Что создают вокруг себя неподвижные электрические заряды
§ 1. Взаимодействие токов
Продолжим изучение электродинамики. Ознакомимся с магнитными полями, не изменяющимися с течением времени, и магнитными и электрическими полями, изменяющимися со временем. С электрическими полями, не изменяющимися с течением времени, вы ознакомились в 10 классе.
Неподвижные электрические заряды создают вокруг себя электрическое поле. Движущиеся заряды создают, кроме того, магнитное поле.
Между неподвижными электрическими зарядами действуют силы, определяемые законом Кулона. Согласно теории близкодействия это взаимодействие осуществляется так: каждый из зарядов создает электрическое поле, которое действует на другой заряд. Однако между электрическими зарядами могут существовать силы и иной природы. Их можно обнаружить с помощью следующего опыта.
1 Проводники заряжаются от источника тока, но заряды проводников при разности потенциалов между ними в несколько вольт ничтожно малы. Поэтому кулоновские силы никак не проявляются.
Если теперь другие концы проводников замкнуть проволокой так, чтобы в проводниках возникли токи противоположного направления, то проводники начнут отталкиваться друг от друга (рис. 1.2). В случае же токов одного направления проводники притягиваются (рис. 1.3).
Взаимодействия между проводниками с током, т. е. взаимодействия между направленно движущимися электрическими зарядами, называют магнитными. Силы, с которыми проводники с током действуют друг на друга, называют магнитными силами.
Магнитное поле
Согласно теории близкодействия, подобно тому как в пространстве, окружающем неподвижные электрические заряды, возникает электрическое поле, в пространстве, окружающем токи, возникает поле, называемое магнитным.
Электрический ток в проводнике создает вокруг себя магнитное поле, которое действует на ток в другом проводнике. А поле, созданное электрическим током второго проводника, действует на первый.
Магнитное поле представляет собой особую форму материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.
Перечислим основные свойства магнитного поля, которые установлены экспериментально.
1. Магнитное поле порождается электрическим током (направленно движущимися зарядами).
2. Магнитное поле обнаруживается по действию на электрический ток (на движущиеся заряды).
Подобно электрическому полю, магнитное поле существует реально, независимо от нас, от наших знаний о нем.
Экспериментальным доказательством реальности магнитного поля, как и реальности электрического поля, может служить факт существования электромагнитных волн.
Что создают вокруг себя неподвижные электрические заряды
Тесты по физике 9 класс. Тема: «Электромагнитное поле»
Правильный вариант ответа отмечен знаком +
1. При изменении (увеличении или уменьшении) числа линий магнитной индукции, пронизывающих замкнутый проводящий контур, происходит появление …
2. Неподвижные электрические заряды создают вокруг себя …
+ только электрическое поле.
— только магнитное поле.
— и электрическое и магнитное поля.
3. При наличии переменного магнитного поля, в окружающем его пространстве, появляется …
+ вихревое электрическое поле.
— постоянное электрическое поле.
4. При наличии переменного электрического поля, в окружающем его пространстве, появляется …
+ вихревое магнитное поле.
— постоянное магнитное поле.
5. Для создания магнитного поля необходимо наличие …
+ движущихся зарядов (электрического тока) или переменного электрического поля.
— только движущихся зарядов (электрического тока).
— только переменного электрического поля.
— электромагнитных колебаний в окружающей среде.
6. Наличие магнитного поля в пространстве обнаруживается посредством …
+ его действия на движущиеся заряды (электрический ток) или магнитную стрелку.
— его действия только на движущиеся заряды (электрический ток).
— его действия только на магнитную стрелку.
— его действия только на металлическую рамку без тока.
7. Взаимно порождающие друг друга и связанные между собой вихревые электрическое и магнитное поля образуют – …
+ единое электромагнитное поле.
— сильное ультрафиолетовое излучение.
— поток заряженных частиц.
— поток нейтральных и заряженных частиц.
8. Наличие постоянного магнита приводит к появлению в пространстве вокруг себя …
+ только магнитного поля.
— только электрического поля.
— постоянных электрического и магнитного полей.
— переменного электромагнитного поля.
9. Не является характерным признаком, свойственным вихревому электрическому полю – …
+ источником являются электрические заряды.
— силовые линии замкнуты.
— источником является переменное магнитное поле.
— порождает вокруг себя переменное магнитное поле.
тест 10. Не является характерным признаком электростатического поля – …
+ источником является постоянное магнитное поле.
— силовые линии начинаются на положительных зарядах и заканчиваются на отрицательных.
— источником являются неподвижные заряды.
— наличие в пространстве обнаруживается по действию на неподвижные заряды.
11. Отклонение магнитной стрелки, помещенной вблизи проводника с током, от первоначального положения в опыте Эрстеда, вызвано действием …
— суперпозиции электрического и магнитного поля.
12. Причина сильной аномалии поля земного магнетизма, связанная с необычным поведением магнитной стрелки, в районе Белгорода и Курска – …
+ залежи железной руды.
— активность космических частиц.
— движение ионов в воздухе.
13. Для наглядного изображения магнитного поля используют так называемые магнитные линии. Магнитные линии магнитного поля прямого проводника с током по форме имеют вид – …
+ концентрических окружностей, охватывающих проводник.
— замкнутых кривых вокруг этого проводника.
— прямых линий, параллельных проводнику.
— радиальных линий, отходящих от оси проводника.
Магнитные линии полосового магнита
14. В основе работы электродвигателя лежит явление…
+ взаимодействия рамки с током с магнитным полем.
— электростатического взаимодействия зарядов.
— взаимодействия магнитной стрелки с магнитным полем.
— взаимодействия рамки с током с электрическим полем.
15. Автор теории электромагнитного поля – …
16. Существование электромагнитного поля было …
+ предсказано Максвеллом задолго до его экспериментального обнаружения.
— экспериментально обнаружено Герцем до появления теории Максвелла.
— предсказано Фарадеем, после открытия им явления электромагнитной индукции.
— обнаружено Эрстедом в опытах по взаимодействию проводника с током и магнитной стрелки.
17. Источником электромагнитного поля служит – …
+ ускоренно движущийся электрический заряд.
— ускоренно движущийся постоянный магнит.
— равномерно движущийся электрический заряд.
— неподвижный электрический заряд.
18. Электромагнитное поле распространяется в пространстве в виде …
+ поперечной электромагнитной волны.
— продольной электромагнитной волны.
— потока заряженных частиц.
— потока нейтральных частиц.
19. Вокруг прямолинейного проводника с постоянным током возникает …
тест-20. Переменное электрическое поле является вихревым, поскольку силовые линии …
— начинаются и завершаются на отрицательных зарядах.
— у этого поля отсутствуют.
— начинаются и завершаются на положительных зарядах
21. Магнитная стрелка (северный полюс затемнен), которая может поворачиваться вокруг вертикальной оси, перпендикулярной плоскости чертежа, и постоянный магнит расположили так, как показано на рисунке. При этом стрелка …
Первоначальное расположение постоянного магнита и магнитной стрелки
+ сохранит свое первоначальное положение.
— повернется на 90° против часовой стрелки.
— повернется на 90° по часовой стрелке.
22. Стержень из закаленной стали будет намагниченным, т.е. станет постоянным магнитом, если …
+ создать вокруг него сильное магнитное поле.
— поднести его к заряженному телу.
— обмотать его металлической проволокой.
— нагреть его до 100 оС.
23. Стальная игла расположена между полюсами постоянного магнита. Через некоторое время игла намагнитилась. При этом на ее концах 1 и 2, соответственно, образуются: …
Игла между полюсами магнита
+ в точке 1 – южный полюс, в точке 2 – северный.
— в точке 1 – северный полюс, в точке 2 – южный.
