Чем отличаются фигуры лиссажу
Чем отличаются фигуры лиссажу
| |
Рассмотрим некоторые частные случаи решений уравнения (2.3.2).
1. Начальные фазы колебаний одинаковы:
т.е.
Тогда уравнение (2.3.2) примет вид:
или
;
отсюда получим уравнение результирующего колебания:
Это уравнение прямой, проходящей через начало координат (рис. 2.7, а). Следовательно, в результате сложения двух взаимно перпендикулярных колебаний с одинаковыми начальными фазами будут происходить колебания вдоль прямой, проходящей через начало координат.
а | б | в Такие колебания называются линейно поляризованными. 2. Начальная разность фаз равна π. Тогда Уравнение колебания в этом случае То есть точка тоже будет колебаться вдоль прямой, проходящей через начало координат, но прямая лежит в других четвертях по сравнению с первым случаем (рис. 2.7, б). Амплитуда результирующего колебания в обоих случаях равна: 3. Начальная разность фаз равна π/2. Проанализируем уравнение (2.3.2), учитывая, что Это уравнение эллипса с полуосями А1 и А2 (рис. 2.7, в). Случай эллиптически поляризованных колебаний. При 4. Все остальные разности фаз дают эллипсы с различным углом наклона относительно осей координат. Необходимо отметить, что все рассматриваемые случаи, все кривые – это эллипсы (даже прямая – частный случай эллипса). Фигуры, получаемые при сложении взаимно перпендикулярных колебаний разных частот, называются фигурами Лиссажу (Ж. Лиссажу (1822–1880) – французский физик). В простейших случаях можно сравнить частоты по виду фигур. Угол сдвига фаз Фигуры ЛиссажуФигу́ры Лиссажу́ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний. В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз 0 или Математическое выражение для кривой Лиссажугде A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз Вид кривой сильно зависит от соотношения a/b. Когда соотношение равно 1, фигура Лиссажу имеет вид эллипса, при определённых условиях она имеет вид прямой (A = B, δ = π/2 радиан) и отрезка прямой (δ = 0). Ещё один пример фигуры Лиссажу — парабола (a/b = 2, δ = π/2). При других соотношениях фигуры Лиссажу представляют собой более сложные фигуры, которые являются замкнутыми при условии a/b — рациональное число. являются полиномами Чебышева первого рода степени N. ПримерыАнимация внизу показывает изменение кривых при постоянно возрастающем соотношении Примеры фигур Лиссажу ниже с δ = π/2, нечётным натуральным числом a, и также натуральным числом b, и |a − b| = 1. Применение в технике — сравнение частотЕсли подать на входы «X» и «Y» осциллографа сигналы близких частот, то на экране можно увидеть фигуры Лиссажу. Этот метод широко используется для сравнения частот двух источников сигналов и для подстройки одного источника под частоту другого. Когда частоты близки, но не равны друг другу, фигура на экране вращается, причем период цикла вращения является величиной, обратной разности частот, например, период оборота равен 2 с — разница в частотах сигналов равна 0,5 Гц. При равенстве частот фигура застывает неподвижно, в любой фазе, однако на практике, за счет кратковременных нестабильностей сигналов, фигура на экране осциллографа обычно чуть-чуть подрагивает. Использовать для сравнения можно не только одинаковые частоты, но и находящиеся в кратном отношении, например, если образцовый источник может выдавать частоту только 5 МГц, а настраиваемый источник — 2,5 МГц. ЛитератураСм. такжеСсылкиПолезноеСмотреть что такое «Фигуры Лиссажу» в других словарях:фигуры Лиссажу — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN Lissajous figures … Справочник технического переводчика Лиссажу фигуры — Фигуры Лиссажу замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Ж. Лиссажу (J. Lissajous; 1822 80). Вид фигур… … Википедия Лиссажу, Жюль Антуан — Жюль Антуан Лиссажу (фр. Jules Antoine Lissajous; 4 марта 1822, Версаль, Франция … Википедия Фигуры Хладни — Примеры фигур Хладни из книги Э.Хладни «Акустика» Фигуры Хладни фигуры, о … Википедия ЛИССАЖУ ФИГУРЫ — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонич. колебания в двух взаимно перпендикулярных направлениях. Впервые изучены франц. учёным Ж. Лиссажу (J. Lissajous). Вид Л. ф. зависит от соотношения между периодами… … Физическая энциклопедия ЛИССАЖУ ФИГУРЫ — замкнутые траектории, описываемые точкой, совершающей одновременно два гармонических колебательных движения в двух взаимно перпендикулярных направлениях. Вид этих фигур зависит от соотношения между периодами (частотами), фазами и амплитудами… … Большая политехническая энциклопедия ЛИССАЖУ ФИГУРЫ — [по имени франц. физика Ж. Лиссажу (J. Lissajous; 1822 80)] замкнутые траектории точки, совершающей одновременно 2 гармонич. колебат. движения в двух взаимно перпендикулярных направлениях. Вид Л. ф. зависит от соотношений между периодами… … Большой энциклопедический политехнический словарь ЛИССАЖУ ФИГУРЫ — замкнутые траектории точки, совершающей одновременно два гармонич. колебат. движения в двух взаимно перпендикулярных направлениях. Вид Л.ф. зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний и позволяет… … Естествознание. Энциклопедический словарь Лиссажу фигуры — замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Ж. Лиссажу (J. Lissajous; 1822 80). Вид Л. ф. зависит от… … Большая советская энциклопедия Фигура Лиссажу — Фигуры Лиссажу замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях. Впервые изучены французским учёным Ж. Лиссажу (J. Lissajous; 1822 80). Вид фигур… … Википедия Чем отличаются фигуры лиссажуЭтот топик не приурочен ко дню рождения, но всё-таки пару слов скажу об авторе. Родился в Версале 4 марта 1822 года. Учился в лицее Гоша́ (Версаль). Стал профессором в лицее Луи, в 1850 году представил диссертацию о вибрирующей решётке. Изучал акустические колебания. Умер в 1880 году. А вообще просто хочу рассказать и показать «красивые картинки». Наверняка многие с ними знакомы, но всё равно, надеюсь, что это будет интересно! Фигуры Лиссажу
где A, B — амплитуды колебаний, a, b — частоты, δ — сдвиг фаз Вид кривой сильно зависит от соотношения a/b. Когда соотношение равно 1, фигура Лиссажу имеет вид эллипса, при определённых условиях она имеет вид окружности (A = B, δ = π/2 радиан) и отрезка прямой (δ = 0). Ещё один пример фигуры Лиссажу — парабола (a/b = 2, δ = π/2). При других соотношениях фигуры Лиссажу представляют собой более сложные фигуры, которые являются замкнутыми при условии a/b — рациональное число. Фигуры Лиссажу, где a = 1, b = N (N — натуральное число) и `delta=(N-1)/N * pi/2` Примеры
Два видео от НИЯУ МИФИ: фигуры Лиссажу из песка и на экране осциллографа. Очень впечатляет! И вот напоследок, для тех, кто посмотрел на фигуры Лиссажу на осциллографе, а также, для тех, кто скептически воспринимает нынешние реалии, демотиватор. Физика Б1.Б8.Электронное учебное пособие по разделу курса физики МеханикаМеханика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение. Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики. ВведениеМеханика – это раздел физики, который изучает наиболее простой вид движения материи – механическое движение и причины, вызывающие или изменяющие это движение. Механическое движение – это изменение во времени взаимного расположения тел или частей одного и того же тела. Причиной, вызывающей механическое движение тела или его изменение, является воздействие со стороны других тел. Развитие механики началось еще в древние времена, однако, как наука она формировалась в средние века. Основные законы механики установлены итальянским физиком и астрономом Г. Галилеем (1564-1642) и английским ученым И. Ньютоном (1643-1727). Механику Галилея-Ньютона принято называть классической механикой. В ней изучается движение макроскопических тел, скорости которых значительно меньше скорости света с в вакууме. Законы движения тел со скоростями, близкими к скорости света сформулированы А. Эйнштейном (1879-1955), они отличаются от законов классической механики. Теория Эйнштейна называется специальной теорией относительности и лежит в основе релятивистской механики. Законы классической механики неприемлемы к описанию движения микроскопических тел (элементарных частиц – электронов, протонов, нейтронов, атомных ядер, самих атомов и т.д.) их движение описывается законами квантовой механики. Механика состоит из трех разделов: кинематики, динамики и статики. Кинематика дает математическое описание движения, не касаясь причин, которыми вызвано движение. Динамика – основной раздел механики, она изучает законы движения тел и причины, которыми вывзывается движение и его изменение. Статика изучает законы равновесия системы тел под действием приложенных сил. Мы ограничимся изучением двух основных разделов – кинематики и динамики. В механике для описания движения в зависимости от условий решаемой задачи пользуются различными упрощающими моделями: материальная точка, абсолютно твердое тело, абсолютно упругое тело, абсолютно неупругое тело, и т.д. Выбор той или иной модели диктуется необходимостью учесть в задаче все существенные особенности реального движения и отбросить несущественные, усложняющие решение. Материальная точка – это тело обладающее массой, размеры и форма которого несущественны в данной задаче. Любое твердое тело или систему тел можно рассматривать как систему материальных точек. Для этого любое тело или тела системы нужно мысленно разбить на большое число частей так, чтобы размеры каждой части были пренебрежимо малы по сравнению с размерами самих тел. Абсолютно твердое тело – это тело, расстояние между любыми точками которого остается неизменным в процессе движения или взаимодействия. Эта модель пригодна, когда можно пренебречь деформацией тел в процессе движения. Абсолютно упругое и абсолютно неупругое тело – это два предельных случая реальных тел, деформациями которых можно и нельзя пренебречь в изучаемых процессах. Любое движение рассматривается в пространстве и времени. В пространстве определяется местоположение тела, во времени происходит смена местоположений или состояний тела в пространстве, время выражает длительность состояния движения или процесса. Пространство и время –это два фундаментальных понятия, без которых теряется смысл понятия движения: движения не может быть вне времени и пространства.
|