Что совершает колебания в звуковой волне
Звуковые колебания и волны
Вокруг нас очень много источников звука: музыкальные и технические инструменты, голосовые связки человека, морские волны, ветер и другие. Звук или, иначе, звуковые волны – это механические колебания среды с частотами 16 Гц – 20 кГц (см. § 11-а).
Рассмотрим опыт. Поместив будильник на подушечке под колокол воздушного насоса, мы заметим: тиканье станет тише, но всё равно будет слышно. Откачав из-под колокола воздух, мы перестанем слышать звук вообще. Этот опыт подтверждает, что звук распространяется по воздуху и не распространяется в вакууме.
Скорость звука в воздухе сравнительно велика: лежит в интервале от 300 м/с при –50°С до 360 м/с при +50°С. Это в 1,5 раза больше, чем скорость пассажирских самолётов. В жидкостях звук распространяется заметно быстрее, а в твёрдых телах – ещё быстрее. В стальном рельсе, например, скорость звука » 5000 м/с.
Взгляните на графики колебаний давления воздуха у рта человека, поющего звуки «А» и «О». Как видите, колебания являются сложными, состоящими из нескольких колебаний, накладывающихся друг на друга. При этом чётко видны основные колебания, частота которых почти не зависит от произносимого звука. Для мужского голоса это приблизительно 200 Гц, для женского – 300 Гц.
Формулы J=l/T и n=1/T позволяют подсчитать, что длины волн голосов мужчин и женщин при –50 °С и +50 °С равны:
l max = 360 м/с : 200 Гц » 2 м, l min = 300 м/с : 300 Гц » 1 м.
Итак, длина звуковой волны голоса зависит от температуры воздуха и основной частоты голоса. Вспомнив наши знания о дифракции, мы поймём, почему в лесу слышно голоса людей, даже если их загораживают деревья: звуки с длинами волн 1–2 м легко огибают стволы деревьев, диаметр которых меньше метра.
Проделаем опыт, подтверждающий, что источниками звука действительно являются колеблющиеся тела.
Возьмём прибор камертон – металлическую рогатку, укреплённую на ящичке без передней стенки для лучшего излучения звуковых волн. Если ударить молоточком по концам рогатки камертона, он будет издавать «чистый» звук, называемый музыкальным тоном (например, ноту «ля» первой октавы с частотой 440 Гц). Придвинем звучащий камертон к лёгкому шарику на нити, и он тотчас же отскочит в сторону. Так происходит именно из-за частых колебаний концов рогатки камертона.
Причины, от которых зависит частота колебаний тела, – его упругость и размер. Чем больше размер тела, тем меньше частота. Поэтому, например, слоны с большими голосовыми связками испускают звуки низкой частоты (бас), а мыши, размер голосовых связок которых значительно меньше, – высокочастотные звуки (писк).
От упругости и размеров зависит не только как будет звучать тело, но и как оно будет улавливать звуки – откликаться на них. Явление резкого увеличения амплитуды колебаний при совпадении частоты внешнего воздействия с собственной частотой тела называется резонансом (лат. «резоно» – откликаюсь). Проделаем опыт по наблюдению резонанса.
Расположим два одинаковых камертона рядом, повернув их друг к другу теми сторонами ящичков, где нет стенок. Ударим левый камертон молоточком. Через секунду заглушим его рукой. Мы услышим, что звучит второй камертон, который мы не ударяли. Говорят, что правый камертон резонирует, то есть улавливает энергию звуковых волн от левого камертона, в результате чего увеличивает амплитуду собственных колебаний.
Звуковые волны
Звуковые волны или звук – это колебания частиц, распространяемые волнообразно в какой-либо среде – газообразной, жидкой или твёрдой, – которые воспринимаются органами слуха животных.
Когда мы изучаем свет, то убеждаемся не только в том, что он существует вне нас, но сверх того еще и в том, что нам необходимо иметь глаза для восприятия света, иначе мы и не подозревали бы о нем. Всё вокруг нас погружается в темноту, когда мы закрываем глаза. Точно так же для нас не существовало бы мира звуков, если бы у нас не было органа слуха, который воспринимает их.
