Что изучает генетика как наука объяснять
Генетика как наука: история развития, основные понятия, значение в жизни человека
Генетика – это наука, изучающая закономерности наследования генетической информации и изменчивость организмов. Основоположник генетики – австрийский ученый Грегор Мендель.
История развития генетики
Генетика – относительно молодая наука, зародилась она в 19 ст., и развивается до сегодняшних дней.
Выделяют три основных этапа в развитии генетики:
Этап I
Первый этап связан с Грегором Менделем и открытием законов наследственности. Многочисленные исследования и скрещивания животных и растений уже вначале XX ст. полностью подтвердили теории, выдвинутые Менделем. Вклад в развитие генетики сделал биолог В. Иоганнсен, который описал такие понятия как «генотип», «фенотип» и «популяция».
Этап II
Второй этап начался с изучения генетики на клеточном уровне. Исследуя строение клетки, удалось установить, что гены являются участками гомологичных хромосом, которые в процессе деления распределяются между дочерними клетками. В этот период Т.Г.Морганом было открыто явление кроссинговера, который играет важную роль в механизме наследственной изменчивости.
Этап III
Третий этап характеризуется достижениями в сфере молекулярных наук, которые позволили изучать закономерности генетики на уровне бактерий и вирусов. Была выдвинута теория, которая гласит, что один ген отвечает за один фермент. Фермент катализирует определенную реакцию, среди множества других, которая отвечает за формирование признака.
В 50-60 годах прошлого столетия Ф.Крик и Дж.Уотсон разработали модель ДНК, которая представляла собой двойную спираль, она дала возможность проследить репликацию молекулы ДНК. Это открытие стало выдающимся событием века.
В XXI веке начала развиваться генная инженерия, которая дает возможность создавать собственные генетические системы. Это позволило выделять гены из одних участков и внедрять их в генетический аппарат других организмов. Так генная инженерия стала занимать важное место в селекции растений и животных, в медицине при изучении врожденных заболеваний, аномалий развития.
Основные понятия генетики
Наследственность — способность одного поколения живых организмов передавать свои характеристики следующему.
Изменчивость — приобретение потомством отличительных признаков в процессе индивидуального развития.
Признаки — особые черты строения организма, которые формируются на протяжении жизни и зависят от генетического фона и условий окружающей среды.
Фенотип — совокупность всех внешних и внутренних признаков организма.
Ген — наименьшая структурная и функциональная единица наследственности. Входит в состав молекулы ДНК и отвечает за образование и передачу конкретного свойства.
Генотип — набор генов, унаследованных от родителей, которые под влиянием внешних факторов определяют фенотип организма.
Аллельные гены — гены, занимающие одинаковые локусы в гомологичных хромосомах.
Гомозиготы— особи, несущие аллельные гены с одинаковой молекулярной основой.
Гетерозиготы — особи, несущие аллельные гены различной молекулярной структуры.
Законы и понятия генетики
Законы генетики
Основные законы были сформулированы Менделем, которые он вывел опытным путем, исследуя закономерности наследования на растениях.
Закон единообразия гибридов первого поколения.
Суть закона заключается в следующем: если скрестить два гомозиготных организма, которые кодируют разное проявление одного признака, то потомки в первом поколении будут единообразны. Аллель, который проявился, является доминантным, он подавляет рецессивный признак.
Определить это явление Менделю удалось, используя чистые линии гороха с белыми и пурпурными цветами. После скрещивания, все потомство имело пурпурный окрас цветков.
Закон расщепления.
Скрещивание гетерозигот, полученных в первом поколении, дает расщепление по такому принципу:
Так, менделевский закон подтвердил, что рецессивные признаки никак не изменяются и не теряются, а просто не проявляются в сочетании с доминантным геном.
Закон независимого наследования признаков.
Скрещивание двух гетерозиготных особей, которые отличаются более чем по двум признакам, дает поколение с разнообразной и независимой комбинацией генов.
Разделы генетики
Классическая генетика изучает закономерности передачи генов.
Цитогенетика исследует структуру хромосом и их участие в передаче наследственной информации.
Молекулярная генетика исследует молекулярные основы наследования признаков путем изучения строения ДНК и РНК.
Биохимическая генетика направлена на изучение влияния генетических факторов на биохимические процессы в живом организме.
Медицинская генетика – изучает наследственные заболевания и разрабатывает эффективное лечение.
