Что такое 69 группа в тепловозе
Для реализации указанных контуров регулирования используются следующие
сигналы обратной связи:
-по току якорей тяговых электродвигателей Iя
( максимальное значение тока якоря
из шести измеренных токов тяговых электродвигателей Iя1 – Iя6 );
-по току возбуждения тяговых электродвигателей Iв;
-по скорости движения локомотива – от датчиков ДС1; ДС2.
Рассмотрим функциональное назначение и взаимодействие перечисленных контуров
Контур регулирования тока возбуждения ТЭД представляет собой
пропорциональный регулятор формирующий заданное приращение тока возбуждения ТЭД
в зависимости от разности между заданным током Iяз и измеренным током якоря Iя
При этом заданный ток якоря определяется по заданной скорости движения локомотива с
учетом заданного ограничения по тормозной силе.
Контур ограничения тока якоря ТЭД вступает в работу в случае превышения значе-
ния ограничения тока якоря ( 800 А ) или значения ограничения тока якоря по коммутацион-
ной способности, определяемого из выражения Iя V 820 115 для скорости движения
тепловоза свыше 115 км.
Контур ограничения минимальной тормозной силы вступает в работу при установке
контроллера машиниста на одну из тормозных позиций и поддерживает минимальную
тормозную силу в течении 6 сек для сжатия состава.
МСУ-ТЭ обеспечивает все режимы электрического торможения с максимальным
тормозным усилием, при этом постоянно контролируя нарастание тормозной силы и
сцепление колесных пар с рельсами (по токораспределению между тяговыми
электродвигателями). При ухудшении сцепления темп нарастания тормозной силы сначала
уменьшается, потом останавливается, а при необходимости – начинает уменьшаться.
Управление электрическим тормозом.
На пульте управления машиниста находятся два оперативных органа управления
режимами электрического тормоза:
-тумблер “Тяга-Тормоз”, расположенный на контроллере машиниста:
-выключатель Вк4 “Тормоз электрический”.
Схема управления электрическим тормозом совместно с системой пневматического
-возможность включения, отключения и управления ЭТ с помощью одного из двух
Что такое 69 группа в тепловозе
Рис. 1 – Дизель-генератор 1А-9ДГ
1 – турбокомпрессор; 2 – коллектор выпускной; 3 – вентилятор охлаждения тягового генератора; 4 – регулятор частоты вращения и мощности; 5 – возбудитель тягового генератора; 6 – генератор тяговый (переменного тока); 7 – рама поддизельная; 8 – маслоохладитель; 9 – масляный фильтр грубой очистки; 10 – насос масляный; 11 – насос водяной; 12 – охладитель наддувочного воздуха; 13 – центробежные фильтры масла; 14 – маслоотделительный бачок; 15 – поддон дизеля.
Мощностной ряд четырёхтактных дизелей типа Д49 (ЧН26/26) включает 8-, 12-, 16- и 20-цилиндровые модификации дизелей мощностью от 585 до 4410 кВт.
Рис. 2 – Общий вид дизеля
1 – привод насосов; 2 – воздухоохладитель; 3 – лоток дизеля; 4 – блок дизеля;
Степень унификации деталей различных моделей ряда равна 87%. Все основные узлы дизелей типа Д49 одинаковы для всех его модификаций.
Рис. 3 – Фрагмент дизеля
1 – коленчатый вал; 2 – ведущий диск муфты; 3 – маслоохладитель;
4 – поддизельная рама.
Рис. 4 – Блок дизеля
1 – лоток дизеля; 2 – шпилька крепления крышки цилиндра; 3 – верхняя часть блока; 4 – нижняя часть блока; 5 – смотровой люк; 6 – стойка.
Коленчатый вал стальной, азотированный. Для уменьшения напряжений, возникающих вследствие крутильных колебаний, на переднем конце коленчатого вала установлен комбинированный антивибратор, состоящий из маятникового антивибратора и силиконового демпфера вязкого трения.