Итак, мы называем звуком то, что мы чувствуем нашим слуховым аппаратом. Но явления внешнего мира для нас имеют характер звуковых только с того момента, когда они дошли до наших ушей. Закрыв уши пальцами, мы не услышим разговора, хотя он и продолжается около нас.
Из этого следует, что как бы ни были грандиозны звуковые явления, происходящие на Солнце и Луне, они не могут произвести такого шума, который мог бы быть услышан у нас на Земле, потому что за пределами нашей атмосферы, между Землей и небесными телами, нет обычной материи.
Источники звуковых волн
Мы говорим, что звук есть волнообразные движения или колебания. Каждый, кто видел или чувствовал то, что происходит, когда рождается звук, тотчас согласится с этим. Так, например, если крепко натянуть нить и потом быстро ударить по ней, то можно видеть, как она заколеблется. И услышать при этом небольшой музыкальный звук. То же самое будет наблюдаться в звучащей фортепианной струне или в колоколе. И мы можем ощущать эти колебания, если дотронемся до них.
Мы также знаем, что при ударе по стеклу оно издает звук, который прекращается, если прикосновением пальца прекратить его колебания. Все эти явления служат доказательством того, что известные колебания производят звук. Каждый раз, когда колеблется колокольчик, стакан или струна, воздух получает от них легкие удары. В нем образуется ряд волн, доходящих до нашего уха, вот почему мы и слышим звук.
Нетрудно доказать, что воздух проводит звуковые волны. Для этой цели производят следующий опыт: под стеклянный колпак воздушного насоса помещают электрический звонок, заставляют его непрерывно звенеть. Затем начинают насосом выкачивать воздух.
Когда уменьшается количество воздуха под колпаком, мы видим звонок так же хорошо, как и раньше, потому что свет распространяется, когда воздуха нет. Но звук делается все тише и наконец совершению прекращается. Колебания звонка продолжают совершаться, но так как вокруг него больше нет воздуха, то он не может производить те волны. которые мы называем звуковыми. Если же воздух начинает снова входить под колпак, то звук восстанавливается. Этот простой опыт показывает нам не только то, что воздух служит проводником звука, но и то, что сила звука в значительной степени зависит от состояния воздуха.
Когда у нас появляется возможность сравнить скорость света со скоростью звука, то мы находим между ними огромное различие. Но видим огонь и дым при стрельбе из отдаленной пушки на несколько секунд раньше звука от ее выстрела. Свет распространяется так быстро, что даже значительное расстояние, на котором находится от нас действующее орудие, он проходит в какую-нибудь тысячную долю секунды; тогда как звук распространяется гораздо медленнее, и скорость его распространения при таком опыте очень легко вычислить.
Распространение звуковых волн
Возьмем несколько бильярдных шаров и положим их прямой линией на бильярдном столе так, чтобы они касались друг друга. Затем возьмем еще шар и покатим его так, чтобы он ударил в шар, лежащий на конце ряда. Тогда каждый из шаров в ряду будет попеременно сжиматься и производить давление на следующий за ним, в результате чего шар, находящийся на другом конце ряда, отскочит от него.
Каждый шар ряда здесь попеременно сжимается и расширяется. То же самое случается и в воздухе, когда звук проходит через него. Мы можем представить себе, что волну принуждают двигаться частицы воздуха, ударяющие одна о другую при своих движениях взад и вперед, точно так, как эти бильярдные шары.
Скорость звука
Скорость света одинакова при всех условиях, насколько это можно было изучить. А скорость звука изменяется в значительной степени с изменением условий, при которых он распространяется в воздухе. Большое счастье для музыкального искусства заключается в том, что скорость звука изменяется только в незначительной степени с изменением высоты его или силы.
Было бы очень затруднительно слушать издали музыку, если бы звуки различных инструментов оркестра доходили до нашего слуха в разное время, в то время как композитор имел в виду, что они будут слышаться одновременно. Или, если бы мотив, разыгрываемый одной частью оркестра, доходил до нашего слуха раньше того, что играет другая часть оркестра, или позже.
1. Скорость звука в воздухе
Обычная скорость звука в воздухе считается около 331 метра (То есть около трети километра) в секунду. Когда температура воздуха поднимается, он становится более упругим и тогда прохождение звука через него совершается быстрее.
Скорость звука увеличивается с повышением температуры воздуха, если плотность его остается той же самой.
Если мы примем во внимание зависимость скорости звука от упругости проводящей его среды, то нам будет понятно, почему звук проходит значительно быстрее в жидкостях, чем в газах, и еще быстрее в твердых телах.
2. Скорость звуковых волн в твёрдых телах
Звуковые волны распространяются в твёрдых телах быстрее, чем в воздухе. Железо, когда оно в твердом состоянии, обладает большею упругостью, чем воздух, и звук проходит в нем почти в семнадцать раз быстрее, чем в воздухе
Нельзя смешивать скорость распространения звука в воздухе или в какой-либо другой среде с высотой тона. Она у музыкального звука зависит от числа колебаний в секунду, и чем их больше, тем выше тон.
Звук, как мы сказали, проходя через железо, достигает нашего уха в семнадцать раз быстрее, чем когда он проходит через воздух; высота же его тона остается той же самой в обоих случаях, потому что число колебаний в секунду остается одно и то же, хотя звук через железо проходит значительно быстрее.
3. Скорость звука в разных средах
Сила звука
Когда мы начнем исследовать силу звука на разных расстояниях, то найдем, что первый закон, относительно его, тот же, что и для света. И насколько нам известно, этот закон верен не только относительно волнообразных движений, но и такого явления, как тяготение.
На точном научном языке закон о силе звука излагается так:
Сила звука изменяется обратно пропорционально квадрату расстояния от его источника
Таким образом можно коротко и ясно выразить, например, ту мысль, что если мы удаляемся от источника звука на расстояние, которое в три раза больше прежнего, то сила звука уменьшится при этом не в три, а в девять раз: девять есть квадрат трех. Квадратом числа называется число, полученное от перемножения его на самого себя.
Когда этот закон применяется к силе света или тяготения, то нам не приходится считаться с какими-либо условиями, которые могут повлиять на них. Но если речь идёт о звуке, то дело обстоит несколько иначе. На звук влияет плотность той среды, в которой он проходит; в морозную ночь воздух очень плотен, почему нам и дышится тогда легче, звук же будет в это время слышен сильнее. С другой стороны, звук ружейного выстрела высоко в горах ослабляется, потому что воздух там редок. Это явление напоминает нам опыт со звонком под колпаком воздушного насоса.
Отражение звука
Когда мы наблюдаем, как волны моря или озера ударяют в крутой берег, мы видим, что они отражаются от него и отскакивают назад. Если поверхность берега ровная и вертикальная, то мы видим, что волны отражаются от нее точно так же, как мяч от стены. Если звук есть действительно волнообразное движение, то мы всегда можем ожидать, что и он будет так же отражаться, как водяные волны, и нам часто приходится убеждаться в этом.
Всякие движущиеся волны могут отражаться от преград на их пути; это совершается как при свете, так и при морских волнах. Есть законы отражения, которые одинаково приложимы к этим различным явлениям.
Природа грома
Мы все хорошо знаем, что на открытом воздухе звук кажется нам не таким, как в закрытом помещении. И наш голос в разных местах звучит различно. Все эти явления зависят от особенностей отражения звука в разных местах.
Самым лучшим способом для доказательства отражения звука может служить эхо. Мы можем довольно простым способом определить скорость звука, стоит только нам произвести звук на некотором расстоянии от отражающей его поверхности и заметить, как быстро мы услышим эхо.
Лучшим примером отражения звука, производящего эхо, являются раскаты грома, случающиеся во время грозы:
Волны Рэлея
Если мы наполним резиновый шар или выпуклый диск углекислым газом, то заметим, что он действует на звук точно так, как зажигательное стекло на световые лучи. Звуковые волны отклоняются газом, находящимся в шаре, так что они все собираются в одном пункте, находящемся по другую сторону шара точно так, как лучи солнца могут быть собраны на кусок бумаги в одну точку зажигательным стеклом.
