Чем отличаются оксиды кислоты основания соли
Химия
Именная карта банка для детей
с крутым дизайном, +200 бонусов
Закажи свою собственную карту банка и получи бонусы
План урока:
Оксиды
Оксиды в природе нас окружают повсюду, честно говоря, сложно представить нашу планету без двух веществ – это вода Н2О и песок SiO2.
Вы можете задаться вопросом, а что бывают другие бинарные соединения с кислородом, которые не будут относиться к оксидам.
Поранившись, Вы обрабатываете рану перекисью водорода Н2О2. Или для примера соединение с фтором OF2. Данные вещества вписываются в определение, так как состоят из 2 элементов и присутствует кислород. Но давайте определим степени окисления элементов.
Рассмотрим на примере следующих веществ кальций Са, мышьяк As и алюминий Al.
Подобно простым веществам реагируют с кислородом сложные, только в продукте будет два оксида. Помните детский стишок, а синички взяли спички, море синее зажгли, а «зажечь» можно Чёрное море, в котором содержится большое количество сероводорода H2S. Очевидцы землетрясения, которое произошло в 1927 году, утверждают, что море горело.
Чтобы дать название оксиду вспомним падежи, а именно родительный, который отвечает на вопросы: Кого? Чего? Если элемент имеет переменную валентность в скобках её необходимо указать.
Классификация оксидов строится на основе степени окисления элемента, входящего в его состав.
Реакции оксидов с водой определяют их характер. Но как составить уравнение реакции, а тем более определить состав веществ, строение которых Вам ещё не известно. Здесь приходит очень простое правило, необходимо учитывать, что эта реакция относиться к типу соединения, при которой степень окисления элементов не меняется.
Возьмём основный оксид, степень окисления входящего элемента +1, +2(т.е. элемент одно- или двухвалентен). Этими элементами будут металлы. Если к этим веществам прибавить воду, то образуется новый класс соединений – основания, состава Ме(ОН)n, где n равно 1, 2 или 3, что численно отвечает степени окисления металла, гидроксильная группа ОН- имеет заряд –(минус), что отвечает валентности I.При составлении уравнений не забываем о расстановке коэффициентов.
Особо следует выделить оксиды неметаллов в степени окисления +1 или +2, их относят к несолеобразующим. Это означает, что они не реагируют с водой, и не образуют кислоты либо основания. К ним относят CO, N2O, NO.
Чтобы определить будет ли оксид реагировать с водой или нет, необходимо обратиться в таблицу растворимости. Если полученное вещество растворимо в воде, то реакция происходит.
Золотую середину занимают амфотерные оксиды. Им могут соответствовать как основания, так и кислоты, но с водой они не реагируют. Они образованные металлами в степени окисления +2 или +3, иногда +4. Формулы этих веществ необходимо запомнить.
Кислоты
Если в состав оксидов обязательно входит кислород, то следующий класс узнаваем будет по наличию атомов водорода, которые будут стоять на первом месте, а за ними следовать, словно нитка за иголкой, кислотные остатки.
В природе существует большое количество неорганических кислот. Но в школьном курсе химии рассматривается только их часть. В таблице 1 приведены названия кислот.
Валентность кислотного остатка определяется количеством атомов водорода. В зависимости от числа атомов Н выделяют одно- и многоосновные кислоты.
Если в состав кислоты входит кислород, то они называются кислородсодержащими, к ним относится серная кислота, угольная и другие. Получают их путём взаимодействия воды с кислотными оксидами. Бескислородные кислоты образуются при взаимодействии неметаллов с водородом.
Только одну кислоту невозможно получить подобным способом – это кремниевую. Отвечающий ей оксид SiO2 не растворим в воде, хотя честно говоря, мы не представляем нашу планету без песка.
Основания
Чтобы дать название, изначально указываем класс – гидроксиды, потом добавляем чего, какого металла.
Классификация оснований базируется на их растворимости в воде и по числу ОН-групп.
Следует отметить, что гидроксильная группа, также как и кислотный остаток, это часть целого. Невозможно получить кислоты путём присоединения водорода к кислотному остатку, аналогично, чтобы получить основание нельзя писать уравнение в таком виде.
В природе не существуют отдельно руки или ноги, эта часть тела. Варианты получения кислот были описаны выше, рассмотрим, как получаются основания. Если к основному оксиду прибавить воду, то результатом этой реакции должно получиться основание. Однако не все основные оксиды реагируют с водой. Если в продукте образуется щёлочь, значит, реакция происходит, в противном случае реакция не идёт.
Данным способом можно получить только растворимые основания. Подтверждением этому служат реакции, которые вы можете наблюдать. На вашей кухне наверняка есть алюминиевая посуда, это могут быть кастрюли или ложки. Эта кухонная утварь покрыта прочным оксидом алюминия, который не растворяется в воде, даже при нагревании. Также весной можно наблюдать, как массово на субботниках белят деревья и бордюры. Берут белый порошок СаО и высыпают в воду, получая гашеную известь, при этом происходит выделение тепла, а это как вы помните, признак химического процесса.
Раствор щёлочи можно получить ещё одним методом, путём взаимодействия воды с активными металлами. Давайте вспомним, где они размещаются в периодической системе – I, II группа. Реакция будет относиться к типу замещения.
Напрашивается вопрос, а каким же образом получаются нерастворимые основания. Здесь на помощь придёт реакция обмена между щёлочью и растворимой солью.
С представителями веществ этого класса вы встречаетесь ежедневно на кухне, в быту, на улице, в школе, сельском хозяйстве.
Объединяет все эти вещества, что они содержат атомы металла и кислотный остаток. Исходя из этого, дадим определение этому классу.
Средние соли – это продукт полного обмена между веществами, в которых содержатся атомы металла и кислотный остаток (КО) (мы помним, что это часть чего-то, которая не имеет возможности существовать отдельно).
Выше было рассмотрено 3 класса соединений, давайте попробуем подобрать комбинации, чтобы получить соли, типом реакции обмена.
Чтобы составить название солей, необходимо указать название кислотного остатка, и в родительном падеже добавить название металла.
Ca(NO3)2– нитрат (чего) кальция, CuSO4– сульфат (чего) меди (II).
Наверняка многие из вас что-то коллекционировали, машинки, куклы, фантики, чтобы получить недостающую модель, вы менялись с кем-то своей. Применим этот принцип и для получения солей. К примеру, чтобы получить сульфат натрия необходимо 2 моль щёлочи и 1 моль кислоты. Допустим, что в наличии имеется только 1 моль NaOH, как будет происходить реакция? На место одного атома водорода станет натрий, а второму Н не хватило Na. Т.е в результате не полного обмена между кислотой и основанием получаются кислые соли. Название их не отличается от средних, только необходимо прибавить приставку гидро.
Однако бывают случаи, с точностью наоборот, не достаточно атомов водорода, чтобы связать ОН-группы. Результатом этой недостачи являются основные соли. Допустим реакция происходит между Ва(ОН)2 и HCl. Чтобы связать две гидроксильные группы, требуется два водорода, но предположим, что они в недостаче, а именно в количестве 1. Реакция пойдёт по схеме.
Особый интерес и некоторые затруднения вызывают комплексные соли, своим внешним, казалось,громоздким и непонятным видом, а именно квадратными скобками:K3[Fe(CN)6] или [Ag(NH3)2]Cl. Но не страшен волк, как его рисуют, гласит поговорка. Соли состоят из катионов (+) и анионов (-). Аналогично и с комплексными солями.
Образует комплексный ион элемент-комплексообразователь, обычно это атом металла, которого, как свита, окружают лиганды.
Теперь необходимо справиться с задачей дать название этому типу солей.
Образование комплексных солей происходит путём взаимодействия, к примеру, амфотерных оснований с растворами щелочей. Амфотерность проявляется способностью оснований реагировать как с кислотами, так и щелочами. Так возьмём гидроксид алюминия или цинка и подействуем на них кислотой и щёлочью.
В природе встречаются соли, где на один кислотный остаток приходится два разных металла. Примером таких соединений служат алюминиевые квасцы, формула которых имеет вид KAl(SO4)2. Это пример двойных солей.
Из всего вышесказанного можно составить обобщающую схему, в которой указаны все классы неорганических соединений.
Кислоты, соли, оксиды: в чем отличия
Содержание статьи
Кислоты
Кислоты – это такие химические соединения, которые могут разлагаться на катионы или присоединять анионы. Разные ученые классифицируют эти вещества немного по-своему, и наиболее общим является деление на кислоты Брёнстеда и кислоты Льюиса. Кислоты Брёнстеда могут отдавать катион водорода, а кислоты Льюиса способны принять в свое строение пару электронов, образуя ковалентную связь.
Атомы водорода в составе кислот являются подвижными, и они могут замещаться на атомы металлов, тогда образуются соли, состоящие из катиона металлов и аниона так называемого кислотного остатка.
Соли – это комбинации катионов и анионов, в роли которых выступает кислотный остаток. В водных растворах соли способны диссоциировать (так в химии называют реакцию распада) на эти составляющие. Их получают путем смешивания кислот с основаниями, при такой реакции образуется соль и вода. Соли имеют свойство отлично растворяться в воде.
Катионом может быть не только металл, но и группа аммония NH4, фосфония PH4 и другие, среди которых органические соединения и сложные катионы.
Оксиды
Оксиды, также называемые окиси, это соединения различных элементов с двумя атомами кислорода, при этом кислород образует связь с наименее электроотрицательным элементом. Практически все соединения с кислородом O2 относятся к оксидам.
Оксиды – очень часто встречающийся тип соединений. К ним относятся вода, ржавчина, углекислый газ, песок. Они очень распространены не только на планете Земля, но и во всей Вселенной. К оксидам не относятся вещества, содержащие группу O3 (озон).
Различия между оксидами, солями и кислотами
Оксиды легко отличить от солей и кислот по кислородной группе O2. Например, это H2O. Признаком солей является наличие в них катиона, в роли которого обычно выступает металл, и кислотного остатка. Например, CuCO2, где медь – катион, а CO2 – кислотный остаток. Кислоты при соединении с водой распадаются на кислотный остаток и группу H3O. При соединениях кислот с металлом водород замещается металлом (это катион) и образуется соль. Примером может служить всем известная серная кислота – H2SO4.
Классификация неорганических веществ
Среди простых веществ выделяют металлы и неметаллы. Среди сложных: оксиды, основания, кислоты и соли. Классификация неорганических веществ построена следующим образом:
Большинство химических свойств мы изучим по мере продвижения по периодической таблице Д.И. Менделеева. В этой статье мне хотелось бы подчеркнуть ряд принципиальных деталей, которые помогут в дальнейшем при изучении химии.
Оксиды
Все оксиды подразделяются на солеобразующие и несолеобразующие. Солеобразующие имеют соответствующие им основания и кислоты (в той же степени окисления (СО)!) и охотно вступают в реакции солеобразования. К ним относятся, например:
Солеобразующие оксиды, в свою очередь, делятся на основные, амфотерные и кислотные.
Основным оксидам соответствуют основания в той же СО. В химических реакциях основные оксиды проявляют основные свойства, образуются исключительно металлами. Примеры: Li2O, Na2O, K2O, Rb2O CaO, FeO, CrO, MnO.
Основные оксиды взаимодействуют с водой с образованием соответствующего основания (реакцию идет, если основание растворимо) и с кислотными оксидами и кислотами с образованием солей. Между собой основные оксиды не взаимодействуют.
Li2O + H2O → LiOH (основный оксид + вода → основание)
Здесь не происходит окисления/восстановления, поэтому сохраняйте исходные степени окисления атомов.
Эти оксиды действительно имеют двойственный характер: они проявляют как кислотные, так и основные свойства. Примеры: BeO, ZnO, Al2O3, Fe2O3, Cr2O3, MnO2, PbO, PbO2, Ga2O3.
С водой они не взаимодействуют, так как продукт реакции, основание, получается нерастворимым. Амфотерные оксиды реагируют как с кислотами и кислотными оксидами, так и с основаниями и основными оксидами.
ZnO + KOH + H2O → K2[Zn(OH)4] (амф. оксид + основание = комплексная соль)
ZnO + N2O5 → Zn(NO3)2 (амф. оксид + кисл. оксид = соль; СО азота сохраняется в ходе реакции)
Fe2O3 + HCl → FeCl3 + H2O (амф. оксид + кислота = соль + вода; обратите внимание на то, что СО Fe = +3 не меняется в ходе реакции)
Проявляют в ходе химических реакций кислотные свойства. Образованы металлами и неметаллами, чаще всего в высокой СО. Примеры: SO2, SO3, P2O5, N2O3, NO2, N2O5, SiO2, MnO3, Mn2O7.
Кислотные оксиды вступают в реакцию с основными и амфотерными, реагируют с основаниями. Реакции между кислотными оксидами не характерны.
SO2 + Na2O → Na2SO3 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +4)
SO3 + Li2O → Li2SO4 (кисл. оксид + осн. оксид = соль; сохраняем СО S = +6)
P2O5 + NaOH → Na3PO4 + H2O (кисл. оксид + основание = соль + вода)
Реакции несолеобразующих оксидов с основаниями, кислотами и солеобразующими оксидов редки и не приводят к образованию солей. Некоторые из несолеобразующих оксидов используют в качестве восстановителей:
FeO + CO → Fe + CO2 (восстановление железа из его оксида)
Основания
Основания классифицируются по количеству гидроксид-ионов в молекуле на одно-, двух- и трехкислотные.
Так же, как и оксиды, основания различаются по свойствам. Все основания хорошо реагируют с кислотами, даже нерастворимые основания способны растворяться в кислотах. Также нерастворимые основания при нагревании легко разлагаются на воду и соответствующий оксид.
Mg(OH)2 → (t) MgO + H2O (при нагревании нерастворимые основания легко разлагаются)
Если в ходе реакции основания с солью выделяется газ, выпадает осадок или образуется слабый электролит (вода), то такая реакция идет. Нерастворимые основания с солями почти не реагируют.
Ba(OH)2 + NH4Cl → BaCl2 + NH3 + H2O (в ходе реакции образуется нестойкое основание NH4OH, которое распадается на NH3 и H2O)
KOH + BaCl2 ↛ реакция не идет, так как в продуктах нет газа/осадка/слабого электролита (воды)
В растворах щелочей pH > 7, поэтому лакмус окрашивает их в синий цвет.
Al(OH)3 + HCl → AlCl3 + H2O (амф. гидроксид + кислота = соль + вода)
Al(OH)3 + KOH → K[Al(OH)4] (амф. гидроксид + основание = комплексная соль)
При нагревании до высоких температур комплексные соли не образуются.
Кислоты
Кислоты отлично реагируют с основными оксидами, основаниями, растворяя даже те, которые выпали в осадок (реакция нейтрализации). Также кислоты способны вступать в реакцию с теми металлами, которые стоят в ряду напряжений до водорода (то есть способны вытеснить его из кислоты).
Zn + HCl → ZnCl2 + H2↑ (реакция идет, так как цинк стоил в ряду активности левее водорода и способен вытеснить его из кислоты)
Cu + HCl ↛ (реакция не идет, так как медь расположена в ряду активности правее водорода, менее активна и не способна вытеснить его из кислоты)
Все кислоты подразделяются на сильные и слабые. Напомню, что мы составили подробную таблицу сильных и слабых кислот (и оснований!) в теме гидролиз. В реакции из сильной кислоты (соляной) можно получить более слабую, например, сероводородную или угольную кислоту.
В завершении подтемы кислот предлагаю вам вспомнить названия основных кислот и их кислотных остатков.
Блиц-опрос по теме Классификация неорганических веществ
Химия
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Оксиды
Оксиды – неорганические соединения, которые содержат кислород и какой-либо другой элемент. Животные и человек вдыхают кислород О2, а выдыхают диоксид углерода СО2. Углекислый газ СО2 применяется в качестве сухого льда для охлаждения чего-либо.
Классификация оксидов
Одни оксиды соответствуют кислотам, другие – основаниям, а третьи – и кислотам, и основаниям.
Получение оксидов
Физические свойства оксидов
Оксиды существуют во всех агрегатных состояниях. Для них характерны разнообразные цвета. Черный оксид меди (II) CuO и белый оксид кальция СаО находятся в твердом состоянии. Бесцветный оксид серы (VI) SO3 – летучая жидкость. Бесцветный оксид углерода (IV) CO2 – газообразное вещество.
Химические свойства оксидов
Каждому кислотному оксиду соответствует своя кислота, поэтому в процессе реакции степени окисления сохраняются.
Кислоты
Кислоты широко распространены в природе. Кислый вкус яблок, лимонов, апельсинов и других фруктов обусловлен наличием кислот.
Классификация кислот
Растворимость кислоты определяют с помощью таблицы растворимости.
Способы получения кислот
Физические свойства кислот
Большинство кислот представляет собой бесцветные жидкости, но также существуют твердые кислоты. Практические все кислоты растворимы в воде.
Химические свойства кислот
Кислоты – вещества, которые состоят из водородного атома и кислотного остатка. Химические свойства кислот отражаются в реакциях:
При взаимодействии концентрированной азотной кислоты и металла выделяется бурый газ – диоксид азота.
Кислоты взаимодействуют с солями в трех случаях.
Если реагирующая кислота – сильный электролит, то образующаяся кислота — слабый электролит. Например, соляная кислота вытесняет угольную из ее соли.
Оценить силу кислоты можно с помощью вытеснительного ряда кислот. Кислота, находящаяся левее, вытесняет из солей ту, которая стоит правее.
Основания
Основания применяются в промышленности и быту. Например, гидроксид натрия NaOH используется при очистке нефти, в производстве мыла и текстильной промышленности. Гидроксиды калия КОН и лития LiOH применяют в аккумуляторах.
Классификация оснований
У оснований есть несколько признаков классификации.
Методы получения оснований
CuCl2 + 2 NaOH = Cu(OH)2 + 2 NaCl
Физические свойства оснований
Большинство оснований – твердые соединения с разной растворимостью.
Химические свойства оснований
Растворимые и нерастворимые основания реагируют с кислотами с образование соли и воды.
Для растворимых оснований характерны реакции с солями и кислотными оксидами.
Нерастворимые основания разлагаются при нагревании с образованием оксида и воды.
Каждый день мы добавляем в суп поваренную соль – хлорид натрия NaCl. Растения на грядках растут благодаря минеральным удобрениям (например, соли фосфата кальция Са3(РО4)2).
Классификация солей
Соли – соединения из атомов металлов и кислотных остатков. Они классифицируются на несколько групп.
Методы получения солей
Физические свойства солей
Соли – твердые вещества. Они отличаются между собой по цвету, степени растворимости.
Химические свойства солей
Таким образом, кислоты, основания, оксиды и соли постоянно окружают нас. Без них невозможно представить существование жизни на нашей планете.
Чем отличаются оксиды кислоты основания соли
Химические свойства основных оксидов:
1. основ.оксид + кислота = соль + Н2О
2. основ.оксид + кисл.оксид = соль
Химические свойства кислотных оксидов:
1. кисл.оксид + основание = соль + Н2О
2. кисл.оксид + основ.оксид = соль
3. кисл.оксид + Н2О = кислота
ОСНОВАНИЯ – это сложные вещества, состоящие из ионов металла и гидроксид-ионов.
Химические свойства оснований:
1. основание + кислота = соль + Н2О
2. щелочь + кисл.оксид = соль + Н2О
3. щелочь + соль = новое основание + новая соль (↑ или ↓)
(2 KOH + CuCl 2 = Cu ( OH )2 ↓ + 2 KCl )
4. нерастворимое основание = оксид Ме + Н2О
это сложные вещества, которые имеют свойства и кислот, и оснований, и потому их формулы можно записывать в разных формах:
форма основания форма кислоты
КИСЛОТЫ – это сложные вещества, состоящие из ионов водорода и кислотных остатков.
1. кислота + основание = соль + Н2О
( HCl + NaOH = NaCl + H 2 O )
2. кислота + основ.оксид = соль + Н2О
3. кислота + соль = новая кислота + новая соль (↑ или ↓)
4. кислота + Ме = соль + Н2 (Ме до водорода, соль растворима)
СОЛИ – это сложные вещества, состоящие из ионов металла и кислотных остатков.
1. соль + щелочь = новое основание + новая соль (↑ или ↓)
( FeCl 3 +3 KOH = Fe ( OH )3 ↓ +3 KCl )
2. соль + кислота = новая кислота + новая соль (↑ или ↓)
3. соль + соль = новая соль + новая соль (↓)
( NaCl + AgNO 3 = AgCl ↓ + NaNO 3 )
4. соль + Ме = новая соль + другой Ме