Что такое абсцисса и ордината 7 класс на координатной плоскости
Прямоугольная система координат. Ось абсцисс и ординат
Прямоугольная декартова система координат
Французский математик Рене Декарт предложил вместо геометрических построений использовать математические расчеты. Так появился метод координат, о котором мы сейчас расскажем.
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты школы тоже можно записать числами — они помогут понять, где именно находится наша школа. С точками на плоскости та же история.
Координатой можно назвать номер столика в кафе, широту и долготу на географической карте, положение точки на числовой оси и даже номер телефона друга. Проще говоря, когда мы обозначаем какой-то объект набором букв, чисел или других символов, тем самым мы задаем его координаты.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
Единичные отрезки располагаются справа и слева от оси Oy, вверх и вниз от оси Oy. Числовые значения на оси Oy располагаются слева или справа, на оси Ox — внизу под ней. Чаще всего единичные отрезки двух осей соответствуют друг другу, но бывают задачи, где они не равны.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
Чтобы узнать координаты точки в прямоугольной системе координат, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра. Координаты записывают в скобках, первая по оси Ох, вторая по оси Оу.
Курсы подготовки к ОГЭ по математике от Skysmart придадут уверенности в себе и помогут освежить знания перед экзаменом.
Координаты точки в декартовой системе координат
Для начала отложим точку М на координатной оси Ох. Любое действительное число xM равно единственной точке М, которая располагается на данной прямой. При этом начало отсчета координатных прямых всегда ноль.
Каждая точка М, которая расположена на Ох, равна действительному числу xM. Этим действительным числом и является ноль, если точка М расположена в начале координат, то есть на пересечении Оx и Оу. Если точка удалена в положительном направлении, то число длины отрезка положительно и наоборот.
Число xM — это координата точки М на заданной координатной прямой.
Пусть точка будет проекцией точки Mx на Ох, а My на Оу. Значит, через точку М можно провести перпендикулярные осям Оx и Оу прямые, после чего получим соответственные точки пересечения Mx и My.Тогда у точки Mx на оси Оx есть соответствующее число xM, а My на Оу — yM. Как это выглядит на координатных осях:
Каждой точке М на заданной плоскости в прямоугольной декартовой системе координат соответствует пара чисел (xM, yM), которые называются ее координатами. Абсцисса М — это xM, ордината М — это yM.
Обратное утверждение тоже верно: каждая пара (xM, yM) имеет соответствующую точку на плоскости.
Прямоугольная система координат
Содержание
Иногда в жизни, чтобы найти на плоскости какой-то объект, его описывают двумя значениями. Так каждое место в зале кинотеатра имеет два параметра: ряд и место. Каждая клетка на шахматной доске или при игре в «морской бой» описывается номером строки и буквой, обозначающей столбец.
В математике определение местоположения объекта на плоскости придумали быстро находить с помощью системы координат, образованной двумя прямыми, называемых координатными осями (или осями координат).
Ось координат
Абсцисса, ордината, начало координат и единичный отрезок
Оси пересекаются под прямым углом перпендикулярно друг к другу, поэтому такая система координат и называется прямоугольной.
На каждой оси выбирается единичный отрезок, с помощью которого вычисляются координаты объекта. Длиной единичного отрезка может выступать любая единица измерения, но она должна быть одинаковой на каждой из осей. То есть, если единичный отрезок на оси абсцисс задан, например, равным 1 см, то и на оси ординат единичный отрезок тоже должен быть равен одному сантиметру.
Абсцисса, ордината, начало координат и единичный отрезок
Положительное и отрицательное направление
У осей стрелкой задается положительное направление:
Таким образом, все вместе:
образуют в математике прямоугольную систему координат, плоскость называют координатной.
Или другими словами:
Четверти
Осями координат плоскость делится на 4 части, их обозначают римскими цифрами. Каждая часть называется «квадрант». Другие названия: «координатный угол» или «четверть». Нумерация четвертей принята против часовой стрелки в том порядке, в котором указано на рисунке ниже.
Четверти координатной плоскости
Немного из истории
В латинском языке слово «координаты» получилось из двух других: co – «совместно» и ordinatus – «определенный», «упорядоченный».
Впервые необходимость нахождения координат объектов возникла в географии и астрономии. Для этого использовали широту и долготу, определяющие расположение точки на небесной сфере или на поверхности земного шара. Таким образом начали вычислять координаты точек еще в 14 веке. Но упорядочил и систематизировал все знания в 17 веке французский математик по имени Рене Декарт. Поэтому прямоугольную систему координат также называют еще и «декартовой».
Обычно абсцисса относится к горизонтальной оси ( x ), а ордината относится к вертикальной оси ( y ) стандартного двухмерного графика.