Это видно из хорошо известного опыта, произведенного замечательным английским ученым, лордом Рэлеем. Опыт этот заключается в том, что нас ставят против часов на таком расстоянии, чтобы не слышать их тиканья. Если после этого гуттаперчевый шар, наполненный углекислым газом, будет помещен между нами и часами, то, находясь на том же самом расстоянии, мы услышим часы. Это происходит вследствие того, что углекислый газ преломляет звуковые волны и фокусирует их в одной точке.
Распространение звука. Звуковые волны. Скорость звука
Урок 27. Физика 9 класс (ФГОС)
В данный момент вы не можете посмотреть или раздать видеоурок ученикам
Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.
Получите невероятные возможности
Конспект урока «Распространение звука. Звуковые волны. Скорость звука»
Всем вам известно, что звук передаётся от источника не мгновенно, а спустя некоторый промежуток времени (вспомните хотя бы грозу, когда мы сначала видим молнию, а лишь затем до нас доносятся раскаты грома).
— Так как же происходит распространения звуковых колебаний?
Итак, мы уже знаем, что любое звучащее тело совершает колебания. Так вот, его колебания передаются прилежащим частицам воздуха, которые тоже начинают колебаться и передают колебания соседним частицам, а эти в свою очередь передают колебания дальше и так далее. Мы уже с вами знаем, что процесс распространения колебаний в среде называется механической волной. Значит звук — это тоже волна, которую мы будем называть звуковой.
Достигнув уха, звуковая волна поступает в слуховой проход и достигает барабанной перепонки, которая начинает вибрировать.
В барабанной полости расположены три слуховые косточки: молоточек, наковальня и самая маленькая косточка нашего организма — стремечко.
Механические колебания барабанной перепонки передаются слуховым косточкам – сначала молоточку, затем наковальне и стремечку. От них колебания передаются во внутреннее ухо. Оно представлено костным лабиринтом и состоит из трёх частей: преддверия, улитки и полукружных каналов органа равновесия.
В улитке находится перепонка, на которой расположены двадцать три с половиной тысячи мельчайших волокон, которые проводят слуховое раздражение к коре головного мозга.
Как мы видели, колебания частиц среды, в которой распространяется звуковая волна, совершают колебания в направлении её распространения. Следовательно, звуковая волна — это продольная волна сжатия и разрежения. А мы уже с вами знаем, что продольные волны могут распространяться в любой среде: твёрдой, жидкой и газообразной.
— А распространяется ли звук в вакууме?
Впервые установить экспериментально, передаётся ли звук в безвоздушном пространстве, удалось в тысяча шестьсот шестидесятом году Роберту Бойлю. Для этого он использовал вакуумный насос, изобретённый им же в 1657 году.
Суть опыта такова. Бойль поместил в сосуд вакуумного насоса работающий будильник (мы, для большей наглядности, используем электрический звонок). Звук, издаваемый под колоколом насоса, стал тише, но всё же был вполне различим. Затем Бойль начал откачивать воздух из сосуда с часами. Звук будильника начал постепенно слабеть, пока совсем не исчез. Но, обратите внимание, что молоточек звонка продолжает ударять по звонковой чаше. Значит, она колеблется, но эти колебания дальше не распространяются, так как нет передающей среды. Если впустить под колокол насоса воздух, то мы снова услышим звон.
Этот опыт доказал, что для распространения звука необходима среда. Среда, отделяющая нас от колеблющихся тел, — это обычно воздух. Но, как мы уже говорили, звук может также распространяться в жидкой и твёрдой среде. Так под водой хорошо слышны звуки, издаваемые водными транспортными средствами, удары камней и так далее. А показать распространение звука в твёрдых телах можно на таком опыте. Возьмите механические часы и деревянную доску. Если положить часы на один конец деревянной доски, а к другому концу доски приложить ухо, можно ясно услышать тиканье.
Приведём ещё несколько примеров. Возьмите металлическую ложку и привяжите к ней конец бечёвки. А второй конец бечёвки приложите к уху. Если ударить по ложке, то можно услышать довольно сильный звук.
Звук будет более громким, если вместо бечёвки использовать какую-либо проволоку. Но мы совсем не услышим звука, если ложку привязать к резиновому шнуру́ и повторить эксперимент.