— в точках 1 и 2 – северный полюс.
— в точках 1 и 2 – южный полюс.
24. Выберите верное (-ые) утверждение (-я).
А: наличие магнитного поля можно обнаружить по его действию на магнитную стрелку.
Б: наличие магнитного поля можно обнаружить по его действию на движущийся заряд.
В: наличие магнитного поля можно обнаружить по действию на проводник с током.
25. Магнитные линии в данной точке пространства имеют направление, совпадающее с направлением …
+ северного полюса магнитной стрелки, помещенной в эту точку.
— южного полюса магнитной стрелки, помещенной в эту точку.
— силы, действующей на неподвижный заряд в этой точке.
— силы, действующей на движущийся заряд в этой точке.
26. Выберите верное (-ые) утверждение (-я).
А: магнитные линии замкнуты.
Б: магнитные линии гуще располагаются в тех областях, где значение индукции поля больше.
В: направление силовых линий совпадает с направлением северного полюса магнитной стрелки в этой точке.
27. Согласно теории электромагнитного поля Максвелла
А: переменное электрическое поле порождает вихревое магнитное поле.
Б: переменное магнитное поле порождает вихревое электрическое поле.
Выберите верное (-ые) утверждение (я).
+ Оба варианта: А, и Б.
— Ни один из вариантов: ни А, ни Б.
28. Электротехническое устройство, в основе работы которого лежит явление возникновения индукционного тока – …
— электромагнит в подъемном кране.
тест_30. В момент появления тока в замкнутой цепи, которая содержит катушку индуктивности…
+ появляется индукционный ток, препятствующий увеличению значения тока.
— появляется индукционный ток, способствующий увеличению значения тока.
— не возникнет индукционного тока.
— возникнет индукционный ток, значение которого не зависит от характера изменения тока.
Электрическое поле и способы его описания
Если снять шерстяной свитер в сухую погоду, мы услышим треск. А если снимать свитер в темноте, иногда можно даже заметить искорки электрических разрядов.
Если расчесывать в сухую погоду сухие волосы пластмассовой расческой, то происходит ее электризация трением. Наэлектризованная расческа получит заряд и сможет притягивать небольшие кусочки бумаги.
Проделывая опыт с расческой и сухими волосами, можно убедиться, что наэлектризованные волосы и расческа буду притягиваться. Мы наблюдаем притяжение, значит, волосы и расческа обладают противоположными зарядами. Приближая расческу к волосам, обнаружим, что притяжение между ними возрастает.
Этот опыт позволил убедиться, что заряды действуют друг на друга на расстоянии. Чем ближе заряды находятся, тем сильнее их взаимное действие друг на друга.
Существует, так же, безударное взаимное действие тел – их притяжение, или отталкивание. К примеру, в механике, силу притяжения между телами, имеющими массу, вычисляют с помощью закона всемирного тяготения.
А силу взаимодействия электрических зарядов описывает закон Кулона.
Взаимодействие зарядов передается без участия вещества
Заряды будут притягиваться и отталкиваться не только в воздухе, но, даже в безвоздушном пространстве. В этом легко убедиться, если поместить заряженный электроскоп под колокол и откачать из-под колокола воздух. Полоски бумаги, имеющие одинаковые заряды, все так же, продолжат отталкиваться, независимо от того, в воздухе ли они находятся, либо в безвоздушном пространстве.
Это значит, что передача взаимодействия зарядов происходит не через вещество.
Ученые из Англии – Майкл Фарадей и Джеймс Максвелл, долгое время изучали электрические заряды. Они выяснили, что заряды окружены особым видом материи, которую они назвали электрическим полем.
Любой заряд окружен электрическим полем — особым видом материи.
Теории дальнодействия и близкодействия
Физики выдвигали различные теории, пытаясь объяснить взаимодействие зарядов. Наибольшее распространение получили две – их называют теориями близкодействия и дальнодействия.
