этом случае чип WS2811 управляет не одним светодиодом, а группой из 3 штук.
Не успела ИМС WS2811 обрести популярность, как её место заняла более совершенная WS2812B. Данный тип ШИМ-драйвера намного компактнее и размещается непосредственно в корпусе светодиода SMD 5050. Если присмотреться, то под прозрачным люминофором можно увидеть миниатюрный чёрный прямоугольник с отходящими позолоченными проводниками.
Подобная унификация позволила значительно упростить сборку адресных светодиодных лент и модулей, а сам WS2812B имеет лишь 4 вывода:
Сфера применения
Относительно высокая стоимость светодиодов и лент, собранных на чипах WS2811 и WS2812B, ограничивает их область применения в сравнении с обычными LED-лентами. Главным образом их используют для решения таких задач, с которыми обычной светодиодной ленте не справиться:
Интерес к адресной светодиодной ленте среди радиолюбителей вызван тем, что на её основе можно собрать подсветку, которая будет изменять цвет и яркость по заданному алгоритму.
Как это работает
Адресная лента WS2812B поделена на сегменты, в каждом из которых расположен светодиод и конденсатор (для повышения помехоустойчивости). Относительно напряжения питания все они между собой подключены параллельно, то есть +5 В будет присутствовать на каждом сегменте. А вот передача данных осуществляется последовательно: от предыдущего сегмента к последующему. Поэтому при выходе из строя одного из светодиодов цепи все следующие сегменты перестанут светиться. Управление готовыми устройствами и модулями на базе WS2812.
У каждой адресной ленты есть начало и конец, которые нельзя менять местами во время сборки схемы. Чтобы не запутаться, производители используют условные обозначения, например, стрелки, указывающие направление сигнала. Подключение адресной светодиодной ленты WS2812B к Arduino производится по трём проводам, как показано на рисунке.Контакты питания +5V и GND соединяют с соответствующими выводами на плате Arduino.
Если подсоединяемый отрезок насчитывает более 13-ти светодиодов, то необходимо использовать выносной блок питания. При этом общий провод (GND) Arduino и «минус» блока питания должны быть соединены между собой. Контакт DIN (digital input) предназначен для приёма данных от контроллера и электрически соединяется с любым из его цифровых портов. С другой стороны адресной ленты (и каждого сегмента тоже) размещено 3 контакта: +5V, DO (digital output) и GND, к которым можно подключить ещё несколько отрезков разной длины.
Далее следует пауза длиною до 50 мкс, означающая, что второй по счёту драйвер должен принять следующие 3 байта. И так далее. Длительность паузы больше 50 мкс означает конец передачи и повторение цикла. Для работы с адресными лентами и модулями проще всего использовать библиотеки FastLED и Adafruit NeoPixel. Внутри каждой библиотеки есть готовые скетчи, на основе которых несложно научиться самостоятельно создавать новые световые эффекты. Чтобы скетч заработал с первого раза, необходимо в заголовке правильно указать количество светодиодов в ленте (NUM_LEDS) и номер порта для передачи данных (PIN).
Адресные ленты стоят дороже обычных лент, и применяются обычно там, где простые ленты по какой-то причине не применимы: полноцветные модульные сборки, декоративная подсветка с управлением «soft light», наружная реклама и т. д. Особенность таких сборок в том, что они способны изменять и цвет и яркость отдельных своих сегментов по более сложному алгоритму, нежели простые LED-ленты, даже если эти LED-ленты оснащены умными драйверами. ШИМ-сигнал управления подается со специального запрограммированного контроллера на вход ленты, и передается последовательно на вход одного чипа (digital input – DI), выходит из него (digital output – DO), затем проходит через второй чип, и т. д. Управление легко осуществить при помощи программы на ардуино.
Протокол
Теперь, когда мы разобрались, как подключить нашу ленту к Arduino, нам надо понять, как ею управлять, для этого в даташите есть описание протокола, который мы сейчас и рассмотрим. Каждый светодиод WS2812B имеет один вход (DIN) и один выход (DO). Выход каждого светодиода подключается ко входу следующего. Подавать сигналы же надо на вход самого первого светодиода, таким образом, он запустит цепь, и данные будут поступать от первого ко второму, от второго к третьему и т. д. Команды светодиодам передаются пачками по 24 бита (3 байта, один байт на каждый цвет, первым передается байт для зеленого, потом для красного, и заканчивает байт для синего светодиода.
Порядок бит – от старшего к младшему). Перед каждой пачкой идет пауза в 50 мкс. Пауза больше 100 мкс воспринимается как окончание передачи. Все биты, будь то 0 или 1, имеют фиксированное время 1.25 мкс. Бит 1 кодируется импульсом в 0.8 мкс, после чего идет пауза в 0.45 мкс. Бит 0 кодируется импульсом в 0.4 мкс, после чего идет пауза в 0.85 мкс. Собственно, наглядная диаграмма на фото ниже. Так же допускаются небольшие погрешности в 0-150 нс на каждый фронт. Ну и следует учесть, что подобное необходимо повторить для каждого светодиода на ленте, после чего сделать паузу минимум в 100 мкс. Потом можно повторить передачу.
Глядя на все эти цифры, становится ясно, что сделать все это, используя стандартные функции digitalWrite, delay и тому подобные – попросту невозможно, ввиду их долгой работы и неточности. Реализовать подобный протокол можно только использовав специальные библиотеки вроде CyberLib или написав собственную на чистом Си или, того хуже для нынешнего программиста, на Ассемблере. Но не все так плохо, как кажется. Светодиоды WS2812B довольно таки популярны в Arduino сообществе, а это значит, что нам не придётся вдаваться в такие сложности, и достаточно выбрать одно из понравившихся решений.
Библиотеки
Поискав в интернете, вы найдете, как минимум, две большие библиотеки для работы со светодиодами WS2812B. Под большими библиотеками я подразумеваю не количество функций и возможностей, хотя и это то же, а количество людей, участвовавших в их разработке. Конечно, поискав, еще можно найти и другие библиотеки, разработанные отдельно взятыми ардуинщиками, но работающими не на всех микроконтроллерах Arduino и с большим количеством багов.
Теперь давайте напишем наш излюбленный пример Blink, используя обе эти библиотеки, и затем сравним их.
Заключение
Лента основана на светодиодах WS2812B в корпусе LED 5050, куда в корпус производители поместили не только три встроенных светодиода (Красный, Зеленый, Синий), но и управляемый ШИМ драйвер, управляющий их яркостью. Благодаря этому мы можем получить произвольный цвет, изменяя яркость встроенных светодиодов, а так же управлять отдельно взятым пикселем на ленте. Собственно, три встроенных разноцветных светодиода вместе с ШИМ драйвером и образуют светодиод WS2812B.
В статье описано строение и монтаж адресной ленты. Более подробная информация на данную тему содержится Практикум по адресным лентам. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet.
В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:
Гайд по адресной светодиодной ленте
Данный гайд посвящен адресной светодиодной ленте применительно к использованию с микроконтроллерами (Arduino, esp8266). Рассмотрены базовые понятия, подключение, частые ошибки и места для покупки.
КУПИТЬ АДРЕСНУЮ ЛЕНТУ
Лента WS2812
Гибкий профиль
Гирлянда
Полоски
Кольца
Матрицы
ТИПЫ АДРЕСНЫХ ЛЕНТ
Сейчас появилось несколько разновидностей адресных светодиодных лент, они основаны на разных светодиодах. Рассмотрим линейку китайских чипов с названием WS28XX.
Чип | Напряжение | Светодиодов на чип | Кол-во дата-входов | Купить в РФ |
WS2811 | 12-24V | 3 | 1 | 30 led, 60 led |
WS2812 | 3.5-5.3V | 1 | 1 | 30 led, 60 led, 144 led |
WS2813 | 3.5-5.3V | 1 | 2 (дублирующий) | 30 led, 60 led |
WS2815 | 9-13.5V | 1 | 2 (дублирующий) | 30 led, 60 led |
WS2818 | 12/24V | 3 | 2 (дублирующий) | 60 led |
У двухпиновых лент из линейки WS28XX достаточно подключить к контроллеру только пин DI, пин BI подключать не нужно. При соединении кусков ленты нужно соединять все пины!
WS2811 (WS2818) и WS2812
Сейчас популярны два вида ленты: на чипах WS2812b и WS2811 (и новая WS2818). В чём их разница? Чип WS2812 размещён внутри светодиода, таким образом один чип управляет цветом одного диода, а питание ленты – 5 Вольт. Чип WS2811 и WS2818 размещён отдельно и от него питаются сразу 3 светодиода, таком образом можно управлять цветом только сегментами по 3 диода в каждом. А вот напряжение питания у таких лент составляет 12-24 Вольта!
ЧТО ТАКОЕ АДРЕСНАЯ ЛЕНТА
Итак, данный гайд посвящен адресной светодиодной ленте, я решил сделать его познавательным и подробным, поэтому дойдя до пункта “типичные ошибки и неисправности” вы сможете диагностировать и успешно излечить косорукость сборки даже не читая вышеупомянутого пункта. Что такое адресная лента? Рассмотрим эволюцию светодиодных лент.
Обычная светодиодная лента представляет собой ленту с напаянными светодиодами и резисторами, на питание имеет два провода: плюс и минус. Напряжение бывает разное: 5 и 12 вольт постоянки и 220 переменки. Да, в розетку. Для 5 и 12 вольтовых лент нужно использовать блоки питания. Светит такая лента одним цветом, которой зависит от светодиодов.
RGB светодиодная лента. На этой ленте стоят ргб (читай эргэбэ – Рэд Грин Блю) светодиоды. Такой светодиод имеет уже 4 выхода, один общий +12 (анод), и три минуса (катода) на каждый цвет, т.е. внутри одного светодиода находится три светодиода разных цветов. Соответственно такие же выходы имеет и лента: 12, G, R, B. Подавая питание на общий 12 и любой из цветов, мы включаем этот цвет. Подадим на все три – получим белый, зелёный и красный дадут жёлтый, и так далее. Для таких лент существуют контроллеры с пультами, типичный контроллер представляет собой три полевых транзистора на каждый цвет и микроконтроллер, который управляет транзисторами, таким образом давая возможность включить любой цвет. И, как вы уже поняли, да, управлять такой лентой с ардуино очень просто. Берем три полевика, и ШИМим их analogWrit’ом, изи бризи.
Адресная светодиодная лента, вершина эволюции лент. Представляет собой ленту из адресных диодов, один такой светодиод состоит из RGB светодиода и контроллера. Да, внутри светодиода уже находится контроллер с тремя транзисторными выходами! Внутри каждого! Ну дают китайцы блэт! Благодаря такой начинке у нас есть возможность управлять цветом (то бишь яркостью r g b) любого светодиода в ленте и создавать потрясающие эффекты. Адресная лента может иметь 3-4 контакта для подключения, два из них всегда питание (5V и GND например), и остальные (один или два) – логические, для управления.
Лента “умная” и управляется по специальному цифровому протоколу. Это означает, что если просто воткнуть в ленту питание не произойдет ровным счётом ничего, то есть проверить ленту без управляющего контроллера нельзя. Если вы потрогаете цифровой вход ленты, то скорее всего несколько светодиодов загорятся случайными цветами, потому что вы вносите случайные помехи, которые воспринимаются контроллерами диодов как команды. Для управления лентой используются готовые контроллеры, но гораздо интереснее рулить лентой вручную, используя, например, платформу ардуино, для чего ленту нужно правильно подключить. И вот тут есть несколько критических моментов:
ОСОБЕННОСТИ ПОДКЛЮЧЕНИЯ
1) Команды в ленте передаются от диода к диоду, паровозиком. У ленты есть начало и конец, направление движение команд на некоторых моделях указано стрелочками. Для примера рассмотрим ws2812b, у нее три контакта. Два на питание, а вот третий в начале ленты называется DI (digital input), а в конце – DO (digital output). Лента принимает команды в контакт DI! Контакт DO нужен для подключения дополнительных кусков ленты или соединения матриц.
2) Если в схеме возможна ситуация, при которой на ленту не будет подаваться питание 5V, но будет отправляться сигнал с микроконтроллера – лента начнёт питаться от дата-пина. В этом случае может сгореть как первый светодиод в ленте, так и пин контроллера. Не испытывайте удачу, поставьте резистор с сопротивлением 200-500 Ом. Точность резистора? Любая. Мощность резистора? Любая. Да, даже 1/4.
2.1) Если между лентой и контроллером (Arduino) большое расстояние, т.е. длинные провода (длиннее 50 см), то сигнальный провод и землю нужно скрутить в косичку для защиты от наводок, так как протокол связи у ленты достаточно скоростной (800 кГц), на него сильно влияют внешние наводки, а экранирование земляной скруткой поможет этого избежать. Без этого может наблюдаться такая картина: лента не работает до тех пор, пока не коснёшься рукой сигнального провода.
2.2) При подключении ленты к микроконтроллерам с 3.3V логикой (esp8266, ESP32, STM32) появляется проблема: лента питается от 5V, а сигнал получает 3.3V. В даташите указана максимальная разница между питанием и управляющим сигналом, если её превысить – лента не будет работать или будет работать нестабильно, с артефактами. Для исправления ситуации можно:
3) Самый важный пункт, который почему то все игнорируют: цифровой сигнал ходит по двум проводам, поэтому для его передачи одного провода от ардуины мало. Какой второй? Земля GND. Как? Контакт ленты GND и пин GND Ардуино (любой из имеющихся) должны быть обязательно соединены. Смотрим два примера.
4) Питание. Один цвет одного светодиода при максимальной яркости кушает 12 миллиампер. В одном светодиоде три цвета, итого
36 мА на диод. Пусть у вас есть метр ленты с плотностью 60 диод/метр, тогда 60*36 = 2.1 Ампера при максимальной яркости белого цвета, соответственно нужно брать БП, который с этим справится. Также нужно подумать, в каком режиме будет работать лента. Если это режимы типа «радуга», то мощность можно принять как половину от максимальной. Подробнее о блоках питания, а также о связанных с ними глюках читай здесь.
5) Продолжая тему питания, хочу отметить важность качества пайки силовых точек (подключение провода к ленте, подключение этого же провода к БП), а также толщину проводов. Как показывает мой опыт, брать нужно провод сечением минимум 1.5 квадрата, если нужна полная яркость. Пример: на проводе 0.75 кв.мм. на длине 1.5 метра при токе 2 Ампера падает 0.8 вольта, что критично для 5 вольт питания. Первый признак просадки напряжения: заданный программно белый цвет светит не белым, а отдаёт в жёлтый/красный. Чем краснее, тем сильнее просело напряжение!
6) Мигающая лента создаёт помехи на линию питания, а если лента и контроллер питаются от одного источника – помехи идут на микроконтроллер и могут стать причиной нестабильной работы, глюков и даже перезагрузки (если БП слабый). Для сглаживания таких помех рекомендуется ставить электролитический конденсатор 6.3V ёмкостью 470 мкФ (ставить более ёмкий нет смысла) по питанию микроконтроллера, а также более “жирный” конденсатор (1000 или 2200 мкФ) на питание ленты. Ставить их необязательно, но очень желательно. Если вы заметите зависания и глюки в работе системы (Ардуино + лента + другое железо), то причиной в 50% является как раз питание.
7) Слой меди на ленте не очень толстый (особенно на модели ECO), поэтому от точки подключения питания вдоль ленты напряжение начинает падать: чем больше яркость, тем больше просадка. Если нужно сделать большой и яркий кусок ленты, то питание нужно дублировать медным проводом 1.5 (или больше, надо экспериментировать) квадрата через каждый метр.
КАК ДЕЛАТЬ НЕЛЬЗЯ
Как мы уже поняли, для питания ленты нужен источник 5 Вольт с достаточным запасом по току, а именно: один цвет одного качественного светодиода на максимальной яркости потребляет 0.012 А (12 мА), соответственно весь светодиод – 0.036 А (36 мА) на максимальной яркости. У китайцев есть “китайские” ленты, которые потребляют меньше и светят тускло. Я всегда закупаюсь в магазине BTF lighting (ссылки в начале статьи), у них ленты качественные. Я понимаю, что порой очень хочется запитать ленту напрямую от Ардуино через USB, либо используя бортовой стабилизатор платы. Так делать нельзя. В первом случае есть риск выгорания защитного диода на плате Arduino (в худшем случае – выгорания USB порта), во втором – синий дым пойдёт из стабилизатора на плате. Если всё-таки очень хочется, есть два варианта:
Вы наверное спросите: а как тогда прошивать проект с лентой? Ведь судя по первой картинке так подключать нельзя! Оч просто: если прошивка не включает ленту сразу после запуска – прошивайте. Если включает и есть риск перегрузки по току – подключаем внешнее питание на 5V и GND.