Способность различных тел передавать звуковые колебания называется звукопроводностью.
Из результатов наших опытов следует, что мягкие и пористые тела очень плохо проводят звук. Поэтому, чтобы защитить помещение от проникновения посторонних звук, его стены, пол и потолок прокладывают прослойками звукопоглощающих материалов.
Таким образом, звуковые волны распространяются в твёрдых телах, жидкостях и газах, но не могут распространяться в безвоздушном пространстве, то есть в вакууме.
Звуковые волны, так же, как и механические, характеризуются скоростью распространения. Именно поэтому во время грозы мы сначала видим вспышку молнии и лишь через некоторое время до нас доносятся раскаты грома.
Но гром и молния происходят в один и тот же момент времени, а запаздывание возникает из-за того, что скорость звука в воздухе существенно меньше скорости света, идущего от молнии. Вы знаете, что скорость света относится к фундаментальным физическим постоянным и примерно равна 300 000 км/с. Поэтому вспышку молнии мы видим практически в момент её возникновения. А вот звук грома доходит до нас со скоростью примерно в 340 м/с.
Кстати, первые попытки экспериментально определить скорость звука начались ещё в начале семнадцатого века. В трактате «Новый Органон» Фрэнсис Бэкон указал на возможность определения скорости звука путём сравнения времени, между вспышкой света и звуком выстрела.
В 1636 году французский физик Марен Мерсенн предпринял первые попытки экспериментального определения скорости звука. Для этого производился выстрел из пушки, а затем измерялось время, прошедшее между моментами, когда наблюдатель замечал вспышку, и моментом, когда до него доносился отзвук выстрела. Разделив расстояние, покрытое звуковой волной за полученное время, учёный получил скорость звука, равную 450 м/с.
Более точные измерения были произведены в Италии в 1660 году. На это раз для опыта друг напротив друга были поставлены две пушки. Первая пушка производила выстрел, после чего измерялось время между вспышкой и моментом, когда звук выстрела достигал второй пушки. Затем, аналогичные измерения делали и для второй пушки. В качестве скорости звука было определено расстояние между пушками, делённое на среднее время экспериментов. Таким образом исключалось влияние ветра на скорость распространения звука.
Лишь в 1809 году Пьер-Симоном де Лапласом была получена формула для теоретических расчётов скорости звука в воздухе.
— А от чего зависит скорость звука?
Конечно же скорость звука зависит от того, в какой среде он распространяется. Как показали различные измерения, скорость звука в твёрдых телах и жидкостях гораздо больше, чем в воздухе.
Благодаря тому, что твёрдые тела хорошо проводят звуковые волны, возможно обучение глухих людей игре на музыкальных инструментах и танцам. Вибрация пола, корпуса музыкального инструмента позволяет глухим людям распознавать музыкальные такты и даже ноты. А в давние времена в крепостных стенах помещали «слухачей», которые по звуку, передаваемому землёй, могли определить, ведёт ли враг подкоп к стенам или нет. Слухачи часто использовались во время войн. Но с появлением радиолокации профессия отмерла. Однако есть несколько интересных историй, одна из которых связана с блокадой Ленинграда, где для работы на акустических аппаратах были задействованы незрячие люди, обладающие исключительным слухом. Уже в первые месяцы службы им удалось добиться огромных успехов. Они узнавали о приближении фашистских самолётов за несколько десятков километров до того, как те появлялись в небе над Ленинградом. При этом слепые слухачи легко отличали советские самолёты от немецких и, более того, по шуму мотора сообщали зенитчикам тип приближающихся самолётов. Так как самолёты тогда летали медленнее, чем сейчас, то времени для подготовки к отражению налёта у зенитчиков было предостаточно.
Скорость звука зависит и от температуры среды: с увеличением температуры она возрастает, и наоборот. Конечно, в рамках небольшого изменения температуры скорость меняется незначительно. На качественном уровне этот факт можно объяснить тем, что при низких температурах скорость молекул газа меньше и процесс переноса колебательного процесса молекул также уменьшается.
Поскольку звук — это волна, то для определения его скорости можно пользоваться формулами: