Чем покрыты контакты разъемов

Чем покрыты контакты разъемов

2.3. Металлы и сплавы для электрических контактов

Различают три основные группы этих проводниковых мате­ри­­алов: для токоведущих и упругих элементов контактных устройств; для изготовления слаботочных контактов; для сильноточных контактов.

Проводниковые материалы для токоведущих и упругих элеме­н­тов контактных устройств. Для изготовления контактов-деталей (штырей и гнезд) при­бо­рных разъемов и упругих элементов пе­ре­­ключателей и якор­ных реле используют латуни и бронзы.

Бронзы характеризуются более высокими упругими свой­ст­ва­ми, чем ла­­туни. К бронзам относятся сплавы системы Cu-Sn (3. 6% Sn). Находят также применение алю­ми­ни­­е­­вые бронзы Cu-Al (около 5% Al), а также кремнистые бронзы Cu-Si (1. 3% Si). Оло­во, алюминий, кремний, так же, как и цинк, об­­­ладают огра­ни­чен­ной растворимостью в меди. Для улучше­ния ха­­­рактеристик бронз в них, кроме перечисленных элементов, до­ба­­­вляют в не­боль­шом количестве фосфор, цинк, никель, ма­р­га­нец, железо.

Сплавы бронзы в технической документации обозначаются бу­к­ва­ми Бр с указанием дополнительных легирующих элементов и их ко­нцентрации. При этом пользуются следующими условными обоз­на­чениями легирующих элементов: О-олово, А-алюминий, К-кре­м­ний, Ф-фосфор, Ц-цинк, Н-никель, Мц-марганец, Ж-железо, Б-бе­риллий, Т-титан.

Для изготовления нетоковедущих элементов контактных уст­ройств используют прецизионные (т. е. точные) пружинные сплавы и ста­­­ли на основе железа марок 36НХТЮ (36% Ni, остальное Fe, Cr, Ti, Al), 40КНХМВ (40% Co, остальное Fe, Ni, Cr, Mo, W) и др. От­ме­­­тим, что в отличие от обозначений бронз в обозначениях марок спла­вов на основе железа ис­по­ль­зу­­ется несколько иная система ко­ди­­­рования легирующих эле­ме­н­тов, входящих в состав сплава, в час­т­­ности, Х-хром, Ю-алюминий, К-кобальт, М-молибден, В-воль­ф­рам.

Для снижения переходного сопротивления латунные и бро­н­­­зо­вые контакты-детали покрывают тонким слоем специаль­ного ко­н­­тактного металла с высокой температурой плавления, устой­чи­­­вого к влиянию окисления. Слой защитного металлического по­­­крытия наносится на поверхность контакта-детали обычно пу­­тем электрохимического осаждения. Толщина покрытия со­с­та­­вляет 1. 10 мкм. Для улучшения адгезии (прилипания) на по­ве­р­хность латунного контакта предварительно эле­к­тро­хи­ми­че­с­ким способом наносится слой чистой меди толщиной 1. 2 мкм. Ме­­ханические свойства (например, износостойкость) эле­к­тро­ли­ти­­ческих покрытий гораздо выше, чем объемных материалов.

В при­­борных разъ­емах для покрытий обычно используются зо­ло­то, серебро, палладий, сплав серебро-палладий.

Для изготовления покрытий разрывных электрических кон­та­­ктов коммутационных устройств (переключателей и реле) чи­с­тые металлы обычно не применяются, что связано с тре­бо­ва­ни­я­ми к повышенной износостойкости контактных материалов. Ко­н­­та­к­ты переключателей и реле должны иметь высокую твер­до­сть, сла­бую эрозию (разрушение поверхности) при ком­му­та­ции эле­ктри­чес­ких цепей с током. В данном случае широкое при­ме­­не­ние на­хо­дят сплавы систем Ag-Au, Ag-Cd, Ag-Pt, Ag-Pd-Cu, Au-Ag, Au-Ag-Mg-Ni.

Родий (Rh) применяется как самостоятельный контактный ма­те­­риал. По своим характеристикам он близок к иридию, но га­ль­ва­нические покрытия из родия обладают исключительной тве­р­до­стью и износостойкостью. Их твердость в 10 раз выше, чем у се­ребра или золота. Поэтому родий используется для по­кры­тия ко­нтактов-деталей герметизированных контактов (гер­ко­нов), из­готавливаемых из железо-никелевых сплавов.

В таблице 2.2 приведены значения основных физических параметров часто применяемых контактных материалов и сплавов.

Проводниковые материалы для сильноточных контактов. В ко­­н­тактных устройствах, предназначенных для силь­ното­ч­ных це­пей, в которых протекают токи более 0,5 А (при на­пря­же­нии на ра­­­зомкнутых контактах более 25 В), кон­та­­кты-де­­­тали используются преимущест­вен­но из ком­по­зи­ци­он­ных ма­те­ри­­алов, получаемых методами порошковой ме­тал­лу­р­гии.

Основные физические параметры контактных материалов [18]

Источник

Материалы для электрических контактов

Общая характеристика

Электрические контакты должны свободно коммутировать токи от до 109 А при напряжении от до 106 В. По конструктивному исполнению, если исключить переходные формы, электрические контакты можно разбить на три группы:

— подвижные, функция которых замыкать и размыкать цепь при кратковременной либо длительной коммутации тока;

— скользящие, в которых происходит перемещение контактирующих поверхностей относительно друг друга без нарушения электрического контакта;

— неразъемные, в которых в процессе работы не происходит разъединения контактирующих поверхностей.

Чем покрыты контакты разъемов. Смотреть фото Чем покрыты контакты разъемов. Смотреть картинку Чем покрыты контакты разъемов. Картинка про Чем покрыты контакты разъемов. Фото Чем покрыты контакты разъемов

Требования к материалам электрических контактов

Материалы для коммутирующих контактов должны удовлетворять следующим основным требованиям: быть коррозионностойкими, стойкими против электрической эрозии и износа; не свариваться; обладать высокой механической износостойкостью, особенно на истирание; легко обрабатываться давлением и металлорежущим инструментом, а также прирабатываться друг к другу; обладать высокими теплофизическими характеристиками; иметь низкую стоимость.

Контактные сплавы на основе золота

Сплавы на основе золота предназначены для коммутации электрического тока до 5 А (в зависимости от конструкции прибора).

Чем покрыты контакты разъемов. Смотреть фото Чем покрыты контакты разъемов. Смотреть картинку Чем покрыты контакты разъемов. Картинка про Чем покрыты контакты разъемов. Фото Чем покрыты контакты разъемов

Контактные сплавы на основе золота отличаются высокой надежностью контактирования при низких электрических нагрузках. Наиболее полно контактные материалы характеризуются испытаниями в смешанной атмосфере, содержащей H2S, SO2 и NO2. При этом наблюдается увеличение контактного сопротивления всех сплавов, особенно резкое у сплавов с высоким содержанием Ag. Их не рекомендуется применять при повышенных требованиях к надежности контактирования.

Контактные сплавы на основе металлов платиновой группы

Контакты из чистой платины обладают низким и стабильным переходным сопротивлением, но подвержены мостиковой эрозии. Стойкость к эрозии и свариванию выше у сплавов Pt с Ni и Ir. Вместо сплавов Pt—Ir можно применять более экономичные сплавы Pt—Ru. Pd в качестве контактного материала в основном используют в виде гальванических покрытий и в сплавах с Ag. RIi применяют для покрытий прецизионных контактов. Толщина покрытия зависит от требований к механическому износу и составляет

Области применения контактов

Ag—Pd: сигнальная аппаратура, телефонные реле, телефонные номеронабиратели, регуляторы напряжения, управление флюоресцентными лампами, бензино- и маслоизмерители, защитные устройства электродвигателей, органы телевизионного управления, выключатели холодильников и термостатов.

Ag-Pt: радиоаппаратура, приборы автоматики и настройки радио, радиовибраторы и устройства питания от сети радио, электромагнитные счетчики.