Дальнодействие
Теория дальнодействия сообщает, что один заряд действует на другой заряд непосредственно. То есть, чтобы передать действие одного заряда на другой, посредники не нужны.
Кроме того, взаимодействие происходит мгновенно на любых расстояниях. Это значит, что если убрать один из взаимодействующих зарядов, то его действие на оставшийся заряд прекратится мгновенно.
Близкодействие
В противоположность этой теории Майкл Фарадей предложил свою теорию близкодействия.
Эта теория заявляет о том, что непосредственно действовать друг на друга заряды не могут. То есть, для передачи своего воздействия заряду нужна некоторый помощник. И каждый заряд создает в пространстве вокруг себя этого помощника. Фарадей назвал его электрическим полем.
На другие заряды будет действовать не сам заряд, а поле, созданное этим зарядом. Такое поле распространяется в пространстве не мгновенно, а с конечной скоростью.
Примечание: Как выяснилось позже, это очень большая скорость – триста тысяч километров в секунду. Ее называют скоростью света.
Поэтому, если один из взаимодействующих зарядов быстро убрать, то второй заряд узнает о его исчезновении не мгновенно, а через некоторое, пусть небольшое, время.
Получается, что взаимодействие зарядов протекает не непосредственно, а в виде цепочки. Каждый заряд создает вокруг себя поле, именно поле действует на другой заряд, помещенный в него.
А сила, действующая на заряд, расположенный в какой-либо точке пространства, зависит от характеристик поля в этой точке.
В настоящее время общепринятой теорией, объясняющей взаимодействие зарядов, является теория близкодействия Фарадея. Так как эта теория полностью подтвердилась экспериментально.
Примечание: Кроме электрических существуют, так же, магнитные поля. В отличие от электростатического, магнитное поле не имеет своих магнитных источников. Оно возникает в пространстве вокруг движущихся зарядов. То есть, магнитное поле – это поле электрических зарядов, находящихся в движении.
Джеймс Клерк Максвелл в середине 19-го века показал, что электрическое и магнитное поля связаны и это электромагнитное поле распространяется в пространстве с очень большой, но конечной скоростью.
Поле и вещество – это два вида материи
Мир, окружающий нас, материален. Значит, материя – это то, что существует реально, независимо от того, наблюдаем ли мы за ней, или нет.
Она может проявлять себя в виде двух частей — вещества и поля. Нас окружает вещество, а атомы и молекулы — это мельчайшие единицы вещества.
Поле – это еще один вид материи. Поле веществом не является, однако, оно существует реально.
Как обнаружить электрическое поле
Мы не чувствуем электрическое поле, так как у нас нет органов чувств, способных его обнаружить.
Но, используя нечто, что обладает чувствительностью к электрическому полю, можно убедиться, что поле, окружающее заряды, существует.
В качестве чувствительного элемента можно использовать любой электрический заряд. Потому, что любой заряд окружен своим собственным электрическим полем и, благодаря ему может чувствовать подобные поля, создаваемые другими зарядами. Такой заряд, используемый для обнаружения поля, физики называют пробным.
Примечания:
Мы можем обнаружить электрическое поле благодаря его действию на другие заряды. Электрическая сила — это сила, с которой поле действует на внесенный в него пробный заряд.
Примечание: Не следует путать пробный и элементарный заряд.
Две характеристики электростатического поля
Поле, окружающее неподвижные заряды, называют электростатическим полем.
Электрическое поле можно описать двумя величинами – векторной величиной — напряженностью \(\large \vec
Примечание: Применяют, так же, еще одну характеристику электрического поля — вектор электрической индукции \(\large \vec
Описываем электрическое поле с помощью вектора
Рассмотрим два неподвижных точечных электрических заряда. Один заряд обозначим большой буквой Q:
\(\large Q \left( \text<Кл>\right) \) – этот заряд создает вокруг себя электрическое поле.
