Чем отличаются процессы обмена веществ у живых организмов и в неживой природе
Ответы на вопросы по биологии
(11-й класс)
6. Обоснуйте принципиальное единство химического состава живых организмов и неживой природы
В клетках живых организмов содержится несколько тысяч веществ, которые участвуют в разнообразных химических реакциях. В состав клетки входит большинство из 109 элементов периодической системы Менделеева, причем клетки бактерий, грибов, растений и животных имеют сходный химический состав. Особенно велико содержание в клетках кислорода (65–75%), углерода (15–18%), водорода (8–10%) и азота (1,5–3,0%); в сумме эти элементы составляют почти 98% всего элементного состава клетки. Следующая группа включает восемь элементов, содержание которых в клетке составляет десятые и сотые доли процента. Это сера (0,15–0,2%), фосфор (0,2–1,0%), хлор (0,05–0,1%), калий (0,15–0,4%), магний (0,02–0,03%), натрий (0,02–0,03%), кальций (0,04–2,0%) и железо (0,01–0,015%). В сумме эти элементы составляют 1,9%. Микроэлементы – цинк, медь, фтор, йод – содержатся в клетках в ничтожных долях процента (0,0001–0,0003%), но при недостатке их возникают серьезные нарушения обмена веществ.
Все перечисленные химические элементы входят и в состав неживой природы. Таким образом, существует принципиальное единство химического состава живых организмов и неживой природы, выявляющееся на атомном уровне организации материи. На более высоком уровне организации – молекулярном – между живым и неживым обнаруживаются существенные различия.
7. В чем отличие обмена веществ у живых организмов от обменных процессов, протекающих в неживой природе?
Живая клетка постоянно обменивается веществами с внешней средой. Через живые системы проходят потоки веществ и энергии: именно поэтому их и называют открытыми системами. Под обменом веществ и энергии в живой материи понимают последовательное потребление, превращение, использование, накопление и потерю веществ и энергии в живых организмах в процессе жизни. Обмен веществ лежит в основе роста, развития и самовоспроизведения организмов, адаптации к изменяющимся условиям окружающей среды. Этот процесс состоит из непрерывно протекающих реакций синтеза (ассимиляции) и расщепления (диссимиляции) органических молекул.
Для обменных процессов, протекающих в неживой природе, свойственно многократное («бесконечное») повторение процессов превращения и перемещения веществ, характеризующееся более или менее четко выраженной цикличностью. Такой круговорот веществ происходит во всех геосферах; он складывается из отдельных процессов круговорота химических элементов. При этом происходит частичное рассеивание, местная концентрация вещества, изменение его состава и т.д. Таким образом, в отличие от обмена веществ в живой природе, в обменных процессах, происходящих в неживой природе, невозможно выделить взаимосвязанные процессы ассимиляции и диссимиляции. Круговорот веществ в неживой природе не преследует целей роста, развития, самовоспроизведения и адаптации, т.к. эти характеристики свойственны только живым организмам.
Однако надо хорошо понимать, что с появлением на Земле жизни и возникновением биосферы обменные процессы, протекающие в неживой природе в живых системах, оказались взаимосвязаны. Согласно закону биогенной миграции атомов Вернадского «миграция химических элементов на земной поверхности и в биосфере в целом осуществляется или при непосредственном участии живого вещества (биогенная миграция), или же она протекает в среде, геохимические особенности которой (кислород, углекислый газ, водород и т.д.) обусловлены живым веществом, как тем, которое в настоящее время населяет биосферу, так и тем, которое действовало на Землю в течение всей геологической истории».
8. Докажите, что клетки, ткани и органы в сумме еще не представляют собой целостный организм
В многоклеточном организме клетки объединены в различные органы и ткани и специализированы для выполнения разных функций. В зависимости от выполняемой функции клетки имеют разную организацию. Так, например, в мышечных клетках имеются миофибриллы и протофибриллы, в секретирующих – специфические гранулы, в эритроцитах – гемоглобин и т.д. Совокупность клеток, сходных по строению, происхождению и выполняемым функциям, представляет собой ткань. Определенный комплекс тканей составляет орган, выполняющий одну или несколько функций; органы входят в состав систем органов (дыхательной, сердечно-сосудистой и др.). Особь представляет собой системную совокупность органов, которой свойственна способность к саморегуляции и адаптации к условиям окружающей среды. Искусственно выделенные из такой системы клетка, ткань или орган не способны к длительному существованию.