Значение генетики
Все чаще рождаются дети с наследственными аномалиями развития. Врожденная патология сказывается на деятельности жизненно важных органов и приводит к росту ранней детской смертности.
Неблагоприятная экологическая обстановка вредные привычки родителей приводят к разного рода мутациям, которые сказываются на здоровье человека.
На сегодняшний день ученые-генетики сделали много открытий в области медицины, селекции животных и растений, что позволяет целенаправленно влиять на наследственность организмов, предотвращая мутационные процессы.
Многие заболевания, как показали исследования, носят генетическую природу:
Теперь, зная причину развития заболевания, ученые разрабатывают методы предотвращения мутаций, которые ведут к врожденным аномалиям.
Селекция животных и растений уже стала самостоятельной наукой, но в основе ее лежат генетические закономерности наследования. Новые сорта растений с высокой урожайностью, ценные породы животных удалось получить, используя законы наследственности и изменчивости.
Фармацевтическая промышленность не обходится без генетической инженерии. Продукция антибиотиков стала возможной благодаря генетической модификации микроорганизмов-продуцентов. Так удалось многократно увеличить скорость синтеза лекарственных средств и уменьшить затраты на производство.
Генетика для «чайников»
Многие люди задаются вопросом о том, зачем, вообще, изучать генетику. Когда мне приходилось объяснять эту тему в школе или университете, я спрашивал у учащихся простой вопрос: у мамы вторая группа крови, у папы первая, а у вас четвертая. Любит ли мама папу?
Безусловно, знания основ генетики найдут своё применение в вашей жизни. Но здесь возникает другая проблема: как понять генетику, избежав сложных и непонятных определений и формулировок. Конечно же, изучая данную дисциплину хочется ограничится, если можно так сказать, курсом генетики для начинающих, или как модно сейчас говорить курсом генетики для чайников, не углубляться в сложный понятийный аппарат специальных знаний. Потому предлагаю всем желающим попробовать разобраться в ней вместе.
Главное о генетике
Генетика – это наука об основных закономерностях наследственности и изменчивости. Начало генетики лежит еще в доисторических временах. Уже в 4 тысячелетии до нашей эры человек понимал, что некоторые признаки передаются от одного поколения к другому. Отбирая, из природных популяций, определённые организмы и скрещивая их между собой, человечество создавало улучшенные породы животных и сорта растений, обладающие свойствами необходимыми человеку. К примеру, известно, что у жителей древнего Вавилона было, своего рода, руководство по селекции лошадей.
Основы же современных представлений о механизмах наследственности были заложены лишь в середине XIX века. Изначально закономерности изучались лишь на основании внешних, фенотипических – если использовать терминологию, признаков. Так один австрийско-чешский монах предопределил создание этой науки, наблюдая за цветом и формой горошин.
Понимание механизмов наследственности сделало возможным применение к проблеме наследственности методов смежных дисциплин, сделав генетику сложным комплексным разделом биологической науки. Генетика, как раздел науки является определяющим в биологии, так как воплощает основополагающий принцип живого.
Предмет и задачи генетики
Следовательно, наследственность, являясь консервативной, обеспечивает сохранение свойств и признаков организмов на протяжении многочисленных поколений, а изменчивость обусловливает формирование в результате изменения генетической информации или условий внешней среды новых признаков. А закономерности наследственности и изменчивости обуславливают задачи генетики, как науки.
К основным задачам генетики относятся:
Современные разделы генетики
Особенности и сложности генетических исследований человека
Как известно, все общие закономерности наследственности и изменчивости присущие другим живым организмам, характерны для человека. Однако как объект генетических исследований человек не очень удобен. Во-первых, его кариотип представлен большим числом хромосом, во-вторых, длительный период полового созревания и малоплодность (норма – 1 ребенок на беременность). В третьих, социальный аспект. Так как человек не стремится обзавестись большим числом потомков, это затрудняет статистический анализ закономерностей генетики.
Хотя бывают и исключения. Согласно книге рекордов Гиннеса, наибольшее число рожденных одной матерью детей равно 69. Жена русского крестьянина из Шуи Федора Васильева в середине XVIII века рожала 27 раз, при этом на свет появилось 16 двойней, 7 тройней и 4 четверни. Из них лишь 2 ребенка умерли в младенчестве.
Наконец, этическая составляющая. Тут исследователи сталкиваются с целым рядом проблем, так как на человеке нельзя проводить эксперименты по гибридизации, т.е. не может проводить интересующие его скрещивания. Обойти эту проблему получилось только у нацистов, но закончилось это Нюрнбергским трибуналом по делу врачей.
Наконец, также этическая проблема биологического отцовства при анализе потомков законных супругов. Так как по оценкам генетиков в экономически развитых странах процент детей, являющихся результатом супружеской измены, достигает 20-30%.
Методы генетики человека
Все эти особенности определили методы, с помощью которых ученым пришлось изучать генетику человека. И в первую очередь стоит сказать о генеалогическом методе, или методе родословных. По сути это графическое изображение данных о наличии какого-либо изучаемого признака и степени родства у группы родственников.
Данный метод позволяет установить характер и тип наследования признака.
Вторым по важности методов в генетике человека и до сих пор является близнецовый метод, который основан на сравнении степеней изменчивости у разных групп близнецов. В первую очередь интерес представляют однояйцевые близнецы, появляющиеся в результате полиэмбрионии. Этот термин происходит от греч. «poli» — много и «embrion» — зародыш и обозначает процесс развития из одной оплодотворенной яйцеклетки нескольких эмбрионов, вследствие чего однояйцевые близнецы оказывается идентичными близнецами. Т.е. все фенотипические различия между ними определяются действием факторов внутренней и внешней среды, но никак не генотипа. Особое значение данный метод приобретает при изучении заболеваний имеющих наследственную предрасположенность, т.е. зависящих как от генотипа, так и факторов внешней среды (язвенные болезни, атеросклероз, гипертония и пр.).
Близнецовые (многоплодные) беременности не являются нормой для человека – более половины из них до недавних пор заканчивались ранней внутриутробной гибелью близнецов или их мертворождением. Естественная частота многоплодных беременностей составляет 2-4 процента, однако с развитием техники гормональной стимуляции созревания яйцеклеток при лечении определенных видов женского бесплодия она в последние годы увеличилась.
Также применяется популяционно-статистический метод, который основан на законе Харди-Вайнберга. С его помощью можно определять частоты генотипов и аллелей, которые характерны для конкретной популяции людей. Также он позволяет оценить влияние микроэволюционных факторов (изоляции, мутаций и естественного отбора, генетического дрейфа и потока генов).
Отметим цитогенетический метод, применяемый в эволюционных исследованиях (с помощью него была доказана генетическая близость человека и высших приматов) и для диагностики хромосомных заболеваний. Сравнительно-генетический метод, или метод биомоделирования играющий огромную роль в медицинской генетике, позволяя определять генетические механизмы развития, причины и методы лечения наследственных заболеваний человека, обнаруживаемых и у животных. Ну и конечно важнейший на сегодняшний день молекулярно-генетический метод. Этот метод позволяет на молекулярном уровне изучать наследственную изменчивость и ее причины и конечно же заслуживает отдельной статьи.
Человек как вид и его эволюция
Последние века Homo sapiens sapiens как биологический вид, несомненно, прогрессирует – расширяется его ареал, увеличивается численность, обладает большим генотипическим разнообразием.
Так на заре своего существования, примерно 1,5 млн. лет назад, численность людей равнялась приблизительно 100 тыс., на начало новой эры – 100 млн., к XIX веку. – 1 млрд., а в XXI – 6 млрд.
В связи с темпами научно-технического прогресса, явно опережающего биологическую эволюцию человечества, возникает целый ряд глобальных проблем, в том числе и для человека как вида. Низкое давление естественного отбора ведет к увеличению генетического разнообразия, которое переходит на принципиально новый качественный уровень – а именно накапливаются биологически неблагоприятные наследственные изменения, чему в определенной степени способствует развитие медицины и этических учений. Так как лечение больных наследственными заболеваниями повышает шансы передачи потомкам дефектных аллелей генов, а, следовательно, с учетом не прекращающегося мутационного процесса число людей имеющих наследственные дефекты, хотя и медленно, но неуклонно возрастает. И на сегодняшний день примерно 5% новорожденных появляются с различными наследственными аномалиями.
Таким образом, по прошествии всего полутора веков существования генетика из опытов монаха августинца превратилась в сложную комплексную науку, интегрированную во все области биологической науки, являясь при этом величайшим примером единства науки и практики. Созданные и продолжающие развиваться и совершенствоваться, в последние годы, методы генетической биотехнологии и инженерии, позволяют по-иному решать множество коренных задач не только генетики и биологии, но и ряда других отраслей науки и промышленности. То, что когда-то могло показаться многим фантастикой, сейчас становится реальным, и даже повседневным делом.
Наталья – контент-маркетолог и блогер, но все это не мешает ей оставаться адекватным человеком. Верит во все цвета радуги и не верит в теорию всемирного заговора. Увлекается «нейрохиромантией» и тайно мечтает воссоздать дома Александрийскую библиотеку.
Генетика и гены
Почему ты похож на родителей? Почему у тебя такой же цвет глаз или волос, как у мамы или папы? Что такое гены и как они работают? Чем прославилась овечка Долли? Ответы на эти и многие другие вопросы дает генетика.
Что изучает генетика?
Генетика изучает, каким образом передаются отличительные признаки клеток из одного поколения в другое Это наука о том, как от родителей к детям передаются цвет глаз, форма носа, рост и даже определенные черты характера. Но не думай, что генетика занимается изучением только человека. Наследственность характерна для всех живых существ. И растения, и животные также передают характерные им черты из поколения в поколение.
Зарождение генетики
Какого цвета твои глаза, волосы, кожа? Почему у тебя такие же вьющиеся волосы, как и у твоей мамы? Почему ты очень похож на своих родителей, но не являешься их полной копией? Почему листики одного дерева такие разные? Ответы на все эти вопросы дает один из самых интересных разделов биологии — генетика.
Первые шаги
В течение очень длительного периода людям была непонятна причина схожести родственных организмов. Ситуация изменилась в 60-х гг. XX в., когда австрийский биолог и ботаник, монах августинского монастыря в Брно Грегор Мендель начал проводить опыты на горохе в монастырском саду. Он хотел узнать, каким образом определенные признаки живых существ передаются из одного поколения в другое.
Следующий научный шаг в изучении генетики был сделан в 1909 г. датским биологом профессором Вильгельмом Иогансеном, который ввел и объяснил термин «ген». Несколько позже, в 1923 г., американский биолог Томас Морган доказал, что гены находятся в хромосомах, и сформулировал хромосомную теорию наследственности. С тех пор генетика стала развиваться на уровне гена.
Опыты Менделя
Менделя интересовали высота растения, цвет цветков и форма горошин. Занимаясь перекрестным опылением гороха, он тщательно анализировал получаемые результаты и наблюдал, какие именно признаки и в каком поколении передавались по наследству. Причем каждый раз в перекрестном опылении участвовали специально отобранные растения с теми признаками, которые, как думал Мендель, обязательно должны передаться последующему поколению.
В чем заключалась суть экспериментов биолога?
Одним из признаков, которые исследовал Мендель, был цвет цветков гороха. В своих первых опытах он отобрал только те сорта, которые цветут белыми и красными цветками. Мендель был уверен, что после скрещивания в первом поколении (поколение F1) будут растения как с белыми, так и с красными цветками. Каково же было его удивление, когда абсолютно все цветки оказались красными!
Такой результат не только не остановил ученого, но и заставил продолжить эксперименты. Мендель опылил цветки полученных растений первого поколения их же пыльцой и ожидал совершенно логичного результата — красных цветков. Но снова его предположения не оправдались: во втором поколении (поколение F2) 75% всех цветков были красными, а оставшиеся 25% — белыми!
В чем причина?
Такой неожиданный результат вовсе не огорчил ученого. Благодаря полученным данным он пришел к выводу о том, что у каждого растения не один, а два гена, которые принимают участие в передаче определенных признаков. Он назвал красный цвет гороха главным, доминантным, а белый — рецессивным, уступающим признаком.
При наличии двух разных генов (например, красного и белого), определяющим при цветении будет доминантный ген. Поэтому, если у растения есть оба гена (красный и белый), на цвет цветка будет влиять доминантный ген красного цвета. А тот факт, что среди дочерних растений могут быть и цветки белого цвета, говорит лишь о наличии этого гена у растения.
У одного и того же гена может быть две или более разновидностей: одна — сильная, вторая — слабая. Сильная разновидность называется доминирующей, а слабая — рецессивной.
Роль генов
Главная заслуга Грегора Менделя заключается в том, что он изложил основы генетики — принципы передачи наследственных признаков от родителей к потомкам. Мендель пришел к выводу о том, что в живом организме за любой наследуемый признак (рост, цвет глаз, волос, кожи, форма уха у человека, листа и стебля у растений и т.д.) отвечают два гена. И во время воспроизводства каждый родитель отдает своему потомку только один ген из каждой пары. Это означает, что дочернее поколение наследует по одному гену у каждого родителя, и таким образом в организме потомка образуется новая пара генов.
Что такое ген?
Гены — это носители наследственной информации. По сути эти мельчайшие структуры несут очень четкую «инструкцию по эксплуатации» нашего организма. Гены представляют собой участки ДНК, несущие информацию о наличии определенных признаков и следящие за тем, чтобы развитие организма происходило строго в соответствии с этими данными. В каждой клетке человека находится от 25 000 до 35 000 генов, содержащих специфические биологические коды, или информацию, которую живые существа наследуют от своих родителей.
Гены и рост клеток
С ростом человека число клеток увеличивается. При этом каждая часть тела состоит из определенных клеток кожи, мышц, внутренних органов и т.д, — имеющих разное назначение и свойства. У тебя может возникнуть логичный вопрос откуда клетки знают, где им расти? Почему на месте рук всегда вырастают руки, а не нос? Об этом даже подумать страшно! Конечно, теоретически такая опасность есть, но мудрая природа придумала молекулу, в которой зашифрован весь план нашего развития, — молекулу ДНК. Она есть внутри абсолютно каждой клетки нашего организма.
Именно ДНК содержит информацию о том, что и где у нас вырастет. Эту молекулу каждый из нас получает в наследство от родителей. Поэтому мы и похожи на них. У каждого живого существа своя молекула ДНК которая определяет наличие хвоста, рогов, длинных ушей и т.д. За каждый из этих признаков отвечает отдельный участок ДНК который называется ген. Ученые подсчитали, что таких генов более 30 000.
Генетика занимается не только изучением, но и изменением генов. Например, уже сегодня биологи научились менять гены некоторых растений. Эти растения так и называются — генно-модифицированные. Так, биологи вывели сорта помидоров, которые менее прочих чувствительны к холоду, а также несъедобные для насекомых овощи.
Где расположены гены?
Гены находятся в небольших элементах, похожих на спагетти, которые называются хромосомы. Хромосомы расположены в ядре клетки. Следует иметь в виду, что у различных живых организмов количество хромосом разное. В клетке человека находятся 23 пары хромосом, т.е. 46 в каждой клетке причем одна половина хромосом достается от одного родителя, другая — от другого.
Как работают гены?
Каждый ген выполняет свою работу. ДНК в гене выдает особые инструкции (такие же, как, например, в кулинарных книгах) для производства белка в клетке.
Белки — это строительные «кирпичики» нашего организма. Кости и зубы, кровь и мышцы, волосы и ушные раковины — все эти органы состоят из белков, которые помогают нашему организму расти, изменяться и оставаться здоровым
Наследственная информация животного и растительного мира
Гены передают наследственную информацию не только у человека, этот процесс свойственен всем живым организмам. Именно поэтому вокруг нас такое разнообразие животных и растений. Взять, например, породы собак. Для каждой породы характерны свои отличительные признаки, которые передаются из одного поколения в другое. Одни собаки очень маленькие, другие — очень большие. У одних длинная шелковистая шерсть, у других ее и вовсе нет.
У собак породы далматин есть гены, отвечающие за количество черных и белых пятен. Волнистая шерсть карликового пуделя и пятна на шкуре жирафа также определяются особыми генами, передающими этот признак по наследству.
Что произойдет, если ген окажется поврежденным?
Сегодня гены являются предметом скрупулезного изучения генетиков всего мира. Ученые хотят достоверно знать, какие именно белки вырабатываются каждым геном и за что именно отвечает каждый белок. Их также интересуют заболевания, вызванные тем, что какой-то ген имеет измененную структуру и неправильно выполняет свою работу. Изменение гена называется мутацией.
По мнению исследователей, именно мутации являются одной из причин многих серьезных заболеваний, например рака. Менее значительные проблемы со здоровьем возникают в случае нехватки гена или наличия лишних частей гена в хромосоме.
Клонирование
Скорее всего, ты слышал о знаменитой овечке Долли. Это первое существо, полученное путем клонирования взрослого животного. Почему именно взрослого? Дело в том, что искусственное клонирование животных началось с 60-х гг. XX в. В течение 35 лет ученым удалось клонировать лягушку, мышь и даже несколько овечек. Но генетический материал для этих клонов был взят на стадии эмбрионов, а Долли получила мировое признание, так как была клонирована на основе материала, взятого у взрослого животного.
Что такое клонирование?
Клонирование — это создание организма с тем же набором генов, который содержится в исходной копии. Это означает, что полученный клон генетически идентичен тому организму, из которого взята ДНК. Ты уже знаешь, что любое живое существо вырастает из одной яйцеклетки, при этом половину генетического материала оно получает от одного родителя, а вторую половину — от другого.
В случае клонирования весь генетический материал берется из клетки одной особи. Происходит это следующим образом: из оплодотворенной яйцеклетки удаляется ядро и переносится в другую, неоплодотворенную яйцеклетку, ядро которой было предварительно удалено. Затем эта яйцеклетка пересаживается суррогатной матери. Сейчас такая процедура успешно применяется для клонирования различных животных: крыс, кошек, собак, коров и т.д.
Клонирование овечки Долли
В 1996 г. стало известно о первом удачном опыте клонирования млекопитающих. В результате многочисленных экспериментов, проведенных под руководством британского эмбриолога Яна Уилмута, родилась овечка Долли.
Для клонирования Долли были использованы клетки вымени взрослой овцы-донора. Причем брались замороженные клетки уже умершего к тому времени животного. Интересно, что в случае с Долли суррогатной матерью была овца с черной шерстью, а Долли родилась с белой, т.е. точно такой же, как и овца, у которой был взят генетический материал.
Если ли у Долли родители?
Каждый из нас является результатом объединения генов, полученных от мамы и от папы. Поэтому каждый ген в нашем организме присутствует в двух экземплярах: один — от папы, один — от мамы.
Что касается клонирования овечки Долли, то у нее не было ни отца, ни матери. Ведь для создания клона была взята неоплодотворенная яйцеклетка от одной особи.
Из этой яйцеклетки убрали всю генетическую информацию, т.е. ядро, и ввели генетическую информацию от другой овцы (из клетки ее вымени).
В результате такого слияния возникла яйцеклетка, в которой был двойной набор генов, но не потому, что одна половина из них была от папы, а вторая половина — от мамы, а потому, что из клетки второй овцы было взято ядро с двойным набором генов. Затем эту яйцеклетку подсадили в организм третьей овцы — суррогатной матери. Вряд ли этих животных можно считать родителями Долли.
С точки зрения генетики, Долли является полным клоном того животного, из клетки вымени которого было взято ядро.
Можно ли клонировать мамонтов?
Казалось бы, какая разница, кого клонировать? В случае с мамонтами, например, в качестве суррогатной матери можно использовать слониху, в качестве донора энуклеированной (безъядерной) яйцеклетки — тоже, а источником генетической информации мамонта могут стать очень хорошо сохранившиеся в условиях вечной мерзлоты останки этих животных.
По данным ученых клеточная структура таких останков представлена довольно хорошо: в клетках есть белки, ядра, ДНК и т.д. Казалось бы, чисто технически все компоненты клонирования в наличии. Однако возникает вопрос сможет ли генетическая информация мамонта реализовать заложенную в ней программу в условиях Яйцеклетки слона? Слон и мамонт — близкие виды, но не идентичные. Несмотря на внешнюю похожесть, на генетическом уровне у них миллионы различий (как, например, у человека и шимпанзе). Может случиться так, что генетическая программа мамонта не будет работать в яйцеклетке слона.
Еще одна проблема — состояние ДНК останков мамонта. Все дело в том, что под действием множества факторов очень длинная молекула ДНК со временем распадается. Генетическая информация мамонта представлена в виде определенного генетического текста, благодаря которому можно понять принадлежность ДНК именно этому биологическому виду.
Для клонирования мамонта нужно найти ядро клетки с неповрежденной ДНК. Это не так-то просто: в клетках большинства доступных ученым останков молекула ДНК уже наверняка разделилась на нескольких кусочков. Восстановить ее — это примерно то же самое, что разорвать журнал на множество мельчайших клочков, а потом пытаться собрать его. Так что клонирование мамонтов по-прежнему остается вопросом будущего.