Чтобы обнаружить это поле, на некотором расстоянии от заряда Q поместим еще один заряд.
\(\large r \left( \text<м>\right) \) — расстояние между зарядами.
\(\large q \left( \text<Кл>\right) \) — второй заряд, будем называть его пробным.
Примечания:
Свойство 1: Поле, создаваемое зарядом, влияет только на другие заряды. Это поле не влияет на заряд, породивший его.
Благодаря своим электрическим полям заряды q и Q действуют друг на друга. Силу их взаимодействия можно рассчитать по закону Кулона:
\(\large F \left( H \right) \) – сила, с которой два точечных заряда притягиваются, или отталкиваются;
Для нас важным сейчас является само наличие взаимодействия. Чтобы не выяснять, будет ли сила воздействия силой притяжения, или отталкивания, каждый заряд поместим внутрь модуля.
Свойство 2: Электрическое поле, принадлежащее заряду Q в какой-либо точке пространства, не зависит от того, есть ли в этой точке какой-то другой заряд.
Что такое напряженность поля
Введем физическую величину, которая описывает поле заряда Q и не зависит от пробного q заряда. Для этого разделим обе части уравнения на пробный q заряд:
Обратите внимание, что правая часть полученного уравнения не зависит от пробного заряда. Потому, что пробный заряд, обозначенный малой буквой q, не входит в правую часть. Правая часть зависит только от заряда, создавшего поле и обозначенного большой буквой Q.
Введем обозначение для дроби, расположенной в левой части полученного уравнения:
\( \large \vec
Напряженность электростатического поля в выбранной точке пространства – это векторная величина. Она равна отношению силы, действующей на пробный заряд, находящийся в выбранной точке поля к величине этого заряда. В различных точках поля силы могут быть разными, значит, будут различаться и напряженности в этих точках.
Чтобы найти (длину) модуль вектора E напряженности поля, создаваемого точечным зарядом, приравняем к величине E правую часть полученного выше выражения:
\(\large k = 9\cdot 10^ <9>\left( H \cdot \frac<\text<м>^<2>><\text<Кл>^<2>>\right)\) – постоянная величина;
\(\large |Q| \left( \text<Кл>\right) \) — заряд, создающий в пространстве вокруг себя электрическое поле;
\(\large r \left( \text<м>\right) \) – расстояние от заряда Q до точки, в которую мы поместили пробный заряд.
Примечание: Поле мы измеряем в той точке, в которую помещаем пробный заряд.
Напряженность – это вектор. Две главные характеристики вектора – его длина и направление.
Величина \( \large \vec
\) является силовой характеристикой электрического поля. Чем больше напряженность E, тем больше сила F, действующая на пробный заряд, помещенный в это поле.
Если на заряд 1 Кулон, помещенный в электростатическое поле, действует сила 1 Ньютон, то напряженность этого поля равна единице.
По третьему закону Ньютона, силы, с которыми взаимодействуют два заряда, будут равными.
Каждый неподвижный заряд создает свое собственное электростатическое поле. Если заряды имеют различные величины, то напряженности их полей различаются.
Куда направлен вектор Е
Обратим в очередной раз внимание на формулу:
Заряд q – скалярная величина. А сила F – векторная.
Воспользуемся математическими свойствами векторов: разделив вектор F на скаляр q, мы получим новый вектор E:
Вектор E сонаправлен с вектором силы, действующей на помещенный в поле пробный заряд. Для положительного заряда его вектор E направлен от этого заряда. А для отрицательного заряда его вектор E направлен к этому заряду.
Примечание: Однонаправленные или противоположно направленные, то есть, параллельные векторы, называют коллинеарными. У них может отличаться длина.
Как изменяется длина вектора Е с расстоянием
Длина вектора напряженности с расстоянием быстро убывает. Об этом можно судить с помощью формулы, описывающей модуль данного вектора:
\[\large E = k \cdot \frac
Расстояние r возводится в квадрат и расположено в знаменателе. Это значит, что если расстояние увеличится в 2 раза, то напряженность уменьшится в 4 раза.
А если, например, расстояние увеличится в 3 раза, то напряженность уменьшится в 9 раз.
На рисунке 9 отражено изменение длины вектора напряженности. Обратите внимание на направление этого вектора и знак заряда:
Мы можем выразить зависимость напряженности от расстояния с помощью знака пропорции:
Подобную зависимость на графике можно отразить такой кривой:
Как видно из рисунка 10, увеличение расстояния до заряда в четыре раза вызывает ослабление напряженности его поля в шестнадцать раз.
Как по известной напряженности вычислить силу, с которой поле действует на заряд
Если известна напряженность поля, то силу, которая действует на заряд, помещенный в это поле, можно вычислить по формуле:
\[\large \boxed < \vec
\(\large q \left( \text<Кл>\right) \) – заряд, положительный, или отрицательный, помещенный в выбранную точку пространства, в которой существует электрическое поле;
Формула записана в векторном виде. Это значит, что она позволяет найти обе характеристики силы, действующей на заряд — направление вектора силы и его модуль.
Умножив заряд на напряженность в выбранной точке поля, можно вычислить силу, действующую на заряд со стороны поля.
Так как напряженность входит в формулу для вычисления силы, ее называют силовой характеристикой электрического поля.
Зная силу, мы можем по второму закону Ньютона вычислить ускорение заряда. А с помощью формул кинематики для равнопеременного движения, зная ускорение, можно определить перемещение заряда или траекторию его движения.
Как изобразить электрическое поле единичного заряда
Пусть неподвижный положительный точечный заряд создает в пространстве, окружающем его, электрическое поле. Нарисуем несколько векторов напряженности этого поля.
Красной точкой на рисунке обозначен заряд. А черным цветом обозначены точки, в которые помещали пробный заряд и измеряли поле.
По длине векторов можно сделать вывод, чем ближе к заряженному телу расположен пробный заряд, тем сильнее на него действует поле. Увеличив же расстояние между заряженным телом и пробным зарядом, заметим, что действие поля уменьшится.
Поля, действие которых будет различаться в разных точка пространства, называют неоднородными. Значит, электрическое поле вокруг точечных зарядов, неоднородное.
Изображаем неоднородное электрическое поле силовыми линиями
Как видно, мы можем изобразить поле с помощью нарисованных в различных точках векторов напряженности. Однако, есть более удобный способ.
Присмотревшись к рисунку, можно заметить, что векторы напряженности, окружающие заряд, располагаются на некоторых прямых. Эти прямые обозначены пунктирными линиями на рисунке. Из называют линиями электрического поля, или линиями напряженности.
Примечание: Изображать электростатическое поле удобнее не с помощью векторов, а с помощью линий напряженности.
Если заряд единственный, а поблизости от него других зарядов нет, то его поле изображают радиально расходящимися во все стороны линиями.
Линии положительных зарядов направлены от них, а линии отрицательных зарядов – к этим зарядам, так же, как векторы напряженности.
Мы помним, что вектор напряженности описывает силу, с которой поле, созданное зарядом может действовать на другие заряды. Поэтому, линии напряженности, так же, часто называют силовыми линиями поля.
Как выглядит поле двух взаимодействующих зарядов
Рассмотрим теперь поле взаимодействующих зарядов — положительного и отрицательного.
Как видно, линии взаимодействующих зарядов искривляются и, их конфигурация искажается.
Мы знаем, что поле одного точечного заряда неоднородное. Поле двух взаимодействующих зарядов, так же, неоднородное.
Теперь проведем обобщение, на рисунке неоднородное поле изображают:
По мере удаления от зарядов расстояние между линиями будет увеличиваться. Чем дальше линии располагаются одна от другой в некоторой области пространства, тем слабее поле в этой области.