Рис. 5 – Фрагмент коленчатого вала
1 – комбинированный антивибратор; 2 – шпилька крепления противовеса; 3 – противовес; 4 – коренная шейка; 5 – щека; 6 – коренная шейка; 7 – шатунная шейка.
Шатунный механизм состоит из главных и прицепных шатунов. Прицепной шатун болтами крепится к пальцу, установленному в проушинах главного шатуна. Поршень составной. Головка крепится к тронку шпильками, в отверстия тронка установлен палец плавающего типа, застопоренный для предотвращения осевого перемещения кольцами. Поршни охлаждаются маслом, поступающим из масляной системы дизеля через шатуны.
1 – прицепной шатун; 2 – поршневая 1 – главный шатун; 2 – поршень;
шпилька; 3 – тронк поршня; 4 – головка 3 – поршневой палец; 4 –поршне-
В крышке цилиндра расположены два впускных и два выпускных клапана, и индикаторный кран. На крышке установлены рычаги привода клапанов. Втулка цилиндра подвешена и прикреплена к крышке цилиндра шпильками.
Рис. 8 – Крышка цилиндра
1 – крышка; 2 – пружины клапана;
3 – двуплечий рычаг.
Стык между крышкой и втулкой (газовый стык) уплотняется стальной омеднённой прокладкой. На втулку напрессована рубашка, которая образует полость для прохода охлаждающей воды.
Рис. 9 – Втулка цилиндра
1 – втулка для перетока воды в крышку; 2 – шпилька крепления крышки; 3 – утолщенный бурт гильзы; 4 – гильза; 5 – следы кавитационной коррозии.
Лоток с распределительным валом расположен в верхней части блока. На лотке установлены топливные насосы высокого давления. Распределительный вал (один на оба ряда цилиндров) приводится во вращение от коленчатого вала зубчатой передачей, имеющейся на заднем торце блока цилиндров, которая одновременно является приводом объединённого регулятора 4, тахометра, предельного выключателя, возбудителя 5, стартер-генератора и вентилятора охлаждения тягового генератора 3.
Рис. 10 – Вспомогательное оборудование дизеля
1 – вентилятор охлаждения генератора; 2 – объединенный регулятор дизеля; 3 – возбудитель.
Топливная система высокого давления состоит из 16 индивидуальных насосов плунжерного типа и 16 форсунок закрытого типа. Топливо от насосов высокого давления подаётся к форсункам по трубопроводу высокого давления.
Топливоподкачивающая система состоит из топливоподкачивающего насоса, топливоподкачивающего агрегата (установлен на тепловозе), фильтров грубой очистки (установлены на тепловозе), топливоподогревателя (установлен на тепловозе), фильтра тонкой очистки и перепускного клапана, обеспечивающего необходимое давление топлива, поступающего к топливным насосам высокого давления.
Рис. 11 – Привод насосов
1 – масляные насосы; 2 – топливный насос; 3 – водяные насосы.
Масляная система состоит из двух масляных насосов 10, маслопрокачивающего насоса (установлен на тепловозе), фильтров грубой очистки масла 9, фильтров полнопоточной (установлены на тепловозе) и центробежной 13 очистки масла, клапанов системы, водомасляного теплообменника 8. На дизели последних выпусков вместо фильтров грубой и полнопоточной очистки масла устанавливают автоматический фильтр масла с обратной промывкой.
На дизеле имеется предельный выключатель, который в случае повышения частоты вращения коленчатого вала выше допустимой посредством рычажной передачи выключает подачу топлива в цилиндры и одновременно подаёт импульс механизму воздушной захлопки, перекрывающей поступление воздуха из воздушной улитки турбокомпрессора в охладитель наддувочного воздуха и ресивер дизеля.
Система охлаждения дизеля водяная, принудительная, двухконтурная, закрытая, с избыточным давлением в расширительном баке тепловоза в результате естественного парообразования. Циркуляция воды в системе обеспечивается центробежными насосами.
Картер дизеля вентилируется отсосом газов на всасывание в турбокомпрессор 1. Разрежение в картере регулируется автоматически. В целях предотвращения скопления масла в ресивере наддувочного воздуха на дизеле имеется система удаления масла из ресивера в ёмкость, расположенную с левой стороны в раме. Для контроля за работой этой системы на раме предусмотрен специальный штуцер.
На переднем торце дизеля установлены привод насосов, турбокомпрессор 1, охладитель наддувочного воздуха 12, реле давления масла, автомат системы вентиляции картера.
дизеля: 1 – воздухоохладитель; 2 – маслоотделительный бачок.
От привода насосов приводятся во вращение два насоса масла, два насоса воды, топливоподкачивающий насос. С левой стороны дизеля расположены фильтр масла грубой очистки 9, центробежные фильтры 13, теплообменник масла 8, объединённый регулятор 4 со встроенной в него защитой дизеля от падения давления масла в масляной системе и пусковой сервомотор.
С правой стороны дизеля – фильтр тонкой очистки топлива, предельный выключатель и маслоотделительный бачок 14 системы вентиляции картера. Выпускные газы подводятся к турбокомпрессору по выпускному патрубку 2.
1 – центробежные фильтры масла; 1 – охладитель масла.
2 – поддизельная рама.
Пуск дизеля осуществляется через привод распределительного вала стартер-генератором, расположенным на тяговом генераторе. В генераторном режиме стартер-генератор питает цепи управления тепловоза и производит подзарядку аккумуляторных батарей.
На тяговом генераторе также расположен возбудитель тягового генератора 5, получающий вращение от привода распределительного вала. Стартер-генератор и возбудитель соединены с приводом распределительного вала двойными резиновыми пальцевыми муфтами.
Со стороны привода распределительного вала на дизеле установлен манометр магнитоиндукционного тахометра (последний установлен на тепловозе), а также имеется место для ручного замера частоты вращения коленчатого вала дизеля. В системе тепловоза предусмотрена защита дизеля от перегрева воды и масла.
На переднем торце дизеля установлено реле давления масла Д-250Б, которое через электросхему тепловоза обеспечивает дополнительную защиту (остановку дизеля) при падении давления масла на входе в дизель ниже 0,07 МПа (0,7кгс/см²), а также реле давления масла, блокирующее через электросхему тепловоза пуск дизеля при давлении масла в системе дизеля менее 0,03МПа (0,3 кгс/см²). Дизель имеет защиту от повышения давления в картере.
Полезные статьи
Дизель Д49
Конструкция Д 49
Одним видов дизельного двигателя является четырёхтактный Д49. Дизель Д49 имеет такую особенность, которая позволяет варьировать число цилиндров (от 2 до 8), диаметром 260 мм. Сваренные между собой вертикально и горизонтально расположенные листы представляют раму дизеля типа д49. Для того, что бы рама была прочнее и надёжнее, её конструкцию дополнили рёбрами жёсткости.
Масло сливается в поддоны, которые находятся снизу рамы. Сами поддоны закрыты специальными стенками, что не позволяет маслу разлиться, разбрызгаться и исключает иные всевозможные неприятные ситуации. Состав поддона подразумевает наличие специального канала для стекания масла (коллектора).
Рама также является основой, на которую при помощи болтов устанавливаются генераторы. Блок дизеля в данном случае не является исключением. Модель рамы — это полный аналог рамы 10Д100.
Доступные варианты дизеля типа Д49
5Д49 — тепловозный дизель, идеально подходит для тепловозов различных серий и модификаций. Впервые устройство типа д49 было установлено на 2ТЭ116, имело 12 цилиндров и располагало мощностью в 2000 кВт. В процессе эксплуатации были выявлены некоторые недостатки, которые стали причиной приостановки их установки и производства.
На сегодняшний день Д49 — это группа дизеля, где каждая отдельная модель, в первую очередь, характеризуется своим, отличительным числом цилиндров:
Параметры и характеристики устройства
Агрегат имеет следующие характеристики:
От существующих на сегодняшний день аналогов (10Д100 и Д50) конструкция устройства типа д49 значительно отличается. В первую очередь, это касается наличия тяговых показателей, благодаря которым работа дизеля идеальна и max длительна. Он способен функционировать «на износ». Такое преимущество и обеспечило большую популярность устройству, особенно в кораблестроении.
Ремонтные работы дизеля
Любой дизель, в том числе и типа Д49, имеет свой определённый срок эксплуатации, а также периоды, в которые необходимо осуществлять ТО и ремонт. В основном, при обнаружении поломки любой из деталей, проводится частичное ремонтирование с разборкой дизеля. Работы могут быть реализованы несколькими способами, всё зависит от ситуации и величины повреждений.
Не разбирая дизель полностью можно осуществить оперативное вмешательство, в процессе которого поршень дизеля осматривается, детали поддаются шлифовке или вправлению.
Неисправности, в результате которых тепловоз не подлежит дальнейшей эксплуатации, то есть не может функционировать, считаются серьёзными поломками. К таким ситуациям стоит относиться со всей серьёзностью, ведь они могут стать причиной больших проблем. Даже мелкая неисправность дизелей д49 со временем отразится на работе всей системы механизмов тепловоза.
Одна поломка влечёт за собой другу, так и запускается цепная реакция. Учитывая то, что все работы выполняются под воздействием высокого давления, то все деформации и любые отклонения от норм могут навредить запчастям и полностью ввести их из строя. Восстановить их уже не получится.
Взрыв дизеля — самая опасная ситуация, к которой может привести несвоевременное или некачественное обслуживание агрегатов. Выбирая компанию для сотрудничества, убедитесь в её компетентности.
7-6Д49 — разновидность блока цилиндров дизеля
Блок дизеля — это сварно-литое изделие, имеющее V-образную форму. Верхняя часть блока оснащена литыми стойками с встроенными шпильками, при помощи которых крепится цилиндровая крышка дизеля д49.
Дизель типа 7-6Д49 плоский, в связи с чем, для обеспечения надёжного крепления стоек с подвесками, помимо использования вертикальных болтов, агрегат нуждается в применении болтов и горизонтального типа. Для расположения в верхней части блока втулок цилиндров, имеется восемь секций.
Конструкцией развала блока предусмотрены:
Схема блока цилиндров дизеля 7-6Д49 очень схожа со схемой строения блока модели 3А-6Д49, но всё же имеет некоторые особенности, которые и предопределяют его возможности и способ использования.
Средства защиты дизеля
Под защитой дизеля принято понимать меры, посредством которых дизель будет: остановлен, с него снимется часть нагрузки или будет полностью заблокирована возможность его запуска.
Причин для остановки техники может быть несколько. В основном, это ситуации когда подводит масляная система дизеля или топливная система дизеля д49.
На практике можно столкнуться с ситуациями, при которых:
Реализация процесса защиты в виде разгрузки происходит при достижении воды температуры более 98 о С (выходя из дизеля), вращение коленчатого вала составляет порядка 820-1000 оборотов в минуту, а показатель входного давления масла не достигает даже 2,025атм.
Масляная система дизеля не начнёт своё функционирование, если работает валопроворотный механизм, перед запуском масло не было прокачано 60 секунд, а давление меньше 0,1 атм. Будет включена сигнализация, если t o масла при поступлении в двигатель превышает значение в 85 о С.
Общие сведения о дизеле типа Д49
Независимо от количества встроенных цилиндров в Д49, каждый из них имеет 4 клапана, в развале цилиндров установлен впускной коллектор, а снаружи — выпускной. У каждого цилиндра также имеется своя секция ТНВД. Управление осуществляется несколькими валами с 1-го регулятора.
Поршень дизеля перемещается в процессе функционирования при помощи цилиндровых гильз, которые направляют поршни, образуя рабочий объём. Шатунно поршневая группа требует особого контроля в процессе эксплуатации, проведения ТО и ремонтов. Это позволит обеспечить продуктивное и длительное функционирование всего агрегата.
Коленчатый вал — самая дорогостоящая деталь двигателя, которая при функционировании системы подвергается самому большому износу из-за поступательных движений, высокого давления и взаимодействия с рядом расположенными деталями. КВ не защищен, в связи с этим его конфигурация разработана достаточно прочной и износостойкой. Очень важно при установке детали сделать всё правильно, ведь неправильное расположение может привести к саморазрушению.
Правильный запуск двигателя представляет собой 4 этапа, где вначале повышается температура, после чего увеличивается вязкость масла, а как результат и сила сопротивления. Только потом двигатель запускается. Категорически запрещено запускать холодный двигатель, это приведёт к его быстрому износу.
Как устроен и работает тепловоз (часть 1)
Опубликовано 09.05.2020 · Обновлено 06.11.2021
По железным дорогам нашей страны ведут поезда тепловозы и электровозы. Мы в повседневной жизни видим их постоянно, особенно когда путешествуем по железной дороге. Эта статья о тепловозах, для всех кому интересна эта тема. Здесь я не буду углубляться в тонкости определенных узлов, агрегатов и премудростей устройства. Кого интересует конкретное устройство тепловозов, читайте мои статьи на данном сайте.
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107-300×208.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107.jpg» width=»1000″ height=»694″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107.jpg» alt=»Тепловоз 2ТЭ10М | Тепловоз 2ТЭ10М | Движение24″class=»wp-image-9840″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107-300×208.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107-768×533.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9107.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Тепловоз 2ТЭ10М | Движение24″ /> Тепловоз 2ТЭ10М
Что такое тепловоз?
Тепловоз — это локомотив с установленным на нем двигателем внутреннего сгорания (дизелем), он мобилен и не требует для работы посторонних устройств и сооружений, например контактной сети, как электровоз. Силовой установкой на всех тепловозах являются именно дизели, мощность которых зависит от назначения локомотива.
Машинное отделение тепловоза — дизель
По роду службы их подразделяют на грузовые, пассажирские и маневровые. Но для движения одного дизеля естественно мало, для передачи его мощности к колесным парам используются следующие принципиальные схемы – электрическая и гидравлическая. В электрической передаче используется генератор электрического тока, вращаемый дизелем, а вырабатываемый ток питает тяговые электродвигатели, в гидравлической передаче рабочим телом, которое передает вращение к колесным парам, является жидкость (масло). В гидромуфтах и гидротрансформаторах создаваемый насосным колесом, вращаемым дизелем, напор масла воздействует на турбинное колесо, через которое передается вращающий момент посредством карданных валов на редукторы, в которых установлены колесные пары тепловоза, но все это конечно очень упрощенно, в общих чертах. Мы немного коснемся работы гидропередачи позже, а подробное описание техническим языком можно прочитать в моей статье здесь.
Устройство тепловоза
Все тепловозы имеют раму, на которой установлен дизель, независимо от типа передачи, на раме устанавливается кузов тепловоза и все необходимые агрегаты. Кузов тепловоза опирается через шкворни на рамы тележек, которые могут совершать повороты в любую сторону, согласно профиля пути. Тележки еще имеют скользящие опоры с обоих сторон, которые также опираются на раму тепловоза.
Тележка тепловоза, буксы
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1-300×217.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1.jpg» width=»1000″ height=»724″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1.jpg» alt=»ТЕЛЕЖКА ТЕПЛОВОЗА | ТЕЛЕЖКА ТЕПЛОВОЗА | Движение24″class=»wp-image-9910″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1-300×217.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1-768×556.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_6759-1.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»ТЕЛЕЖКА ТЕПЛОВОЗА | Движение24″ /> Тележка тепловоза, буксы
В рамах тележек установлены или тяговые электродвигатели при электрической передаче или тяговые редукторы при гидравлической передаче, торцы осей колесных пар располагаются в буксовых узлах, корпуса которых в свою очередь располагаются либо в жестких направляющих, так называемых «челюстях» (тележки челюстного типа), либо специальными поводками соединяются с рамой (бесчелюстной тип).
Таким образом через рамы тележек тяговые усилия передаются на раму тепловоза в которой установлены автосцепные устройства, соединенные с автосцепками вагонов и все, поехали. В принципе такое-же устройство имеют и тележки электровозов.
Электрическая передача
Такой тип передачи нашел наиболее широкое распространение. Дизель тепловоза, при такой передаче, с помощью пластинчатой муфты присоединяется к валу электрогенератора — эта система называется дизель-генераторной установкой (ДГУ). Электрические передачи могут работать как на постоянном, так и на переменном токе, и даже на переменно-постоянном токе.
При постоянном токе как тяговый генератор, так и тяговые электродвигатели работают соответственно на постоянном токе. Такая передача наиболее проста, хорошо регулируются параметры тяговых электродвигателей, однако как двигатели, так и генератор постоянного тока в составе имеют щеточно-коллекторный аппарат, содержащий трущиеся друг об друга элементы, что значительно снижает их надежность, увеличивает трудоемкость при изготовлении и обслуживании, у таких электрический машин большие габариты и вес. Но тем не менее большинство тепловозов работают на электрической передаче.
Щёточно-коллекторный аппарат ТЭД
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105-300×204.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105.jpg» width=»1000″ height=»680″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105.jpg» alt=»Щёточно-коллекторный аппарат ТЭД | Щёточно-коллекторный аппарат ТЭД | Движение24″class=»wp-image-9841″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105-300×204.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105-768×522.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9105.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Щёточно-коллекторный аппарат ТЭД | Движение24″ /> Щёточно-коллекторный аппарат ТЭД
Передача переменно-постоянного тока
На тепловозах с данным типом передачи тяговый генератор вырабатывает переменный ток, а тяговые электродвигатели работают уже на постоянном токе. Понятное дело, что переменный ток не подойдет для питания ТЭД постоянного тока, и между двигателем и генератором должен быть некоторый преобразователь — в нашем случае это выпрямительная установка (ВУ). Габариты генератора меньше, а вес ниже, а также в нем отсутствуют трущиеся части, такие как щелочно-коллекторный аппарат. Соответственно один узел является более надежным и менее трудоемким в производстве и обслуживании. Однако ввод третьего узла — ВУ немного уменьшает положительные качества такой системы, да и КПД у тепловозов с такой передачей меньше, чем у постоянников.
Тяговый электродвигатель (ТЭД) от тепловоза
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-300×208.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100.jpg» width=»1000″ height=»692″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100.jpg» alt=»Тяговый электродвигатель ТЭД от тепловоза | Тяговый электродвигатель ТЭД от тепловоза | Движение24″class=»wp-image-9847″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-300×208.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100-768×531.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9100.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Тяговый электродвигатель ТЭД от тепловоза | Движение24″ /> Тяговый электродвигатель (ТЭД) от тепловоза
Передача переменного тока
В настоящее время приобретает все большее развитие. В этой передаче как тяговый генератор так и тяговые электродвигатели работают на переменном токе. Соответственно щелочно-коллекторный аппарат отсутствует вообще, такие электроустановки очень надежны. Почему же ранее не использовалась такая выгодная схема? — Все дело в том, что частота вращения и крутящий момент ТЭД переменного тока регулируются изменением частоты тока и напряжения, что является достаточно сложной задачей. Решается эта задача с помощью преобразователя частоты, который включается между двигателями и генератором. На железные дороги нашей страны уже выходят тепловозы именно с такой передачей, она особенно эффективна на локомотивах большой мощности.
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108-300×200.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108.jpg» width=»1000″ height=»667″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108.jpg» alt=»Тепловозный дизель | Тепловозный дизель | Движение24″class=»wp-image-9838″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108-300×200.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108-768×512.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9108.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Тепловозный дизель | Движение24″ /> Тепловозный дизель
Принцип работы генератора
Идем дальше. Вот наш условный дизель начинает вращать главный генератор (ГГ), пусть он будет постоянного тока, чтобы выработанный им ток пошел на питание тяговых двигателей. Прогуляемся немного в славный мир электротехники, откуда нам уже давно известно, что при перемещении какого-нибудь проводника в магнитном поле в этом проводнике возникает электрический ток. Это и есть генератор. Если по этому проводнику мы возьмем и пропустим ток, то уже получится электродвигатель. Потому-что вокруг любого проводника с током образуется магнитное поле. Здесь мы немного остановимся. Принципы понятны. Магнитное поле в генераторе создает ток протекающий в обмотке возбуждения, которая расположена по кругу корпуса генератора (статор), это понятно, ведь постоянный магнит не установишь на всех двигателях и генераторах, так и ресурсов не напасешься и постоянных магнитов такой мощности просто не существует, поэтому и подают ток на обмотки возбуждения, превращая их в мощные магниты.
Тяговый генератор тепловоза
» data-medium-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106-300×204.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106.jpg» width=»1000″ height=»680″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106.jpg» alt=»Тяговый генератор тепловоза | Тяговый генератор тепловоза | Движение24″class=»wp-image-9842″ data-srcset=»https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106-300×204.jpg 300w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106-768×522.jpg 768w, https://cdn.dvizhenie24.ru/2020/05/dvizhenie24_ru_9106.jpg 1000w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Тяговый генератор тепловоза | Движение24″ /> Тяговый генератор тепловоза
ЭДС и противоЭДС
Теперь главное – в электродвигателях ток протекает и по обмотке в якоре, поэтому магнитные поля обмоток возбуждения и якоря друг с другом взаимодействуют, что и приводит к вращению якоря. В генераторах по якорю, который вращается от коленчатого вала дизеля, ток не пропускается, но в его обмотках под воздействием магнитных полей возбуждения возникает электрический ток, который и питает тяговые электродвигатели. И чем быстрее вращается якорь, тем большее напряжение мы получаем на выходе. Но есть одна серьезная и очень серьезная сила – электродвижущая сила (ЭДС), которая возникает при подключенной нагрузке (подключение цепей ТЭД) при вращении якоря, и физически направлена она против направления вращения якоря, в электротехнике она называется «противоЭДС». То есть эта сила можно сказать всячески сопротивляется вращению, она увеличивается с увеличением электрической нагрузки. Вот это и есть главное, что преодолевает всей своей мощью дизель, поэтому тепловозные дизели все не слабые, иначе не провернешь вал генератора под нагрузкой. Именно противоЭДС используется в тяговых электродвигателях тепловозов и электровозов, когда они переводятся в генераторный режим (по обмоткам якорей не протекает ток), это называется — реостатное (рекуперативное) торможение, когда скорость поезда снижается благодаря только электродвигателям, без применения автоматических тормозов и надо сказать, здорово тормозит и держит необходимую скорость, особенно на затяжных спусках, я всегда использовал этот вид торможения, когда можно было выбирать.
Управление дизелем
Все управление дизелем, аппаратами, машинами и агрегатами происходит с пульта управления из кабины машинистом. Управление осуществляется электрическим путем, с помощью применения электромагнитных контакторов и электрических реле в цепях управления, а в силовых цепях работают электропневматические контакторы. Контроллер машиниста имеет 15 (на некоторых тепловозах 8) позиций и представляет из себя электрический аппарат с контактами, замыкание и размыкание которых приводит к различным действиям в цепях управления, благодаря чему происходит коммутация (сборка-разборка) различных комбинаций электрических цепей, каждая из которых отвечает за определенный режим работы силовых агрегатов локомотива. Контроллер может поворачиваться рукояткой или штурвалом, в современных тепловозах небольшой рукояткой или джойстиком, все зависит от конструкции, все позиции контроллеры фиксированные. На тепловозах не существует педали газа, как на автомобилях, а обороты дизеля регулируются специальным устройством – регулятором числа оборотов (РЧО), также регулятор частоты вращения (РЧВ), но смысл один и тот же. Это устройство закрепляется на корпусе дизеля и соединяется с коленчатым валом дизеля. Управляется РЧО контроллером машиниста посредством специальных электромагнитов (МР), их всего пять, через металлическую пластину.
Машинное отделение тепловоза — дизель
Регулятор частоты вращения коленчатого вала
В данном регуляторе с помощью специальных гидравлических устройств (золотника, гидравлического сервомотора, специальной буксы) происходит перемещение реек топливных насосов высокого давления (ТНВД ) к плунжерным парам, само перемещение осуществляет сервомотор, в результате чего подача топлива либо увеличивается, либо уменьшается.
Постоянство оборотов поддерживается системой, использующей принцип центробежной силы – парой грузиков и пружиной, перемещающих золотник. Все современные тепловозы оборудованы регуляторами совмещающими несколько устройств, и автоматического регулирования нагрузки дизеля, и автоматической корректировки подачи топлива по давлению наддувочного воздуха и устройств по ограничению мощности дизель-генератора.
А зачем мощность дизель-генератора ограничивать?
Выше я писал про зловредную противоЭДС, возникающую в главном генераторе, которую силовая установка мужественно преодолевает, вот и главное: мощность дизеля всегда должна соответствовать нагрузке, создаваемой потребителем энергии, и в нашем случае нагрузкой для является главный генератор, а для него уже электродвигатели колесных пар (вот собственно и схема электрической передачи). Как раз регулировка мощности осуществляется уменьшением или увеличением подачи топлива в цилиндры в соответствии с изменением нагрузки генератора.
Тепловоз в разрезе
Почему бы не оставить подачу топлива постоянной?
Если это произойдет, то при изменении нагрузки на ТЭД (например поезд едет в гору или с горы) частота вращения вала дизеля тоже изменится, что может привести к неприятным последствиям. Когда в дизель стабильно подается один объем топлива, то и энергия его сгорания остается постоянной, а вместе с ней и производимая мощность, однако если нагрузка на генератор вдруг уменьшится (поезд поехал с горы), то есть уменьшится противоЭДС, но топливо-то все еще поступает в прежнем объеме.. И вот мы получаем «излишнюю» мощность, которая направляется в раскрутку коленчатого вала, который теперь не отягощен противоЭДС, и в конце концов дизель может «пойти вразнос» — крайне неприятная вещь (разбегайся кто куда). При увеличении нагрузки и постоянной подаче топлива мощности дизеля просто станет не достаточно, для продолжения стабильной работы, частота вращения вала будет уменьшаться, в конечном счете дизель будет не в силах преодолевать нагрузку главного генератора и заглохнет, на профессиональном языке – генератор «задавит» дизель. Чтобы не произошло всех этих неприятностей, необходимо изменять подачу топлива и устанавливать ее каждый раз в соответствии с изменившейся нагрузкой, и все это без изменения позиций контроллера.
Машинное отделение тепловоза
Вот эту непростую задачу в пути следования и решают наши автоматические регуляторы частоты вращения вала дизеля, совместно с очень непростой системой автоматического управления электрической передачей тепловоза. Она регулирует посредством многих систем, аппаратов, агрегатов нагрузку главного генератора и в конце концов подачу топлива. Эту систему я описал отдельно, но в нее входят: магнитный усилитель с самовозбуждением – амплистат, имеющий кучу обмоток, синхронный подвозбудитель, трансформаторы постоянного тока (ТПТ) и постоянного напряжения (ТПН), тахогенератор, регулятор напряжения, селективный узел и т.д. В общем всего навалом, но не так страшно, если разобраться, вся работа системы основана на принципах электромагнитной индукции. В итоге на регуляторе размещен эектромагнитный датчик – индуктивный датчик (ИД), шток которого также соединен с рейками топливного насоса и он также изменяет подачу топлива в зависимости от сложившихся условий.