Абсциссой точки является подписанный мерой его проекции на первичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).
Ордината точки является подписанный мерой его проекции на вторичной оси, чье абсолютное значение является расстоянием между проекцией и началом координат оси, и знак которого определяется местоположение на проекции относительно начала координат (до : отрицательный; после: положительный).
СОДЕРЖАНИЕ
Этимология
В своей работе 1892 года « Vorlesungen über die Geschichte der Mathematik» (« Лекции по истории математики »), том 2, немецкий историк математики Мориц Кантор пишет:
Gleichwohl ist durch [Stefano degli Angeli] vermuthlich ein Wort in den Mathematischen Sprachschatz eingeführt worden, welches gerade in der analytischen Geometrie sich als zukunftsreich bewährt hat. […] Wir kennen keine ältere Benutzung des Wortes Abscisse in lateinischen Originalschriften. Vielleicht Kommt Дас Сусло в Uebersetzungen дер Apollonischen Kegelschnitte VOR, WO Buch I Satz 20 из ἀποτεμνομέναις фильеры Rede ист, wofür ES Kaum Ein entsprechenderes lateinisches Сусло ALS абсцисса Гебен möchte.
Использование слова «ордината» связано с латинским выражением «linea ordinata Applicata» или «параллельная линия».
В параметрических уравнениях
Справочник по математике
математика, алгебра, геометрия
§ 6. Координаты
Две взаимно перпендикулярные прямые X’X и У’У (рис. 1) образуют прямоугольную систему координат. Прямые X’X и У’У называются осями координату X одна из них X’X (обычно изображаемая горизонтально) называется осью абсцисс; другая У’У — осью ординат; точка О их пересечения — началом координат. На каждой из осей произвольно выбирается масштаб.
Взяв произвольную точку М на плоскости, в которой расположены оси, найдем ее проекции Р и Q на координатные оси. Отрезок ОР на оси абсцисс, а также число х, измеряющее его в избранном масштабе, называется абсциссой точки М; отрезок OQ на оси ординат, а также измеряющее его число у — ординатой точки М. Величины х = ОР и у = OQ называют прямоугольными координатами (или просто координатами) точки М. Они считаются положительными или отрицательными в соответствии с заранее устанавливаемыми направлениями положительных отрезков на каждой из осей (обычно на оси абсцисс положительные отрезки откладываются вправо, а на оси ординат вверх).
Каждой точке плоскости соответствует одна пара чисел х, у. Каждой паре (действительных) чисел х, у соответствует одна точка М. Прямоугольная система координат часто называется декартовой по имени французского философа и математика Р. Декарта, широко применившего координаты к исследованию многих геометрических вопросов. Это название однако неправильно.
Декарт пользовался не двумя осями, а одной, на которой откладывались абсциссы; ординаты определялись как расстояния точек плоскости от оси абсцисс; эти расстояния Декарт отсчитывал по любому заранее выбранному направлению, а не обязательно по перпендикуляру. Как абсциссы, так и ординаты у Декарта были всегда величинами положительными независимо от направления соответствующих отрезков. В большинстве учебников различение направлений на осях знаками + и – ошибочно приписывается Декарту, тогда как оно было введено лишь его учениками.
§ 6. Координаты : 1 комментарий
Прямоугольная система координат на плоскости образуется двумя взаимно перпендикулярными осями координат
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.
Координатная плоскость
Урок 46. Математика 6 класс
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Координатная плоскость»
В повседневной жизни вы могли слышать такую фразу: «Оставьте мне ваши координаты!».
Как вы понимаете эту фразу?
Это выражение означает, что собеседник должен оставить свой адрес или номер телефона, т.е. данные, по которым его можно найти.
Числа, с помощью которых указывают, где находится некоторый объект, называют его координатами.
С координатами вы уже не раз встречались и в математике. Вы умеете выполнять две операции: отмечать на координатной прямой точку с заданной координатой и, наоборот, определять координату заданной точки. Для этого на прямой выбирают начало отсчёта, положительное направление и единичный отрезок. После этого любая точка прямой получает свою собственную координату.
Координата точки указывает, таким образом, её место на координатной прямой.
Возникает вопрос: а можно ли определить местоположение точки на плоскости?
Наверняка, хоть раз в жизни вы играли в такую игру как «Морской бой».
Поле этой игры состоит из квадрата размерами 10 на 10 клеточек. В этом поле изображаются корабли: 1 четырёхклеточный, 2 трёхклеточных, 3 двухклеточных и 4 одноклеточных. При этом между любыми двумя соседними кораблями должен оставаться промежуток не меньше одной клетки.
На экране изображён один из вариантов расположения кораблей. Каждая клеточка квадрата обозначается парой: (буква –число), указанных вдоль нижней и левой сторон квадрата. Например, корабль расположен в клетке (Ж; 4). Суть этой игры найти все корабли соперника первым. При обозначении положения клетки первой указывают её горизонтальную координату, а второй – вертикальную.
Именно в этом и состоит суть координат или, как обычно говорят, системы координат: это правило, по которому определяется положение того или иного объекта.
Системы координат встречаются в нашей жизни постоянно.
Вы знакомы с системой координат в зрительном зале кинотеатра (номер ряда и номер места), в поезде (номер вагона и номер места), с системой географических координат (долгота и широта).
Что нужно знать для того, чтобы найти своё место в кинотеатре? Места в зрительном зале кинотеатра задают двумя числами: первым числом обозначают номер ряда, а вторым – номер кресла в этом ряду. Значит, чтобы правильно занять своё место в зрительном зале необходимо знать две координаты: ряд и место.
Например, в билете указаны: 3 ряд 2 место. Посмотрите где это место расположено.
Обратите внимание, что при определении местоположения нам необходимо знать две характеристики или два значения.
Подобным образом можно обозначить и положение точки на плоскости.
Рене Декарт – французский математик ввёл в 1637 году систему координат, которая используется во всем мире и известна каждому школьнику. Её называют также «Декартова система координат».
Чтобы задать декартову прямоугольную систему координат на плоскости проводят две взаимно перпендикулярные координатные прямые х и у, называемые координатными осями.
Точка пересечения осей – «O» называется началом координат.
На каждой оси ОX и ОY задаётся положительное направление и выбирается единичный отрезок.
Каждая из координатных осей имеет своё название: горизонтальную ось называют осью абсцисс (или осью х), вертикальную ось называют осью ординат (или осью у). Эти прямые составляют систему координат на плоскости.
Плоскость, на которой задана система координат, называется координатной плоскостью.
Оси разбивают координатную плоскость на четыре части, которые называют координатными четвертями. Их нумеруют римскими цифрами и против часовой стрелки.
Говорят: первая четверть, вторая четверть, третья четверть и четвертая четверть.
Каждая точка такой плоскости имеет две координаты.
Рассмотрим, как определяется положение точки на координатной плоскости.
Например, у нас есть точка М. И нужно определить её координаты. Для этого проведём перпендикуляр из этой точки на горизонтальную ось или ось абсцисс.
Точка пересечения с осью х называется абсциссой точки М.
В нашем случае, абсцисса точки М 3.
Далее, из этой же точки проведём перпендикуляр до пересечения с вертикальной осью, или осью ординат.
Точка пересечения с осью у называется ординатой точки М.
В нашем случае, ордината точки М 5.
Абсцисса и ордината точки М называются координатами этой точки. Их принято записывать рядом с буквой, обозначающей точку, в круглых скобках. Причем, на первом месте всегда пишется абсцисса, а на втором – ордината.
Читают эту запись так: «точка М с абсциссой 3 и ординатой 5», или «точка М с координатами 3 и 5». Обратите внимание, если переставить координаты местами, то получится совсем другая точка. Например, точка N (5; 3).
Координаты точки (х;у) на плоскости – это пара чисел, в которой на первом месте стоит абсцисса (х), а на втором – ордината (у) этой точки.
Сделаем вывод: координаты можно указать для любой точки координатной плоскости: для этого надо из точки провести перпендикуляры на координатные оси и определить, какому числу координатной оси соответствует основание перпендикуляра.
Точки любой прямой, перпендикулярной оси абсцисс, имеют одну и ту же абсциссу.
Например, все точки прямой а имеют абсциссу 4. Все точки оси ординат имеют абсциссу 0, т.е. координаты любой точки оси ординат имеют вид (0; у).
Точки любой прямой, перпендикулярной оси ординат, имеют одну и ту же ординату.
Начало координат – точка О – лежит и на оси абсцисс, и на оси ординат. Значит, её координаты (0; 0).
Построить точку по её координатам можно несколькими способами.
Например, построим точку А (-5; 7).
Второй способ построения точки по заданным координатам. Можно сместиться по оси ОХ влево на 5 единиц, т.к. абсцисса точки – отрицательное число. А затем, параллельно оси ОX вверх на 7 единиц, т.к. ордината точки положительное число. Точка, где пересеклись оба перпендикуляра, и есть искомая точка А.
Сделаем ещё один очень важный вывод:
Каждой точке на координатной плоскости соответствует пара чисел: её абсцисса и ордината. Наоборот, каждой паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.
Построите на координатной плоскости точки, а затем последовательно соедините их отрезками.
Какая фигура у нас получилась в итоге? Правильно! Это котик.