Будет ли поле действовать на заряд, расположенный между силовыми линиями
У начинающих изучать электростатику часто возникает вопрос, а будет ли на заряд, находящийся на рисунке между силовыми линиями, действовать сила с стороны электрического поля? Конечно, будет.
Не имеет значения, находится ли заряд на силовой линии на рисунке, или в пространстве между силовыми линиями. Поле существует во всех точках рассматриваемой области, поэтому на заряд будет действовать сила в любой точке поля, независимо, находится ли эта точка на силовой линии, или нет.
Примечание: Силовые линии – это всего лишь способ графического обозначения поля в некоторой области пространства. Поле существует во всех точках пространства, а не только на силовых линиях.
Свойства силовых линий электростатического поля
Можно выделить два свойства силовых линий поля, создаваемого неподвижными зарядами:
Примечание: Существует, так же, вихревое электрическое поле. Это поле не связано с неподвижными зарядами. Его линии замкнуты сами на себя. Картина такого поля представляет собой нечто похожее на вихрь, отсюда и появилось его название. Подробнее о вихревом электрическом поле написано в статье, посвященной электромагнитным волнам.
Поле сильней там, где его линии располагаются ближе одна к другой, а так же там, где длиннее вектор Е.
Где заканчиваются линии единственного заряда
Линии электростатического поля, начавшись на положительном заряде, должны закончиться на каком-либо отрицательном заряде.
Если поблизости от какого-либо заряда не располагается второй заряд, имеющий противоположный знак, то линии поля такого одинокого заряда уходят в бесконечность.
Там, далеко, на бесконечности, всегда найдется заряд, имеющий противоположный знак, на котором будут заканчиваться линии рассматриваемого одиночного заряда.
Почему заряды называют источниками электрического поля
Электростатическое поле имеет свои электрические источники.
Нам известно, что линии электростатического поля имеют начало и конец. Они начинаются на положительных зарядах, а на отрицательных зарядах заканчиваются.
Поэтому, положительные заряды называют источниками поля, а отрицательные – стоками.
Как изобразить однородное электрическое поле
Если равномерно распределить заряды по двум плоским поверхностям, расположив эти поверхности на некотором расстоянии параллельно, то в пространстве между этими поверхностями электрическое поле будет однородным.
Примечание: Система из двух параллельных проводящих поверхностей, расположенных на некотором расстоянии одна от другой, называют электрическим конденсатором.
Однородное поле на рисунке изображают параллельными прямыми линиями, расстояние между которыми не изменяется.
Такие поля можно создать только в некоторой ограниченной области пространства. Их удобно изучать, потому, что в любой точке такого поля вектор напряженности будет иметь одно и то же направление и длину.
Если во всех точках пространства, в которых существует электрическое поле, вектор напряженности имеет одинаковое направление и длину, то это поле называют однородным.
Примечание: Если говорить начистоту, то у концов плоских поверхностей линии поля будут искривляться. Это значит, что у краев поле не будет однородным.
Поэтому, для создания однородного электрического поля в учебной литературе рассматривают абстрактные бесконечно протяженные плоскости.
Читайте отдельную статью том, как обозначают распределенные заряды (откроется в новой вкладке).
Связь между векторами E неоднородного поля и линиями напряженности
Рассмотрим еще раз рисунок, на котором изображено поле двух взаимодействующих зарядов. Выберем на нем одну силовую линию. Вычислим длины нескольких векторов E и нарисуем их в выбранных точках, расположенных на этой линии.
Если через каждый вектор напряженности провести прямую линию, можно заметить, что эти линии образуют семейство касательных. Такие касательные прямые линии ограничивают собой кривую. Эта кривая и будет являться силовой линией.
Теперь можно дать определение силовых линий:
Силовая линия электростатического поля – это линия, касательная к которой в любой выбранной точке будет сонаправлена с вектором напряженности электрического поля в этой же точке.
В отдельной статье будет рассказано о работе электрического поля и еще одной его характеристике — потенциале.