Pt—Ir: прецизионные реле, работающие без дуги; кассовые машины, пожарные сигнализаторы, телеграфные реле, малогабаритные и миниатюрные реле радиоэлектроники, регуляторы скорости, магнето авиационные, автомобильные и морские, пирометры, вибропреобразователи, промышленные регуляторы электронапряжения, электробритвы, термостаты и нагреватели, сигнальные реле.

Pt—Rh: магнето постоянного и переменного тока; термопары.

Pt—Ni: телеграфная и телефонная аппаратура.

Pt—Ru: регуляторы скорости, кассовые машины, пожарные сигнализаторы, бензино- и маслоизмерители, контрольные реле электрооборудования в авиации, регуляторы напряжения, магнето авиационные и морские, регуляторы освещения, реле железнодорожной сигнализации, термостаты и нагреватели, сигнальные реле.

Pd—Ag: прецизионные реле, сигнальная аппаратура, гнезда телефонных коммутаторов, телефонное оборудование, токосъемники потенциометров, промышленные регуляторы напряжения, звуковые реле, реле уличных сигналов.

Pd—Ag—Ni: часы, скользящие контакты прецизионных потенциометров, термостаты и нагреватели, сигнальные реле.

Pd—Ir; Pd—Ru: звуковое реле, вибрационные регуляторы напряжения и числа оборотов, вибрационные преобразователи, выпрямители.

Чем покрыты контакты разъемов. Смотреть фото Чем покрыты контакты разъемов. Смотреть картинку Чем покрыты контакты разъемов. Картинка про Чем покрыты контакты разъемов. Фото Чем покрыты контакты разъемов

ОБЛАСТИ ПРИМЕНЕНИЯ ЭЛЕКТРИЧЕСКИХ КОНТАКТОВ HA ОСНОВЕ ЗОЛОТА

Материал

Область применения

Форма применения

Антикоррозионная защита серебряных контактов, миниатюрные контактные заклепки, шары и штеккеры

Гальванические и напыленные покрытия, металлургическое золото

Твердое золото Ni или Со)

Дорожки контактов скольжения, поворотные переключатели, штеккерные разъемы

Слабонагруженные контакты в телефонной сети, транзисторных цепях, контакты штепсельных разъемов

Цельносплавные и плакированные заклепки, контактные шары

Контактные пружины, подвижные контакты слаботочных реле

Цельносплавные и плакированные контакты, контактные шары

Au—Co5 ( гетероген ный ); Au—Ni5; Au— Ag26-Ni3

Устойчивые к переносу материала контакты реле, датчиков световой сигнализации, измерительных приборов, электрических часов

Заклепки, плакированные контакты, контактные шары

Контакты для специальных реле и измерительных приборов

Контактные сплавы на основе серебра

Основным недостатком серебра как контактного материала является образование токонепроводящей пленки из сульфидов серебра в атмосфере, содержащей сернистые соединения. Стойкость серебра к потускнению повыщается при легировании Cd, Sb, Zn, Sn. Однако при низких электрических нагрузках эти сплавы имеют недопустимо высокое контактное сопротивление и в этих случаях рекомендуется применять сплавы Ag—Pd. Контактное сопротивление этих сплавов уменьшается с увеличением содержания Pd, а стойкость к эрозии минимальна у сплава Ag—10Pd.

Электролитические сплавы Ag с Ni и Со отличаются высокой механической износостойкостью и применяются для покрытий скользящих контактов. Покрытия из сплавов Ag—Pd отличаются стабильным и низким переходным сопротивлением во влажной среде и в раз более износостойки, чем чистое серебро.

При I =10÷15 А, U =380 В хорошие эксплуатационные характеристики у контактов из сплавов Cu—Ag—Cd, содержащих Ag, их рекомендуется использовать вместо материалов с высоким содержанием Ag, например вместо металлокерамики СН30м.

Широко применяют контакты из различных композиций Ag—МеО, получаемых внутренним окислением сплавов. После ВО значительно

Наиболее широко в электротехнике применяют сплавы Ag—CdO CdO). Эффективность ВО повышается при окислении в кислороде при повышенном давлении и в атомарном кислороде.

При этом, помимо увеличения производительности процесса, улучшается стойкость к свариванию, уменьшается разрывное усилие при сваривании и обгорание за счет диспергирования оксидных частиц.

Добавки Be, Ce, Sc, Ba, Y, In, Ga, Sb, Sn, Те увеличивают стойкость к электрической эрозии материалов Ag—CdO, кроме того, добавки Be, Ce, Sc, La, Y, Ga ускоряют процесс ВО. Легирование Ca, Ni, Ti применяют для сдерживания роста зерна при ВО.

Основные области применения контактных серебряных сплавов

Ag: реле, сигнальная аппаратура, контакты вспомогательных цепей, термостаты, бытовые приборы, нагреватели воды, телефонная и телеграфная аппаратура, электроосаждение на контактные детали для электронной техники.

Твердое Ag: реле, магнитные пускатели, бытовые приборы, вспомогательные контакты автоматических выключателей.

Ag—Cu: реле, сигнальная аппаратура, светотехнические выключатели.

Ag—Cu—Ni: реле уличных сигналов, автомобильные и железнодорожные сигнальные реле, тепловые выключатели, преобразователи тока, авиационные реле и выключатели, управление флюоресцентными лампами, регуляторы освещения.

Ag—Cd: реле, бензо- и маслоизмерители, выключатели, стартеры, выключатели перегрузки холодильников и термостатов, тепловые выключатели.

Ag—Cd—Ni; Ag—Cd—Ni—Fe: реле — регуляторы напряжения.

Ag—Pd: сигнальная аппаратура, телефонные реле и номеронабиратели, бензо- и маслоизмерители, защитные устройства электродвигателей, органы телевизионного управления, контактные кольца.

Ag—Pt: радиоаппаратура, приборы автоматики, электромагнитные счетчики.

Ag—Mg—Ni; Ag—Au—Mg—Ni; Ag—Mg—Zr; Ag—Mg—Ni—Zr; Ag—Pd—Mg: заменители контактов из сплавов Pd—Ir, Au—Pd—Pt, Au—Ni, Au—Pt в малогабаритных и миниатюрных электромагнитных реле радиоэлектроники.

Ag—CdO: магнитные пускатели, реле среднего и тяжелого режима, автоматические терморегуляторы, контролеры электровозов и троллейбусов, концевые выключатели, бытовые приборы, кнопки управления.

Ag—CuO: сильно нагруженные контакты постоянного и переменного тока, авиационные реле среднего и тяжелого режима, автоматические предохранители, переключатели тепловозов. Порошковые контактные материалы

В тех случаях, когда применение метода ВО технически неоправданно для производства гетерогенных материалов Ag—MeO, применяют метод порошковой металлургии. Так же как при ВО, технология производства порошкового материала оказывает значительное влияние на дисперсность структуры и эксплуатационные характеристики контактного материала.

Помимо стандартных материалов Ag—CdO и Ag—CuO, известны материалы с высокой стойкостью к обгоранню и свариванию и со стабильным контактным сопротивлением: Ag-10 % ZnO и Ag—5 % PbO. Очень высокой стойкостью к обгоранию обладает материал Ag—10 % SnO2. При использовании этого материала вместо Ag—12 % CdO гарантируемый срок службы при I =1000 А обеспечивается при уменьшении объема контакта на

Псевдосплавы Ag—Ni отличаются высокой пластичностью (при Ni), что позволяет плакировать ими медь и медные сплавы. По стойкости к обгоранию они значительно превосходят серебряные сплавы, но уступают материалам Ag—CdO различного состава и способа производства.

Псевдосплавы Ag—Ni применяют в качестве материала подвижного контакта в паре с неподвижным контактом из Ag—С в автоматических выключателях. Такое сочетание обеспечивает приемлемую эрозионную стойкость и стойкость к свариванию контактной пары.

Контактное сопротивление композиций Ag—W и Ag—WC снижается с увеличением силы тока вследствие разрушения поверхностных пленок. Стойкость к обгоранию композиций Ag—WC несколько выше, чем Ag—W, и часто подвижный контакт из Ag—WC используется в паре с неподвижным контактом из Ag—W при тяжелых режимах работы.

Наиболее высокая стойкость к свариванию у материалов Ag—С, Ag—W и Ag—CdO

Композиция Ag—MoS2 обладает высокой износостойкостью и низким коэффициентом трения в паре с бериллиевой бронзой и может использоваться для изготовления скользящих контактов.

Дисперсноупрочненное золото является перспективным контактным материалом, так как обладает низким контактным сопротивлением, стойко к обгоранию и свариванию. Материал, содержащий до 1 % (объемн.) дисперсного оксида, обладает высокой прочностью и пластичностью, а электрические свойства его практически соответствуют свойствам чистого золота.

При упрочнении золота оксидами значительно возрастает стойкость к механическому износу.

Области применения псевдосплавов на основе серебра для контактов

Ag—Ni: средненагруженные контакторы и магнитные пускатели, установочные и универсальные автоматические выключатели, реле цепей сигнализации и автоматики железных дорог, реле сварочных машин, контакторы автопогрузчиков, регуляторы напряжения, бытовые автоматические предохранители, светорегуляторы.

Ag—С; установочные и универсальные автоматические выключатели, электроутюги с терморегуляторами, реле сигнализации железных дорог, переключатели диапазонов и выключатели радиоприемников, вспомогательные контакты воздушных выключателей.

Ag—Ni—С: установочные и универсальные автоматические выключатели (в паре с контактами из AgNi).

Ag—W: магнитные пускатели и контакторы с большой частотой включений, выключатели бытовых электроприборов, барабанные переключатели, кнопки управления, высоковольтные переключатели, центробежные регуляторы оборотов электродвигателей постоянного тока, контакты мощных регулирующих трансформаторов, устройства питания радиоприемников, вибраторы, стартеры, кассовые аппараты, тяжело-нагруженные реле и выключатели авиационного оборудования. Контактные материалы с волокнистой структурой

Композиционные материалы с волокнистой структурой являются наиболее современными в технологии изготовления контактных материалов. Значительное упрочнение достигается при армировании серебра волокнами вольфрама, молибдена, никеля, стали. Известны результаты по упрочнению серебра монокристаллическими нитями A l 2 O3 и Si3N4. Степень упрочнения при армировании зависит от параллельности волокон в матрице, расстояния между волокнами, их непрерывности и объемного содержания. Композиционные материалы обладают сильной анизотропией свойств и при ориентации волокон перпендикулярно контактной поверхности можно достичь уменьшения обгорания и сваривания контактных материалов. У серебра, армированного непрерывными волокнами никеля, более чем на 50 % снижается обгорание по сравнению с обычным порошковым материалом. При этом волокнистый материал обладает гораздо большей пластичностью и выдерживает большую степень деформации при высадке заклепок, чем спеченный материал. Существенное улучшение контактных свойств достигается при использовании монокристаллических нитей графита вместо его порошка при производстве материалов на базе A g —С.

Перспективно применение армированных материалов для контактных пружин. Армированные серебряные материалы обладают наилучшими сочетаниями пружинных свойств и электропроводности среди используемых в настоящее время материалов для контактных пружин.

Материалы, содержащие дисперсные оксиды, после экструзии или волочения также приобретают волокнистую структуру с расположением волокон вдоль продольной оси полуфабриката. Контакты из таких материалов с расположением волокон перпендикулярно поверхности контактирования в зависимости от вида оксида в ряде случаев имеют более высокую стойкость к свариванию и обгоранию, чем порошковые материалы; при этом уменьшается время воздействия электрической дуги на поверхность контактирования.

Направленной кристаллизацией получен сплав Ag—28 % Cu с волокнистой структурой, обладающей высокой стойкостью к свариванию.

Источник

Разъем с позолоченными контактами или контакты, покрытые оловом. Правильный выбор и возможные ошибки

Полезные ссылки

На сегодня технологический уровень производства электронных компонентов и их монтажа на печатную плату стал таков, что источником отказов слаботочной техники являются, в основном, механические компоненты – кнопки, разъемы и соединители. В полупроводниковых приборах и пассивных компонентах стало просто нечему ломаться. Выбирая процессор или операционный усилитель, разработчик ставит на карту функциональные возможности устройства. Ошибка при выборе разъема может обернуться снижением надежности.

В каталогах ведущих производителей представлено множество разнообразных разъемов и соединителей как с позолоченными контактами, так и с контактами, покрытыми оловом. В пользу позолоченных контактов говорят их надежность и низкое сопротивление, в пользу контактов, покрытых оловом, – меньшая стоимость. Если нет желания заниматься сложными расчетами экономической целесообразности применения того или иного разъема, то в выборе можно опереться на эмпирическое правило «трех полусотен»: если в разъеме меньше 50 контактов, если за время жизни прибора предполагается размыкать разъем не более 50 раз и если допустимо электрическое сопротивление контактов, превышающее 50 мОм, то выбор разъема, покрытого оловом, оправдан. По сравнению с позолоченными контактами контакты, покрытые оловом, требуют для достижения приемлемых электрических характеристик большего механического усилия (порядок величины 2 Н). Из-за этого в эмпирическом правиле и появилось ограничение на максимальное количество контактов в разъеме.

Чем покрыты контакты разъемов. Смотреть фото Чем покрыты контакты разъемов. Смотреть картинку Чем покрыты контакты разъемов. Картинка про Чем покрыты контакты разъемов. Фото Чем покрыты контакты разъемов

Разъемы с контактами, покрытыми оловом, имеют ряд ограничений по применению:

Последняя особенность луженых контактов часто проявляет себя в промышленной электронике после долгих лет эксплуатации.

Нередко один и тот же разъем существует и в позолоченной и в более бюджетной версии, поэтому вопрос использования разъема с одним покрытием контактов, а ответной части для него – с другим, лежит не в теоретической, а в практической плоскости. Какими характеристиками будет при этом обладать пара контактов? Олово и золото – это два разных металла. Стандартный электродный потенциал золота +1,5 В, стандартный электродный потенциал олова +0,15 В. Из разницы потенциалов следует, что точка контакта олова и золота будет подвержена коррозии. Наглядный пример такой электрохимической реакции можно увидеть на медной водосточной трубе в том месте, где медь контактирует с каким-либо другим металлом. Производители разъемов даже не рассматривают возможность совместного применения золотых и покрытых припоем контактов. Многочисленные сложные физические и химические испытания, тесты на вибро- и термоустойчивость, исследования поверхностной, местной и межкристаллической коррозии не проводятся для пар золото-оловянных контактов. В связи с этим информации по данной теме мало, и вся она сводится к тому, что совместное использование оловянных и золотых контактов крайне нежелательно.

Чем покрыты контакты разъемов. Смотреть фото Чем покрыты контакты разъемов. Смотреть картинку Чем покрыты контакты разъемов. Картинка про Чем покрыты контакты разъемов. Фото Чем покрыты контакты разъемов

Специалист Molex, гуру в вопросах физики и электрохимии контактирующих поверхностей, прокомментировал золото-оловянные пары контактов таким образом: «Рекомендую избегать применения контактов из разных металлов. Соединитель с лужеными контактами с одной стороны и с позолоченными контактами – с другой, не оправдает себя ни в каком случае. Ситуацию не исправят даже специальные противокоррозионные смазки. Если вы спрашиваете о золото-оловянных парах контактов всерьез, то для ответа на вопрос нужно проводить длительные испытания. На данный момент мне неизвестно, как золотой контакт деформирует поверхность припоя, насколько глубоко он в нее погрузится, как молекулы золота будут диффундировать внутрь оловянной поверхности и наоборот. Ненадежность золото-оловянной пары контактов для меня очевидна. Что касается позолоченных и покрытых оловом разъемов, то при соблюдении всех рекомендаций производителя они окажутся одинаково надежны. Под «соблюдением всех рекомендаций» я подразумеваю герметизацию прибора, а еще лучше – заполнение корпуса атмосферой из инертного газа. Если такой возможности нет, продукты коррозии на оловянных контактах появятся в любом случае. Повлияют ли они на работоспособность прибора, будет зависеть от конструкции разъема, вибрационных нагрузок, температурного режима. Если вам нужна максимальная надежность и лучшие характеристики, используйте позолоченные контакты, они не проигрывают оловянным ни по одному из показателей. Луженые контакты при соблюдении ряда условий и проведении соответствующих испытаний также могут обеспечить долгую безотказную работу. Соединение оловянных и позолоченных контактов не рекомендуется».

Пример современных высокотехнологичных соединителей с очень маленьким шагом контактов – это плоские FFC кабели. Серийно выпускаемые модели имеют контакты, покрытые припоем, с шагом от 0,2 до 2,54 мм. Выпуск FFC кабелей с позолоченными контактами пока не налажен ни одним производителем. И вместе с тем на рынке представлены ответные разъемы с контактами, покрытыми золотом. Такой FFC-разъем подойдет для подключения гибкой или гибко-жесткой печатной платы – в случае, если контакты на ней также покрыты золотом. Применять позолоченный FFC-разъем совместно со стандартным FFC-кабелем не следует.

по материалам
Bishop & Associates Inc.

Источник

Чем покрыты контакты разъемов

Окружающая среда оказывает существенное влияние на работу электрических контактов. В случае контакта между разнородными металлами (частый случай – контакт меди и алюминия), имеющими разные электрохимические потенциалы, при взаимодействии содержащихся в атмосфере различных оксидов (СО2, SO 2 и др.) с влагой воздуха образуются растворы кислот, которые являясь электролитом, вызовут гальванический процесс между электродами контактной пары. Электрохимическая коррозия приведет к постепенному разрушению контактного соединения.

Д ля предотвращения коррозии и повышения стабильности соединений медь-алюминий широко применяют нанесение покрытий на один или оба контактирующие элемента. Наиболее часто используются олово, серебро, медь, никель.

Исследования и практика эксплуатации показали, что покрытия из олова не предотвращают гальваничес кой коррозии и не гарантируют стабильность электрических характеристик контакта медь-алюминий. Во-первых, такие покрытия восприимчивы к фреттингу, вызывающему деградацию поверхности контакта, повышение и нестабильность контактного сопротивления. Во-вторых, олово даже при комнатной температуре легко формирует интерметаллические соединения с медью, отличающиеся хрупкостью, высоким сопротивлением и чувствительностью к воздействию окружающей среды. В связи с этим для уменьшения коррозионного повреждения целесообразно дополнительно использовать контактные смазки.

Покрытия из серебра широко используются в контактах коммутационной аппаратуры закрытого типа, эксплуатирующихся при высоких температурах. Их наносят преимущественно электрохимическим методом, а также методом горячего погружения в расплав. Серебряные покрытия должны быть однородными и относительно толстыми — для закрытой коммутационной аппаратуры и шин оптимальной считается толщина покрытия 5-15 мкм. Однако в случае работы контактов в условиях многократных переключений, или при высоких требованиях к стабильности контактного сопротивления тол­щина наносимого покрытия должна быть еще больше.

Но и серебро обладает рядом недостатков: оно является электроотрицательным к алюминию, вызывая его коррозию; склонность к потускнению, пористость покрытий делает их чувствительными к повышенной влажности.

Покрытия из никеля являются лучшими в сравнении с другими, как с экономической точки зрения, так и улучшения контактных свойств соединений алюминий-медь. Сравнительные испытания покрытий олова, серебра, никеля и меди в таких соединениях были проведены Брауновичем. Количественная оценка способности покрытий к защите от коррозии при воздействии солевых растворов и индустриально загрязненной атмосферы приведена в табл. 1. Показатель эффективности определялся усреднением показателей, характеризующих работу соединения в условиях действия различных факторов (циклическое изменение тока, фреттинг, действие солей и индустриальных загрязнений). Чем ниже величина показателя, тем выше эффективность материала покрытия.

Таблица 1. Сравнительная оценка эффективности различных покрытий для соединения алюминий—медь [1].

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *