Чем паять 18650 аккумуляторы
Как правильно спаять аккумуляторы для шуруповерта
При замене отслуживших свой срок элементов аккумулятора шуруповерта потребуется соединить банки в батарею. Самый распространенный способ для этого – пайка. С ее помощью можно соединять как устаревшие никель-кадмиевые элементы, так и самые современные литий-ионные. Спаять аккумуляторы для шуруповерта можно своими руками. Для этого потребуется набор инструментов, материалов, а также определенная квалификация.
Подготовка компонентов
Для пайки надо подготовить паяльник с расходниками:
Выбор паяльника
Паяльник выбирается по мощности – так, чтобы не перегреть аккумулятор при пайке. На неискушенный взгляд, чем меньше мощность нагревательного инструмента, тем меньше риски. На самом деле, это не так. Успех быстрой, надежной пайки – в быстром создании локального нагрева корпуса так, чтобы пятно повышенной температуры не распространялось далеко за пределы места соединения. Маломощным паяльником так сделать не получится – разогрев займет много времени, за этот период успеет повыситься температура внутри банки. Поэтому надо выбрать электронагревательный инструмент мощностью не менее 40 ватт (выше 100 ватт тоже не надо), и паять быстрыми, точными движениями. Это потребует навыка.
Выбор флюса
Флюс выбирается исходя из спаиваемых материалов. Если шинку можно подобрать из любого металла, легко поддающегося пайке (медь, латунь, никель) и лудить ее с помощью составов на основе канифоли, то корпус аккумуляторного элемента придется паять, каков он есть. Из какого сплава изготовлена банка, может не знать даже производитель АКБ (он закупает готовый металл). Однако современные флюсы могут паять даже неподдающийся алюминий, вся задача состоит в правильном подборе.
Самый лучший вариант – если есть неисправный элемент, предназначенный в утилизацию. На нем можно потренироваться – опробовать флюс. На заменяемой банке проводить тесты не стоит – при неоднократной перепайке аккумулятор несложно перегреть.
Исходя из накопленного опыта, корпуса аккумуляторов легко паяются кислотными флюсами, поэтому, если нет возможности подобрать расходный материал, это беспроигрышный вариант. Но у них есть недостаток – незамеченные и неудаленные брызги кислоты со временем вызывают коррозию (за исключением ортофосфорной кислоты). Поэтому паять надо аккуратно, после пайки зону монтажа следует тщательно протереть, потом промыть жидкостью щелочного типа (хотя бы мыльным раствором). В качестве кислотного флюса можно применить обычный аптечный аспирин.
Важно! Кислотные флюсы нельзя использовать совместно с паяльниками со стальными жалами, имеющими гальваническое покрытие. Кислота «съест» нанесенный слой, пользоваться жалом станет невозможно. Новое жало стоит почти как новый паяльник.
Выбор припоя
Основной критерий выбора припоя – температура плавления. Она не должна быть слишком высокой, чтобы уменьшить риск перегрева банок. Температуры плавления распространенных припоев (ликвидус) приведены в таблице.
Припой | Температура полного плавления, град.С |
---|---|
ПОС-40 | 238 |
ПОС-60 | 190 |
ПОС-90 | 220 |
Сплав Розе (ПОСВ-50) | 94 |
Сплав Вуда | 68,5 |
Сплав Вуда, к тому же, токсичен за счет содержания кадмия.
Какие типы АКБ можно паять
Если говорить о возможности пайки выводов, то таким образом можно соединять любые элементы, надо лишь применять правильный флюс. Все аккумуляторы не любят перегревов, поэтому надо принимать специальные меры, чтобы этого избежать.
Литий-ионные банки стоят особняком – они крайне чувствительны к повышению температуры. И дело не только в потенциальной порче химических реагентов. Li-Ion элементы содержат внутри корпуса дополнительные устройства, повышающие безопасность эксплуатации. Например, клапан, открывающийся при повышении давления внутри банки. Эти устройства изготовлены, большей частью, из пластика, и перегрев практически всегда выводит их из строя. Поэтому эксплуатировать такие банки становится опасным, и пайку применять можно только в крайнем случае и очень аккуратно.
В продаже имеются элементы 18650 с уже установленными шинками, которые хорошо поддаются лужению даже обычными флюсами. Такие банки можно паять, хотя помнить о предосторожности надо и в этом случае.
Способы соединений батареек
Кроме пайки существуют и другие способы соединения банок в аккумуляторные батареи:
Все эти способы, за исключением сварки, не дают надежного контакта, поэтому в цепях с большими токами их лучше не применять.
Что лучше пайка или точечная сварка
У каждого способа есть свои преимущества и недостатки. При точечной сварке процесс происходит быстро, и перегрев практически исключен. Это важно при соединении в батарею Li-Ion элементов. Но площадь пятна контакта проконтролировать невозможно, и может получиться так, что шинка приварится не по всей поверхности вывода банки. Так как при работе даже бытового шуруповерта потребляемые токи составляют несколько ампер (в особо сложных режимах более 10 А), то при малой площади контакта может возникнуть локальный перегрев. К тому же высокое переходное сопротивление может ограничивать ток в цепи, и электроинструмент не сможет выдать полный крутящий момент. Оборудование для точечной сварки (особенно, приспособленное именно для соединения элементов в батарею) намного более труднодоступно, чем паяльник.
Пайка же позволяет получить максимально возможную площадь соединения, а паяльник имеется в арсенале почти каждого домашнего мастера. Но в не очень умелых руках перегрев практически неизбежен. Для Ni Cd и NiMH аккумуляторов это может привести к снижению емкости и срока эксплуатации, а для литий ионных последствия могут быть еще хуже.
Как правильно паять
В первую очередь, поверхности для пайки надо подготовить:
Далее поверхности надо предварительно облудить. Для этого на всю спаиваемую поверхность надо обильно нанести слой флюса. Жидкий или мягкий флюс наносится кисточкой или выдавливается из тюбика. Твердый флюс (канифоль и т.п.) надо расплавить паяльником, перенести каплю расплава на место пайки и покрыть всю площадь пятна. Жалеть флюс не надо – излишки потом легко удалить растворителем, а недостаток не позволит качественно облудить проводник.
Далее на жало паяльника надо набрать каплю припоя, перенести ее на облуживаемую поверхность и, прогревая участок, растереть по всей площади контакта так, чтобы припой прилип к поверхности. Для проверки можно поддеть покрытие ногтем или тонкой отверткой (после остывания!) – отслаиваться припой не должен.
Припоя должно быть достаточно для создания ровного покрытия, излишков допускать не надо – контакт от этого надежнее не будет. Понимание необходимого количества приходит с опытом.
Облуженные поверхности надо приложить друг к другу и быстро и точно прогреть паяльником. После того, как жало будет убрано, двигать детали до полного затвердевания припоя нельзя. Если не получилось – пайку надо повторить. Чтобы ускорить остывание, после отъема паяльника на место спайки надо сильно подуть.
В завершении серия видеороликов о пайке.
Качество паяного соединения во многом определяется квалификацией мастера. Поэтому перед началом сборки батареи лучше потренироваться на обрезках металла и подобрать расходные материалы для достижения наилучшего качества. Тогда батарея проработает долго и не подведет в самый неподходящий момент.
Ультрабюджетная точечная сварка литиевых аккумуляторов дома
В жизни каждого «радиогубителя» возникает момент, когда нужно сварить между собой несколько литиевых аккумуляторов — либо при ремонте сдохшей от возраста АКБ ноутбука, либо при сборке питания для очередной поделки. Паять «литий» 60-ваттным паяльником неудобно и страшновато — чуть перегреешь — и у тебя в руках дымовая граната, которую бесполезно тушить водой.
Коллективный опыт предлагает два варианта — либо отправиться на помойку в поисках старой микроволновки, раскурочить её и достать трансформатор, либо изрядно потратиться.
Мне совершенно не хотелось ради нескольких сварок в год искать трансформатор, пилить его и перематывать. Хотелось найти ультрадешёвый и ультрапростой способ сваривать аккумуляторы электрическим током.
Мощный низковольтный источник постоянного тока, доступный каждому — это обычная б.у. АКБ от машины. Готов поспорить, что он у вас уже есть где-то в кладовке или найдётся у соседа.
Чтобы сваривать аккумуляторы током от батареи, нам нужно будет выдавать ток короткими импульсами в считанные миллисекунды — иначе получим не сварку, а выжигание дыр в металле. Самый дешёвый и доступный способ коммутировать ток 12-вольтовой батареи — электромеханическое реле (соленоидное).
Проблема в том, что обычные автомобильные реле на 12 вольт рассчитаны максимум на 100 ампер, а токи короткого замыкания при сварке в разы больше. Есть риск, что якорь реле просто приварится. И тогда на просторах Алиэкспресс я наткнулся на мотоциклетные реле стартера. Подумалось, что если эти реле выдерживают ток стартера, причём много тысяч раз, то и для моих целей сгодится. Окончательно убедило вот это видео, где автор испытывает аналогичное реле:
Моё реле было куплено за 253 рубля и доехало до Москвы меньше, чем за 20 дней. Характеристики реле с сайта продавца:
Агрегат порадовал качеством — под контакты выведены два омеднённых резьбовых соединения, все провода — залиты компаундом для водонепроницаемости.
На скорую руку собрал «тестовый стенд», контакты реле замыкал вручную. Провод использовал одножильный, сечением 4 квадрата, зачищенные наконечники фиксировал клеммником. Для подстраховки снабдил одну из клемм к АКБ «страховочной петлёй» — если бы якорь реле решил бы пригореть и устроить короткое замыкание, я бы успел сдёрнуть клемму с АКБ за эту верёвку:
Испытания показали, что машинка работает на твёрдую пятёрку. Якорь очень громко стучит, а электроды дают чёткие вспышки; реле не пригорает. Чтобы не тратить никелевую полосу и не практиковаться на опасном литии, мучил лезвие канцелярского ножа. На фото вы видите несколько качественных точек и несколько передержанных:
Передержанные точки видны и на изнанке лезвия:
Едем дальше. Как показал эксперимент на лезвии, выдержать необходимую длину импульса для сварки вручную невозможно, надо делать управление от тактовой кнопки или на микроконтроллере.
Сначала нагородил простую схему на мощном транзисторе, но быстро вспомнил, что соленоид в реле хочет кушать аж 3 ампера. Порылся в ящике и нашёл взамен транзистору MOSFET IRF3205 и набросал простую схему с ним:
Схема довольно нехитрая — собственно, MOSFET, два резистора — на 1К и 10К, да диод, предохраняющий цепь от индуцированного соленоидом тока в момент обесточивания реле.
Сначала пробуем схему на фольге (с радостными щелчками жжёт дырки насквозь через несколько слоёв), потом достаём из загашника никелевую ленту для соединения аккумуляторных сборок. Коротко жмём кнопку, получаем громкую вспышку, и рассматриваем прожжённую дыру. Блокноту тоже досталось — прожгло не только никель, но и пару листов под ним 🙂
Даже сваренную двумя точками ленту разделить руками не выходит.
Очевидно, что схема работает, дело за тонкой настройкой «выдержки и экспозиции». Если верить экспериментам с осциллографом того же товарища с YouTube, у которого я подсмотрел идею с реле стартера, то на срыв якоря уходит около 21мс — от этого времени и будем плясать.
Дополняем схему — вместо нажатий кнопки вручную доверим отсчёт миллисекунд Ардуине. Нам понадобятся:
Заливаем в Arduino немудрёный код:
Затем подключаемся к Ардуине с помощью Serial monitor и поворотами потенциометра выставляем длину сварочного импульса. Я опытным путём подобрал длину в 25 миллисекунд, но в вашем случае задержка может быть иной.
По нажатию на спусковую кнопку Ардуино несколько раз пропищит, после чего включит на мгновение реле. Вам потребуется извести небольшое количество ленты перед тем, как вы подберёте оптимальную длину импульса — чтобы и сваривалось, и не прожигало дыры насквозь.
В результате имеем простую бесхитростную сварочную установку, которую легко разобрать:
Несколько важных слов о технике безопасности:
Изготовление сменного батарейного блока к запасному Li-Ion аккумулятору для Ni-Cd шуруповерта, с использованием холдера для 18650 Li-Ion аккумуляторов
Из-за удобства их применения холдеры давно и успешно используют во всяких DIY проектах: пауэрбанках, зарядках, источниках автономного питания и пр. Так же давно холдеры пытаются использовать и для переделки шуруповертов на литиевое питание, но результаты получаются положительными не всегда.
В чем же проблема с использованием холдеров для аккумулятора шуруповерта? Во-первых, при высоких рабочих токах шуруповерта контакты холдера сильно нагреваются. Из-за этого пластиковый корпус холдера плавится, что приводит к его разрушению и выходу аккумулятора из строя. Во-вторых, шуруповерт теряет мощность, т.к. значительная часть энергии банок уходит на нагрев контактных проводников холдера. Особенно это касается холдеров с круглыми пружинами, на которых заметно падает напряжение из-за большой длины и малого сечения пружинок. Итак, общее проблемное место всех холдеров — это их контакты, что ограничивает возможности использования холдеров в устройствах с высоким током потребления.
Означает ли это, что использовать холдеры для шуруповерта в принципе нельзя?
Утверждать столь категорично я бы не стал. Некоторые типы холдеров, после несложной доработки, использовать вполне возможно. Но обязательно нужно учитывать максимальный ток шуруповерта, с которым их планируется применять.
Какие бывают холдеры (кассеты) для 18650 Li-Ion аккумуляторов?
Чаще всего встречаются такие.
Я условно пронумеровал их как №1, 2, 3.
№1 это холдер с круглыми пружинами.
№ 2 и 3 по сути один и тот же холдер с плоскими пружинами, различие только в форме выводов. У № 2 они узкие, а у № 3 широкие. Рядом с этими холдерами я добавил изображения их контактных ламелей.
Почему греются контакты холдера при высоких токах?
При прохождении по проводнику электрического тока происходит преобразование электрической энергии в тепловую. Количество выделяемого тепла пропорционально квадрату тока, сопротивлению проводника и времени прохождения тока (закон Джоуля-Ленца, Q = I2rt).
Представим, что это контакт холдера (как отрезок проводника, включенный в общую цепь). Если в каком-то месте цепи сопротивление (r, Ом) будет выше, то проводник в этом месте будет греться сильнее.
От чего зависит сопротивление проводника? В основном от 2-х факторов (в дебри уходить не будем, это все же DIY обзор, а не научная статья) – от геометрии проводника и его удельного электрического сопротивления. Вот формула.
где r — сопротивление отрезка проводника; ρ — удельное сопротивление проводника; l — длина проводника; S — сечение проводника.
На какие мысли наводит эта формула?
Чтобы уменьшить r, нужно значение числителя (верхняя часть дроби) сделать как можно меньше, а знаменателя — как можно больше. С ρ мы ничего сделать не можем, что есть, с тем и работаем. А вот L можно уменьшить, сделав путь тока как можно короче. Применительно к плоскому ламелю холдера, это означает, что паять перемычку нужно как можно ближе к месту контакта ламеля с полюсом банки. Холдер с круглыми пружинами имеет большую длину L и соответственно повышенное сопротивление. Однако определяющее значение для выбора правильного холдера имеет сечение S контактного ламеля. Чем больше сечение, тем больший ток может выдержать холдер. На первый взгляд это просто, но есть и нюансы.
На фото холдеров вы наверно обратили внимание, что сечение ламеля на разных участках его длины разное. Что из этого следует? В той области, где сечение меньше, ламель будет греться больше. Кстати, на этом строится принцип работы плавкого предохранителя – где тонко, там и рвется.
А вот еще пример, из области автоэлектрики.
Несложно догадаться, что произойдет с тонким проводком при включении мощного потребителя.
Становится понятно, что соединять ламели холдера между собой нужно в их широкой части — от места контакта ламеля с полюсом банки до места сужения профиля ламеля.
Такой нестандартный способ соединения ламелей нужен только для работы на высоких токах. Для работы в пауэрбанке, например, штатного соединения (т.е. нижнего по рисунку) будет более чем достаточно.
А теперь отвлечемся на минуту от скучных формул.
На какой предмет похож контакт холдера № 2? Мне, как бывшему слесарю-сборщику РЭАиП, он напоминает бутылку (ну кто б сомневался).
Кстати, это наглядная визуализация английского термина bottleneck («узкое место»), применяемого в технических и других науках. Термин произошел из аналогии с узким горлышком бутылки, из-за чего не получается вылить или высыпать всё её содержимое сразу, даже если её перевернуть. При увеличении ширины горлышка увеличивается и скорость, с которой бутылка опустошается. Таким образом, «бутылочным горлышком» называют любой компонент системы, мощность (пропускная способность) которого меньше, чем потребность в нем.
Вот мы и подобрались вплотную к ответу на вопрос, какой тип холдера, с точки зрения банальной физики, лучше всего подходит для использования с шуруповертом. Таблица ниже поможет сделать выбор.
Холдеры с круглыми пружинами отбрасываем сразу. Самое малое сечение контактов из всех 3-х типов, это раз. Большая длина пружинок, значительное падение на них напряжения, это два. Популярная доработка (припаивание медного провода ко 2-му витку пружинок) ничего кардинально не изменит. Холдер №1 можно использовать только для сравнительно небольших токов, порядка 1 ампера, например, в пауэрбанках. Для питания шуруповертов они совершенно непригодны.
Теперь самое интересное. Какой холдер лучше, №2 или №3?
№2 имеет узкие выводы с сечением 0,62 кв.мм, немногим больше чем у холдера №1 (0,38 кв.мм). Такого сечения для питания шуруповерта также явно недостаточно, о чем красноречиво говорит проплавленный корпус холдера на фото ниже. Необходимо использовать нестандартное соединение в широкой части контакта. Плюс холдера №2 – самая большая площадь сечения (в широкой части контакта).
Холдер №3. С одной стороны, он имеет широкие выводы. Но вся их ценность смазывается заужением профиля в середине ламеля (помните про плавкий предохранитель?). Если соединять штатно, эффективное сечение будет всего лишь 1,08 кв.мм. Второй недостаток — сечение даже широкой части контакта холдера №3 на целых 39% меньше такого же сечения холдера №2. 1,9 кв.мм и 2,64 кв.мм соответственно.
Поскольку нагрев контактов сильно зависит от силы тока через них (помните про квадрат тока из формулы Джоуля-Ленца?), то для противодействия ему каждый дополнительный мм2 сечения контактов становится на вес золота. Поэтому лучшим холдером для высоких токов из 3-х перечисленных является тот, который имеет наибольшее сечение контактов в местах их соединения между собой.
Вывод: Для токов шуруповерта лучше подойдет холдер №2, при условии, что соединительные провода будут припаяны к его широкой части.
Следующий важный вопрос – какой ток, ограниченный допустимым нагревом, может на практике выдержать доработанный холдер №2? Такой эксперимент проводил уважаемый kirich в одном из своих обзоров. Вот его результаты.
Судя по термограмме, можно осторожно предположить, что и 20 ампер длительно не являются пределом для данного холдера, однако здесь мы уже упираемся в ограничения по максимальному току самих Li-Ion аккумуляторов форм-фактора 18650 (как правило, 30 ампер длительно).
Как альтернативный вариант, для увеличения токовой отдачи можно также использовать параллельно-последовательное соединение аккумуляторов в холдере. Например, xS2P соединение увеличивает отдаваемый батарейным блоком ток вдвое, xS3P — втрое, и т.д.
Кстати, многие думают, что чем мощнее аккумуляторный шуруповерт, то тем больше у него рабочие токи. Это не всегда так, бывает скорее наоборот. Вот пример. Посмотрите на таблицу со спецификациями моторов ф. Leshi Motor, которые ставились в Ni-Cd шуруповерты.
Мы видим, что 7.2В мотор имеет макс. ток 14,8А и мощность 67,5 Вт.
А 18В мотор имеет макс. ток 8,6А и мощность 113,7 Вт.
Удивительно, правда? Почему так? Здесь при меньшем макс. токе мощность больше за счет повышения напряжения питания (по формуле мощности P=IU).
Поскольку для холдеров критичным является именно ток, а не напряжение, это обстоятельство может в некоторых случаях расширить возможности применения холдеров для переделки на литий мощных 18 вольтовых Ni-Cd шуруповертов.
Ну и наконец, практическая часть.
Изготовление сменного батарейного блока на базе холдера №2
Напомню, что моем шуруповерте Black&Decker CD12C, для которого я делаю этот батарейный блок, стоит 12V двигатель с максимальным рабочим током 9.7А. Провода питания к этому двигателю имеют сечение 0,823 кв.мм (18AWG). Допустимую длительную токовую нагрузку проводов с разным сечением по стандарту AWG можно посмотреть здесь
Это холдер с аккумуляторами, которые я буду использовать. Ссылки на них привел в конце обзора.
Припаял выходные провода и перемычки к ламелям холдера в верхней части. Перемычки в точках 1S и 2S сделал из того же акустического медного провода сечением полтора квадрата, что и выходные провода. Для подключения точек соединения элементов к плате защиты и вольтметру припаял к перемычкам провода с наконечником типа РП-М (автоклемма).
Провода и перемычки не мешают установке аккумуляторов в холдер.
Для обратной совместимости с батарейным блоком от шуруповерта DeWALT DCD 710, который меньше по длине, сделал в адаптере разрезную фигурную вставку. Нижняя часть приклеена, а верхняя при установке холдера вынимается.
Оба блока рядом.
Батарейные блоки в адаптере меняются простой перестановкой.
Напоследок испытал новый батарейный блок в составе шуруповерта, закрутив и выкрутив без перерыва два десятка длинных саморезов, до отсечки на максимальном моменте трещотки. Ничего не задымилось и не расплавилось.
В каких же случаях можно использовать холдер вместо пайки/сварки банок? Мое личное мнение на этот счет таково: если холдер влезает в корпус старого аккумулятора и рабочий ток шуруповерта позволяет, тогда и можно ставить. А вот нужно ли ставить холдер или паять литий, каждый решает сам, в зависимости от своих убеждений и уровня подготовленности, здесь я рекомендовать ничего не могу. Для меня все определяется удобством и целесообразностью в каждом конкретном случае. Например, в корпус штатного Ni-Cd аккумулятора моего шуруповерта холдер не влезает и поэтому, если буду переделывать его на литий, то буду паять банки.
Заряжать вставленный в адаптер холдер с аккумуляторами можно теми же способами, что и батарейный блок DeWALT из прошлого обзора:
1) 12.6V зарядкой для 3S сборки литиевых аккумуляторов через штатный зарядный разъем шуруповерта. Например, зарядкой из обзора уважаемого kirich
2) Подходящей универсальной зарядкой для литиевых аккумуляторов через выходные клеммы или штатный зарядный разъем. Например, B6 mini.
3) Или можно вынуть аккумуляторы из холдера и зарядить их любой зарядкой для лития, вместе или по отдельности.
Список основных использованных материалов
UPD: Незапланированный тест холдера на устойчивость к короткому замыканию и его результаты
Хотя я и сделал защиту от себя дурака переполюсовки, в виде термоусадки разного цвета на наконечниках проводов (кроме силовых проводов адаптера, за что впоследствии и поплатился), но тем не менее на днях умудрился их перепутать. При нажатии кнопки шуруповерта послышался характерный «пшшш», сопровождаемый дымом и запахом горелой пластмассы.
Из видимых повреждений: в шуруповерте был пробит диод, а на плате защиты отпаялись силовые ключи и подгорели токоизмерительные резисторы. Таким образом, шуруповерт и плата защиты оказались выведены из строя. А вот с холдером ничего не случилось. Контакты холдера, провода с разъемами и аккумуляторы это испытание выдержали играючи.