Клетке одноклеточного организма (бактерии, одноклеточные водоросли, простейшие) свойственны все характеристики целостного организма; такая клетка-организм может существовать самостоятельно, т.к. она способна к саморегуляции и адаптации. Появление в процессе эволюции многоклеточности (первыми многоклеточными организмами были водоросли) привело к тому, что отдельная клетка потеряла свою самостоятельность. Однако на первом этапе развития многоклеточности дифференцированных тканей еще не было (тело водорослей представляет собой слоевище, или таллом); позднее появились различные ткани и органы, объединенные в единый организм сложными системами регуляции.
9. Раскройте основные положения клеточной теории. Каково ее значение для развития науки?
Все живые организмы состоят из клеток. Клетка – это один из основных структурных, функциональных и воспроизводящих элементов живой материи; это элементарная живая система. Неклеточные организмы – вирусы – могут размножаться только в клетках. Существуют и организмы, вторично утратившие клеточное строение (некоторые водоросли).
Различные клетки отличаются друг от друга по строению (не имеют оформленного ядра у прокариот и имеют оформленное ядро у эукариот, могут иметь различные органоиды, растительные клетки имеют целлюлозную оболочку, пластиды и т.д.), размерам (размеры клеток колеблются от 1 мкм до нескольких сантиметров – это яйцеклетки рыб и птиц), форме (могут быть круглыми, как эритроциты, древовидными, как нейроны, веретенообразными, как мышечные клетки), биохимическим характеристикам (например, в клетках, содержащих хлорофилл или бактериохлорофилл, идет процесс фотосинтеза, который невозможен при отсутствии этих пигментов), функциям (различают половые клетки – гаметы и соматические – клетки тела, которые, в свою очередь, подразделяются на множество разных типов).
История изучения клетки связана с именами таких ученых, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые и назвал клетками), Антони ван Левенгук (впервые увидел клетки под увеличением в 270 раз), Маттиас Шлейден и Теодор Шванн (явились создателями клеточной теории). В работе «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839 г.) Т.Шванн сформулировал основные положения клеточной теории.
1. Все организмы состоят из одинаковых частей – клеток; они образуются и растут по одним и тем же законам.
2. Общий принцип развития для элементарных частей организма – клеткообразование.
3. Каждая клетка в определенных границах есть индивидуум, некое самостоятельное целое. Но эти индивидуумы действуют совместно, так, что возникает гармоничное целое. Все ткани состоят из клеток.
4. Процессы, возникающие в клетках растений, могут быт сведены к следующим: 1) возникновение новых клеток; 2) увеличение клеток в размерах; 3) превращение клеточного содержимого и утолщение клеточной стенки.
М.Шлейден и Т.Шванн ошибочно считали, что клетки в организме возникают из первичного неклеточного вещества. Позднее Рудольф Вирхов (1859) сформулировал одно из важнейших положений клеточной теории: «Всякая клетка происходит из другой клетки. Там, где возникает клетка, ей должна предшествовать клетка, подобно тому, как животное происходит только с животного, растение – только от растения».
Клеточная теория позволила сформулировать вывод о том, что клетка – это важнейшая составляющая часть всех живых организмов. Клетка – их главный кoмпонент в морфологическом отношении; она является основой развития многоклеточного организма, т.к. развитаие организма начинается с одной клетки – зиготы; клетка – основа физиологических и биохимических процессов в организме, т.к. на клеточном уровне происходят в конечном счете все физиологические и биохимические процессы. Клеточная теория позволила придти к выводу о сходстве химического состава всех клеток и еще раз подтвердила единство всего органического мира.
Современная клеточная теория включает следующие положения.
1. Клетка – основная единица строения и развития всех живых организмов, наименьшая единица живого.
2. Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.
3. Размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления материнской клетки.
4. В сложных многоклеточных организмах клетки специализированы по выполняемым ими функциям и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.
10. Дайте сравнительную характеристику строения и жизнедеятельности прокариот и эукариот
Прокариоты (лат. про – перед и гр. карион – ядро) – это древнейшие организмы, не имеющие оформленного ядра. Носителем наследственной информации у них является молекула ДНК, которая образует нуклеоид. В цитоплазме прокариотической клетки нет многих органоидов, которые имеются у эукариотической клетки (митохондрий, эндоплазматической сети, аппарата Гольджи и т.д.; функции этих органоидов выполняют ограниченные мембранами полости). В прокариотической клетке имеются рибосомы. Большинство прокариот имеет размер 1–5 мкм. Размножаются они путем деления без выраженного полового процесса. Прокариоты обычно выделяют в надцарство. К ним относят бактерии, синезеленые водоросли (цианеи, или цианобактерии), риккетсии, микоплазмы и ряд других организмов.
Рис. 2. Схема строения растительной клетки
Рис. 1. Схема строения животной клетки
11. Каковы строение и функции клеточного ядра и клеточного центра?
Рис. 3. Некоторые мембранные системы в клетках эукариот
Ядрышки – это округлые тельца диаметром от 1 до нескольких микрометров. В ядре может быть несколько ядрышек. В состав ядрышек входят РНК и белок. Ядрышки образуются на определенных участках хромосом; в них синтезируется рибосомальная РНК (рРНК). В ядрышках происходит формирование больших и малых субъединиц рибосом. Ядрышки видны только в неделящихся клетках.
Хромосомы (греч. хрома – краска и сома – тело; были так названы из-за способности к интенсивному окрашиванию) – это важнейший органоид ядра, образованный ДНК в комплексе с основным белком – гистоном, содержащим большое количество лизина и аргинина; этот комплекс составляет около 90% вещества хромосом. В состав хромосом входят также РНК, кислые белки, липиды, минеральные вещества и фермент ДНК-полимераза, необходимый для репликации (удвоения) ДНК. Хромосомы могут иметь длину, в десятки и сотни раз превышающую диаметр ядра. В интерфазу (период между делениями) хромосомы деспирализованы, видны только в электронный микроскоп и представляют собой длинные тонкие нити хроматина. В этот период идет процесс удвоения (редупликации) хромосом; в конце интерфазы каждая хромосома состоит из двух хроматид. Она имеет первичную перетяжку, на которой расположена центромера; перетяжка делит хромосому на два плеча одинаковой или разной длины. Центромера служит местом прикрепления нити веретена деления. У ядрышковых хромосом имеется также вторичная перетяжка, где формируется ядрышко.
Функция хромосом заключается в контроле над всеми процессами жизнедеятельности клетки. Хромосомы являются носителями генетической информации. Наследственная информация передается путем репликации молекулы ДНК. Число, размер и форма хромосом строго специфичны для каждого вида.
В половых клетках и в спорах у растений содержится одинарный (гаплоидный) набор хромосом, в соматических клетках – двойной (диплоидный) набор. Бывают также полиплоидные клетки. Различают гомологичные (парные, соответствующие) и негомологичные хромосомы. Хромосомы, определяющие развитие пола, называют половыми. Хромосомы соматических клеток называют аутосомами.
Клеточный центр относится к немембранным компонентам клетки. В состав его входят две центриоли. Центриоли обнаружены не во всех клетках, имеющих клеточный центр (например, их нет у покрытосеменных растений). Каждая центриоль – это цилиндр размером около 1 мкм, по окружности которого расположены девять триплетов микротрубочек. Центриоли располагаются под прямым углом друг к другу. Клеточный центр играет важную роль в организации цитоскелета, т.к. цитоплазматические микротрубочки расходятся во все стороны из этой области. Перед делением центриоли расходятся к противоположным полюсам клетки и возле каждой из них возникает дочерняя центриоль. От центриолей протягиваются микротрубочки, которые образуют митотическое веретено деления. Часть нитей веретена прикрепляется к хромосомам. Формирование нитей веретена происходит в профазе.
12. Раскройте биологическое значение хромосом
Хромосомы (рис. 4) являются носителями материальных основ наследственности – генов. В основе действия гена в процессе развития организма лежит его способность через посредство РНК определять синтез белков. В молекуле ДНК, входящей в состав хромосом, «записана» информация, определяющая химическую структуру белков. См. также ответ на вопрос 11.
Рис. 4. Схематическое изображение типичной метафазной хромосомы
13. Охарактеризуйте строение и функции цитоплазматической мембраны
Цитоплазматическая (или клеточная) мембрана (плазмалемма) – это биологическая мембрана, окружающая протоплазму (цитоплазму) живой клетки. Ее основой является двойной слой липидов (водонерастворимых молекул, имеющих полярные «головки» и длинные неполярные «хвосты», представленные цепями жирных кислот). В мембранах преобладают фосфолипиды, в «головках» которых содержатся остатки фосфорной кислоты. «Хвосты» липидных молекул обращены друг к другу, полярные «головки» смотрят наружу, образуя гидрофильную поверхность. С заряженными «головками» соединяются периферические мембранные белки. Другие белковые молекулы погружены в слой липидов за счет взаимодействия с их неполярными «хвостами». Часть белков пронизывает мембрану насквозь, образуя каналы (или поры). У некоторых клеток мембрана является единственной оболочкой, у других клеток снаружи от мембраны имеется дополнительная оболочка (например, целлюлозная оболочка у растительных клеток). Животные клетки снаружи от мембраны бывают покрыты гликокаликсом – тонким слоем белков и полисахаридов.
Клеточная мембрана выполняет множество важных функций, от которых зависит жизнедеятельность клеток. Одна из них заключается в образовании барьера между внутренним содержимым клетки и внешней средой. Наряду с этим мембрана обеспечивает обмен веществ между цитоплазмой и внешней средой, из которой в клетку через мембрану поступают вода, ионы, неорганические и органические молекулы. Во внешнюю среду через мембрану выводятся продукты обмена и вещества, синтезированные в клетке).
Таким образом, через мембрану осуществляется транспорт веществ. Крупные частицы, образованные молекулами биополимеров, поступают через мембрану благодаря фагоцитозу, явлению, впервые описанному И.И. Мечниковым. Процесс захвата и поглощения капелек жидкости происходит путем пиноцитоза. Важную роль в жизнедеятельности клетки играет рецепторная функция мембраны. В мембранах имеется большое число рецепторов – специальных белков, роль которых заключается в передаче внутрь клетки сигналов извне.
О возникновении мембран в процессе эволюции см. ответ на вопрос 2.
14. Раскройте механизм поступления веществ в клетку
Рис. 5. Схема фагоцитоза
Процесс поступления веществ в клетку называется эндоцитозом. Различают пиноцитоз и фагоцитоз.
Фагоцитоз (греч. фаго – пожирать) – поглощение клеткой твердых органических веществ (рис. 5). Оказавшись около клетки, твердая частица окружается выростами мембраны, или под ней образуется впячивание мембраны. В результате частица оказывается заключенной в мембранный пузырек внутри клетки. Такой пузырек называют фагосомой. Термин «фагоцитоз» был предложен И.И. Мечниковым в 1882 г. Фагоцитоз свойствен простейшим, кишечнополостным, лейкоцитам, а также клеткам капилляров костного мозга, селезенки, печени, надпочечников.
Второй способ поступления веществ в клетку называют пиноцитозом (греч. пино – пью) – это процесс поглощения клеткой мелких капель жидкости с растворенными в ней высокомолекулярными веществами. Осуществляется путем захвата этих капель выростами цитоплазмы. Захваченные капли погружаются в цитоплазму и там усваиваются. Явление пиноцитоза свойственно животным клеткам и одноклеточным простейшим.
Еще один способ поступления веществ в клетку – осмос – прохождение воды через избирательно проницаемую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Вещества могут также проходить через мембрану путем диффузии – так транспортируются вещества, способные растворяться в липидах (простые и сложные эфиры, жирные кислоты и т.д.). Путем диффузии по градиенту концентрации по специальным каналам мембраны идут некоторые ионы (например, ион калия выходит из клетки).
Кроме того, транспорт веществ через мембрану осуществляет натрий-калиевый насос: он перемещает ионы натрия из клетки и ионы калия в клетку против градиента концентраций с затратой энергии АТФ.
Фагоцитоз, пиноцитоз и натрий-калиевый насос – это примеры активного транспорта, а осмос и диффузия – пассивного транспорта.
15. Каково строение и функции цитоплазмы?
Цитоплазма (греч. цитос – клетка и плазма – вылепленная) – живое содержимое клетки (за исключением ядра). Состоит из мембран и органоидов (ЭПС, рибосом, митохондрий, пластид, аппарата Гольджи, лизосом, центриолей и др.), пространство между которыми заполнено коллоидным раствором – гиалоплазмой. Снаружи цитоплазма ограничена клеточной мембраной (плазмалеммой), внутри – мембраной ядерной оболочки. У растительных клеток имеется еще и внутренняя пограничная мембрана, образующая вакуоли с клеточным соком.
Цитоплазма содержит большое количество воды с растворенными в ней солями и органическими веществами. Цитоплазма – это среда, в которой осуществляются внутриклеточные физиологические и биохимические процессы. Она способна к движению – круговому, струйчатому, ресничному.
16. Назовите органоиды движения клетки и раскройте их значение для ее жизнедеятельности
К клеточным органоидам движения относят реснички и жгутики диаметром около 0,25 мкм, содержащие в середине микротрубочки. Такие органоиды имеются у многих клеток (простейших, одноклеточных водорослей, зооспор, сперматозоидов, в клетках тканей многоклеточных животных, например, в дыхательном эпителии).
Эти органоиды выполняют функцию обеспечения движения (например, у простейших) или способствуют продвижению жидкости вдоль поверхности клеток (например, продвижению слизи в дыхательном эпителии).
Клетки могут передвигаться также с помощью ложноножек (псевдоподий; например, амебы и лейкоциты), но псевдоподии – это временные образования, которые не относят к органоидам движения.
Критерии живых систем: отличия живых систем от объектов неживой природы
Рассмотрим подробнее критерии, отличающие живые системы от объектов неживой природы, и основные характеристики процессов жизнедеятельности, выделяющие живое вещество в особую форму существования материи.
Особенности химического состава
В состав живых организмов входят те же химические элементы, что и в объекты неживой природы. Однако соотношение различных элементов в живом и неживом неодинаково. Элементный состав неживой природы наряду с кислородом представлен в основном кремнием, железом, магнием, алюминием и т.д. В живых организмах 98% химического состава приходится на четыре элемента — углерод, кислород, азот и водород. Однако в живых телах эти элементы участвуют в образовании сложных органических молекул, распространение которых в неживой природе принципиально иное как по количеству, так и по существу.
Подавляющее большинство органических молекул окружающей среды представляют собой продукты жизнедеятельности организмов. В живом веществе несколько основных групп органических молекул, характеризующихся определенными специфическими функциями и в большинстве своем представляющих собой регулярные полимеры.
Во-первых, это нуклеиновые кислоты — ДНК и РНК, свойства которых обеспечивают явления наследственности и изменчивости, а также самовоспроизведение.
Во-вторых, это белки — основные структурные компоненты и биологические катализаторы.
В-третьих, углеводы и жиры — структурные компоненты биологических мембран и клеточных стенок, главные источники энергии, необходимой для обеспечения процессов жизнедеятельности.
И наконец, огромная группа разнообразных так называемых «малых молекул», принимающих участие в многочисленных и разнообразных процессах метаболизма в живых организмах.
Метаболизм
Все живые организмы способны к обмену веш.еств с окружающей средой, поглощая из нее вещества, необходимые для питания, и выделяя продукты жизнедеятельности.
В неживой природе также существует обмен веществами, однако при небиологическом круговороте веществ они просто переносятся с одного места на другое или меняется их агрегатное состояние: например смыв почвы, превращение воды в пар или лед.
В отличие от обменных процессов в неживой природе у живых организмов они имеют качественно иной уровень. В круговороте органических веществ самыми существенными стали процессы превращения веществ — процессы синтеза и распада.
Живые организмы поглощают из окружающей среды различные вещества. Вследствие целого ряда сложных химических превращений вещества из окружающей среды уподобляются веществам живого организма и из них строится его тело. Эти процессы называются ассимиляцией, или пластическим обменом.
Другая сторона обмена веществ — процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые, при этом утрачивается их сходство с веществами организма и выделяется энергия, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют энергетическим обменом.
Обмен веществ обеспечивает гомеостаз организма, т.е. неизменность химического состава и строения всех частей организма и, как следствие, постоянство их функционирования в непрерывно меняющихся условиях окружающей среды.
Единый принцип структурной организации. Все живые организмы, к какой бы систематической группе они ни относились, имеют клеточное строение. Клетка, как уже указывалось выше, является единой структурно-функциональной единицей, а также единицей развития всех обитателей Земли.
Репродукция
На организменном уровне самовоспроизведение, или репродукция, проявляется в виде бесполого или полового размножения особей. При размножении живых организмов потомство обычно похоже на родителей: кошки воспроизводят котят, собаки — щенят. Из семян тополя опять вырастает тополь.
Деление одноклеточного организма — амебы — приводит к образованию двух амеб, полностью схожих с материнской клеткой.
Таким образом, размножение — это свойство организмое воспроизводить себе подобных.
Благодаря репродукции не только целые организмы, но и клетки, органеллы клеток (митохондрии, пластиды и др.) после деления сходны со своими предшественниками. Из одной молекулы ДНК при ее удвоении образуются две дочерние молекулы, полностью повторяющие исходную.
В основе самовоспроизведения лежат реакции матричного синтеза, т.е. образование новых молекул и структур на основе информации, заложенной в последовательности нуклеотидов ДНК. Следовательно, самовоспроизведение — одно из основных свойств живого, тесно связанное с явлением наследственности.
Наследственность
Наследственность заключается в способности организмов передавать свои признаки, свойства и особенности развития из поколения в поколение. Признаком называют любую особенность строения на самых различных уровнях организации живой материи, а под свойствами понимают функциональные особенности, в основе которых лежат конкретные структуры.
Наследственность обусловлена специфической организацией генетического вещества (генетического аппарата) — генетическим кодом. Под генетическим кодом понимают такую организацию молекул ДНК, при которой последовательность нуклеотидов в ней определяет порядок аминокислот в белковой молекуле.
Обеспечивается явление наследственности стабильностью молекул ДНК и воспроизведением ее химического строения (редупликацией) с высокой точностью. Наследственность обеспечивает материальную преемственность (поток информации) между организмами в ряду поколений.
Изменчивость
Это свойство как бы противоположно наследственности, но вместе с тем тесно связано с ней, так как при этом изменяются наследственные задатки — гены, определяющ.ие развитие тех или иных признаков. Если бы репродукция матриц — молекул ДНК — всегда происходила с абсолютной точностью, то при размножении организмов осуществлялась бы преемственность только существовавших прежде признаков, и приспособление видов к меняющимся условиям среды оказалось бы невозможным. Следовательно, изменчивость — это способность организмов приобретать новые признаки и свойства, в основе которой лежат изменения биологических матриц.
Изменчивость создает разнообразный материал для естественного отбора, т.е. отбора наиболее приспособленных особей к конкретным условиям существования в природных условиях, что, в свою очередь, приводит к появлению новых форм жизни, новых видов организмов.
Рост и развитие
Способность к развитию — всеобщее свойство материи. Под развитием понимают необратимое направленное закономерное изменение объектов живой и неживой природы. В результате развития возникает новое качественное состояние объекта, вследствие которого изменяется его состав или структура. Развитие живой формы существования материи представлено индивидуальным развитием, или онтогенезом, и историческим развитием, или филогенезом.
На протяжении онтогенеза постепенно и последовательно проявляются индивидуальные свойства организмов. В основе этого лежит поэтапная реализация наследственных программ. Развитие сопровождается ростом. Независимо от способа размножения все дочерние особи, образующиеся из одной зиготы или споры, почки или клетки, получают по наследству только генетическую информацию, т.е. возможность проявить те или иные признаки. В процессе развития возникает специфическая структурная организация индивида, а увеличение его массы обусловлено репродукцией макромолекул, элементарных структур клеток и самих клеток.
Раздражимость
Любой организм неразрывно связан с окружающей средой: извлекает из нее питательные вещества, подвергается воздействию неблагоприятных факторов среды, вступает во взаимодействие с другими организмами и т.д.
В процессе эволюции у живых организмов выработалось и закрепилось свойство избирательно реагировать на внешние воздействия.
Это свойство носит название раздражимости. Всякое изменение окружающих организм условий среды представляет собой по отношению к нему раздражение, а его реакция на внешние раздражители служит показателем его чувствительности и проявлением раздражимости.
Реакция многоклеточных животных на раздражение осухцествляется через посредство нервной системы и называется рефлексом.
Организмы, не имеющие нервной системы, например простейшие или растения, лишены и рефлексов. Их реакции, выражающиеся в изменении характера движения или роста, принято называть таксисами или тропизмами, прибавляя при их обозначении название раздражителя.
Например, фототаксис — движение в направлении к свету; хемотаксис — перемещение организма по отношению к концентрации химических веществ. Каждый род таксиса может быть положительным или отрицательным в зависимости от того, действует раздражитель на организм притягивающим или отталкивающим образом.
Под тропизмами понимают определенный характер роста, который свойствен растениям.
Так, гелиотропизм (от греч. «helios» — Солнце) означает рост наземных частей растений (стебля, листьев) по направлению к Солнцу, а геотропизм (от греч. «geo» — Земля) — рост подземных частей (корней) в направлении к центру Земли.
Для растений характерны также настии — движения частей растительного организма, например движение листьев в течение светового дня, зависящее от положения
Солнца на небосводе, раскрытие и закрытие венчика цветка и т.д.
Дискретность
Само слово дискретность произошло от латинского «discretus», что означает прерывистый, разделенный.
Жизнь на Земле также проявляется в виде дискретных форм. Это означает, что отдельный организм или иная биологическая система (вид, биоценоз и др.) состоит из отдельных изолированных, т.е. обособленных или отграниченных в пространстве, но тем не менее тесно связанных и взаимодействуюищх между собой частей, образующих структурно-функциональное единство.
Например, любой вид организмов включает отдельные особи. Тело высокоорганизованной особи образует пространственно отграниченные органы, которые, в свою очередь, состоят из отдельных клеток.
Энергетический аппарат клетки представлен отдельными митохондриями, аппарат синтеза белка — рибосомами и т.д. вплоть до макромолекул, каждая из которых может выполнять свою функцию, лишь будучи пространственно изолированной от других.
Дискретность строения организма — основа его структурной упорядоченности. Она создает возможность постоянного самообновления его путем замены «износившихся» структурных элементов (молекул, ферментов, органоидов клетки, целых клеток) без прекращения выполняемой функции. Дискретность вида предопределяет возможность его эволюции путем гибели или устранения от размножения неприспособленных особей и сохранения индивидов с полезными для выживания признаками.
Авторегуляция
Это способность живых организмов, обитаюпщх в непрерывно меняющихся условиях окружающей среды, поддерживать постоянство своего химического состава и интенсивность течения физиологических процессов — гомеостаз. При этом недостаток поступления какихлибо питательных веществ мобилизует внутренние ресурсы организма, а избыток вызывает запасание этих веществ.
Подобные реакции осуществляются разными путями благодаря деятельности регуляторных систем — нервной, эндокринной и некоторых других. Сигналом для включения той или иной регулирующей системы может быть изменение концентрации какого-либо вещества или состояния какойлибо системы.
Ритмичность
Периодические изменения в окружающей среде оказывают глубокое влияние на живую природу и на собственные ритмы живых организмов.
В биологии под ритмичностью понимают периодические изменения интенсивности физиологических функций и формообразовательных процессов с различными периодами колебаний (от нескольких секунд до года и столетия). Хорошо известны суточные ритмы сна и бодрствования у человека; сезонные ритмы активности и спячки у некоторых млекопитающих (суслики, ежи, медведи) и многие другие.
Ритмичность направлена на согласование функций организма с окружающей средой, т.е. на приспособление к периодически меняющимся условиям существования.
Энергозависимость. Живые тела представляют собой «открытые» для поступления энергии системы. Это понятие заимствовано из физики. Под «открытыми» системами понимают динамические, т.е. не находящиеся в состоянии покоя системы, устойчивые лишь при условии непрерывного доступа к ним энергии и материи извне.
Таким образом, живые организмы существуют до тех пор, пока в них поступает энергия и материя в виде пищи из окружающей среды.
Следует отметить, что живые организмы в отличие от объектов неживой природы отграничены от окружающей среды оболочками (наружная клеточная мембрана у одноклеточных, покровная ткань у многоклеточных). Эти оболочки затрудняют обмен веществ между организмом и внешней средой, сводят к минимуму потери вещества и поддерживают пространственное единство системы.
Таким образом, живые организмы резко отличаются от объектов физики и химии — неживых систем — своей исключительной сложностью и высокой структурной и функциональной упорядоченностью.
Эти отличия придают жизни качественно новые свойства. Живое представляет собой особую ступень развития материи.
Многочисленные определения сущности жизни можно свести к двум основным. Согласно первому, жизнь определяется субстратом — носителем ее свойств, например белком. Вторая группа определений оперирует совокупностью специфических Физико-химических процессов, характерных для живых систем.
Классическое определение Ф.Энгельса: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка» — лишь формально может быть отнесено к первой категории, так как Энгельс имел в виду не собственно белки, а структуры, содержащие белок.
С другой стороны, обмен веществ также не может служить единственным критерием жизни, да и сам нуждается в объяснении при посредстве жизни.
В самом общем виде жизнь можно определить как активиое, идущее с затратой полученной извне энергии поддержание и самовоспроизведение специфической структуры.