Чем отличаются электромагнитные реле переменного и постоянного тока
В широком смысле слова, под реле понимают электронное или электромеханическое устройство, назначение которого — замыкать или размыкать электрическую цепь в ответ на определенное входное воздействие. Классическое реле — электромагнитное.
При прохождении электрического тока через обмотку такого реле, возникает магнитное поле, которое, воздействуя на ферромагнитный якорь реле, вызывает перемещение данного якоря, тогда как он, будучи механически связан с контактами, замыкает или размыкает их в результате своего перемещения. Таким образом при помощи реле можно осуществлять замыкание или размыкание, то есть механическую коммутацию внешних электрических цепей.
По сей день электромагнитные реле находят самое широкое применение в устройствах автоматики, телемеханики, электроники, вычислительной техники, и во многих других областях, где необходимо автоматически осуществлять коммутацию. Практически реле используется как управляемый механический выключатель или переключатель. Для коммутации же больших токов используются специальные реле, называемые контакторами.
При всем при этом электромагнитные реле подразделяются на реле постоянного тока и на реле переменного тока, в зависимости от того, какого рода ток необходимо подать на обмотку реле, чтобы его переключатель сработал. Далее рассмотрим различия между реле постоянного тока и реле переменного тока.
Электромагнитное реле постоянного тока
Говоря о реле постоянного тока, как правило имеют ввиду нейтральное (не поляризованное) реле, которое одинаково реагирует на ток любого направления в его обмотке — якорь притягивается к сердечнику, размыкая (или замыкая) контакты. По исполнению якоря реле бывают с втяжным якорем или с поворачивающимся якорем, но в любом случае функционально данные изделия полностью схожи.
Пока в обмотке реле ток не течет, его якорь находится максимально далеко от сердечника благодаря действию возвратной пружины. В этом состоянии контакты реле разомкнуты (для нормально-разомкнутого реле или для нормально-разомкнутой контактной группы данного реле) либо замкнуты (для нормально-замкнутого реле или для нормально-замкнутой контактной группы).
При прохождении постоянного тока через обмотку реле, в сердечнике и в воздушном зазоре между сердечником и якорем реле создается магнитный поток, инициирующий магнитное усилие, механически притягивающее якорь к сердечнику.
Якорь перемещаясь, переводит контакты в состояние противоположное исходному — замыкает контакты, если в исходном состоянии они были разомкнуты, либо размыкает их, если исходное состояние контактов было замкнутым.
Если в реле присутствует две группы контактов противоположного исходного состояния, то те что были замкнуты — размыкаются, а те что были разомкнуты — замыкаются. Так работает реле постоянного тока.
Электромагнитное реле переменного тока
В некоторых случаях бывает так, что источником энергии для питания обмотки реле может выступать только переменный ток. Тогда ничего не остается, как использовать для коммутации реле переменного тока, то есть такое реле, обмотка которого способна воздействовать на якорь при пропускании через нее переменного, а не постоянного тока.
В отличие от реле постоянного тока, реле переменного тока тех же размеров и при аналогичном среднем значении магнитной индукции в его сердечнике, обеспечивает вдвое меньшее магнитное усилие на якорь, чем в реле постоянного тока.
Суть в том, что электромагнитное усилие, в случае переменного тока, если подать его на обмотку обычного реле, носило бы ярко выраженный пульсирующий характер, и обращалось бы в ноль два раза за период колебаний питающего переменного напряжения.
Значит якорь испытывал бы вибрацию. Но так получилось бы в том случае, если не применять дополнительные меры. И дополнительные меры применяются, как раз и формируя различия в конструкциях реле переменного и постоянного тока.
Реле переменного тока устроено и работает следующим образом. Переменный магнитный поток основной обмотки, проходя через часть сердечника с прорезью, разделяется на две части. Одна часть магнитного потока проходит через экранированную часть разделенного полюса (через ту, на которой установлен короткозамкнутый проводящий виток), тогда как другая часть магнитного потока направляется через неэкранированную часть разделенного полюса.
Поскольку в короткозамкнутом витке наводится ЭДС и соответственно ток, то магнитный поток данного витка (наведенного в нем тока) противодействует вызывающему его магнитному потоку, что приводит к тому, что магнитный поток в части сердечника с витком отстает по фазе от потока в части сердечника без витка на 60-80 градусов.
В результате суммарное тяговое усилие на якорь никогда не обращается в ноль, поскольку оба потока проходят через ноль в разные моменты времени, и в якоре не возникает сколь-нибудь значимой вибрации. Формируемое таким образом результирующее усилие на якорь оказывается в состоянии произвести коммутирующее действие.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Автоматизируем процессы или что такое реле
Время чтения: 4 минуты Нет времени?
Отправим материал вам на e-mail
Наряду с ручными выключателями и переключателями в радиоэлектронике, автомобилестроении и производствах широко используют релейное соединение. Что такое реле? Это устройство, которое в автоматическом режиме связывает и переключает электрические и не электрические цепи по внешнему сигналу. Другими словами, оно необходимо для коммутации скачкообразных изменений цепи в результате задаваемого входного воздействия. В сегодняшнем обзоре мы расскажем, чем может быть полезно это устройство, каких видов бывает и как его правильно выбрать и подключить.
Электромагнитное релейное соединение
Для чего нужно реле: области применения
Релейное соединение регулирует работу управляемых узлов, если подается команда необходимого значения. Цепь, работу которой данное соединение регулирует, называется управляемой. Цепь, по которой сигналы проходят к узлам, принято называть управляющей.
Релейное соединение выступает для усиления сигнала. Небольшое количество электрического тока поступает на устройство, после чего происходит замыкание мощной цепи. Реле может работать от постоянного либо переменного тока.
Краткая историческая справка создания
История релейного соединения начинается с 1831 года. Это открытие принадлежит американцу Джозефу Генри. Первое реле работало по принципу электромагнитного действия и было некоммутационным. «Relay» в переводе означает замену почтовых конных упряжек на переправах или передачу эстафеты в спортивных состязаниях. В качестве самостоятельного устройства его впервые применили на телеграфе Морзе.
Схема электромагнитного реле
Самая простая схема электромагнитного соединения состоит из следующих элементов:
Все элементы устанавливаются на основание и закрываются крышкой. Электромагнитные соединения достаточно популярны благодаря повышенной надежности и простой схеме работы. Их можно встретить в электроустановках, защитных приборах.
Для того, чтобы понять, как работает реле, можно изучите схему ниже:
Принцип работы реле
После подачи на катушку напряжения, электрический ток, проходя по ее виткам, создает электромагнитную движущую силу (ЭДС). В сердечнике из металла создается магнитное поле, которое притягивает якорь. С его помощью происходит размыкание одной цепи и замыкание другой. Аналогичные изменения происходят и в подсоединенных цепях.
В исходное положение якорь возвращается под воздействием пружины после того, как значения тока становятся меньше определенных параметров. Дополнительно в релейное устройство могут быть включены резисторы, которые делают работу более точной, и конденсаторы, регулирующие подачу напряжения и защищающие от перепадов или искрения.
Управляемая и управляющие цепи не связаны между собой. Параметры тока также могут отличаться. В управляемой он может быть больше. То есть, релейное соединение выступает своего рода усилителем электрических параметров: тока, напряжения и мощности в цепи.
С принципом работы 4-х контактного реле можно ознакомиться на следующем видео:
Основные технические характеристики реле
Основные характеристики релейного соединения – зависимость между входными и выходными значениями.
Обозначение | Наименование показателя | Описание |
---|---|---|
Хср | Показатель срабатывания | Величина, при которой происходит срабатывание якоря (воздействующая величина) |
Хотп | Показатель отпуска | Противоположный параметр, при котором якорь отпадает (воздействующая величина) |
Кв | Коэффициент возврата | Отношение значения отпуска к значению срабатывания |
Что такое реле: основные виды и их назначение
В зависимости от того, какие показатели подлежат контролю, релейные соединения можно разделить на:
По области использования их следует разделить на следующие виды:
Рассмотрим классификацию по принципу работы более подробно.
Реле переменного тока
Релейное соединение переменного тока состоит их таки же элементов, что и нейтральное. Все элементы изготавливают из листового металла электротехнического с целью уменьшения потерь на гистерезис и вихревые токи. Кроме того, магнитопровод изготавливается шихтированным. Срабатывание механизма происходит при подаче тока на обмотку определенной частоты.
Если не предпринимать специальные действия, электромеханическая сила проходит через «ноль» 2 раза за период подачи напряжения. Для того, чтобы избежать подобную вибрацию якоря, одна сторона сердечника разделяется на 2 части. На одну насаживают виток из меди, который выполняет роль экрана. Основной недостаток такого соединения – повышенное потребление электрической энергии и сопутствующая вибрация.
В качестве вспомогательного следует рассмотреть принцип работы промежуточного реле 220 В. С его помощью можно разъединять отдельные группы цепей, либо, при разъединении одной, включить другой контур.
Схема работы устройства переменного тока
Реле постоянного тока
Отличие модели постоянного тока от переменного в магнитопроводе. В данном соединении он цельный. Кроме того, катушка выполнена более высокой и узкой, в отличие от переменного. В остальном, принцип действия реле аналогичен переменному.
Это важно! Основное отличие реле постоянного тока от переменного– небольшое потребление электроэнергии. Это крайне важно для постоянно работающего оборудования.
Схема работы изделия постоянного тока
Электромагнитное соединение
Их можно разделить на нейтральные и поляризованные соединения. В первом случае соединение отвечает на постоянный ток, проходящий в обоих направлениях. Во втором – реакция на полярность сигнала управления.
Плюсы электромагнитных соединений:
К минусам следует отнести низкую скорость функционирования, ограниченный ресурс. Кроме того, при работе в режиме замыкания/размыкания могут возникать радиопомехи.
Принцип работы электромагнитного соединения
Электронное соединение
В составе электронного устройства те же элементы, что и в электромагнитном. Основное отличие от аналогов – установка полупроводникового диода вместо магнита. Его задача –контролировать работу обратного тока. Электронные реле применяются в электрических цепях, блоках памяти и иных узлах для подключения силовых нагрузок. Электронное соединение мгновенно изменяет параметры цепи.
В качестве примера можно привести работу автомобильных узлов (генератора, стартера, обогрева зеркал), потребляющих ток большой силы. Можно сказать, что такое токовое реле будет лучшим выбором для данного переключения.
Обозначение реле на электрических схемах
Условное обозначение релейного соединения в виде прямоугольника является единым для всех схем. Со стороны большей длины отводят линии выводящих элементов. Обозначения для контактов аналогично контактам на выключателях. Контакты, расположенные на расстоянии друг от друга, обозначаются буквой К рядом с геометрической фигурой и номером, которым маркировано устройство. Зная буквенное обозначение, можно без труда прочитать схему и понять, где находится реле.
Обозначения на схемах контактов реле выглядят следующим образом:
Условные обозначения элементов на электрической схеме приведены на данном рисунке:
Основные производители
Перед выбором производителя реле, необходимо ознакомится с его рейтингом и каталогом продукции:
Производитель | Описание |
---|---|
АО «НПП Старт» | Основной акцент компании – разработка и производство релейных соединений |
ОАО «МиассЭлектроАппарат» | Деятельность направлена на производство продукции для автомобилей |
ОАО «Иркутский релейный завод» | Основное производство –коммутационная техника |
Фирма «Crydom» США | Ведущая торговая марка твердотельных изделий |
«Finder» | С 1954 года производит исключительно релейными соединениями. Занимает 3 место в линейке производителей |
Изделие производителя «Finder»
Выбираем что купить: электромагнитное или электронное реле, цены
После того, когда было выбрано изделие по требуемым параметрам необходимо ознакомиться со всеми предложениями на рынке. Интернет сыграет роль доброго помощника. Все производители и поставщики электротехнической продукции размещают свои товары и их характеристики в общем доступе. С ориентировочными ценами можно ознакомиться в нашей подборке:
Изображение | Марка | Максимальный коммутируемый ток, А | Ориентировочная стоимость, руб |
---|---|---|---|
Электромагнитные изделия | |||
24VDC 1пер. 5A 240VAC | 5 | 110 | |
4-Form-C, 4PDT, 4CO 5VDC | 6 | 450 | |
5VDC 1пер. 1A/250VAC | 13,5 | 270 | |
24VDC 2пер. 8A/250VAC | 8 | 130 | |
12VDC 1пер. 12A/250VAC | 12 | 170 | |
3VDC 2пер. 2A/250VAC | 2 | 200 | |
230VAC 2пер. 12А | 12 | 510 | |
Электронные изделия | |||
DEKraft ПР102-4-05-220-AC LED 23225DEK 1113705 | 5 | 231 | |
НовАтек-Электро РН-111М 196596 | 16 | 2472 | |
SVEN OVP-11F SV-012472 | 15 | 668 |
Реле напряжения SVEN OVP-11F SV-012472
Заключение
Релейное соединение- большой помощник для электрических систем при построении различных схем, начиная от защитного механизма отключения и заканчивая защитными функциями в приборостроении, космической промышленности, военном производстве. В быту реле переменного тока малогабаритное на 220 В будет отличной опорой. Основная его функция – контроль и регулирование электрического оборудования. В принципе, его установка не обязательна, но реле повышает функционирование и стабильность работы техники
Видео: что такое реле и принцип его работы
Экономьте время: отборные статьи каждую неделю по почте
Чем отличаются электромагнитные реле переменного и постоянного тока
Реле — электрическое или электронное устройство (ключ), предназначенное для замыкания или размыкания электрической цепи при заданных изменениях электрических или неэлектрических входных воздействий.
Обычно под этим термином подразумевается электромагнитное реле — электромеханическое устройство, замыкающее и/или размыкающее механические электрические контакты при подаче в обмотку реле электрического тока, порождающего магнитное поле, которое вызывает перемещения ферромагнитного якоря реле, связанного механически с контактами и последующее перемещение контактов коммутирует внешнюю электрическую цепь.
Основные части электромагнитного реле: электромагнит, якорь и переключатель. Электромагнит представляет собой электрический провод, намотанный на катушку с ярмом из ферромагнитного магнитомягкого материала. Якорь это обычно пластина из магнитного материала, через толкатели воздействующая на контакты.
Рис 1. Принцип действия реле, сверху — нормальное (обесточенное) состояние реле, снизу — включённое состояние реле.
1 — электромагнит (обмотка с ферромагнитным сердечником); 2 — подвижный якорь; 3 — контактная система (переключатель).
1.11.2. Электромагнитное реле постоянного тока.
Электромагнитные реле являются наиболее распространенными из группы электромеханических реле и получили широкое применение в устройствах автоматики, телемеханики и в вычислительной технике.
Если реле используются для переключения мощных цепей тока, то они называются контакторами. Реле и контакторы являются устройствами прерывистого действия. Электромагнитные реле по роду используемого тока делятся:
Реле постоянного тока подразделяются:
Нейтральные реле одинаково реагируют на постоянный ток обоих направлений, протекающий по его обмотке (т. е. положение якоря не зависит от направления тока в обмотке реле). Поляризованное реле реагирует на полярность сигнала. По характеру движения якоря нейтральные электромагнитные реле подразделяются на два типа:
На рисунке изображены реле с угловым перемещением якоря (а) и с втягивающим якорем (б).
Рис 2. Разновидности конструктивных схем реле:
1 – каркас с обмоткой; 2 – ярмо; 3 – выводы обмотки; 4 – колодка; 5 – контактные пружины;
6 – замыкающий контакт ЗК; 7 – подвижный контакт; 8 – размыкающий контакт РК; 9 – якорь; 10 – штифт отлипания; 11 – сердечник
При отсутствии управляющего сигнала якорь удален от сердечника на максимальное расстояние за счет возвратной пружины. В этом случае одна пара контактов замкнута (размыкающие контакты РК), а другая пара разомкнута (замыкающие контакты ЗК).
Принцип действия реле, изображенного на рисунке основан на следующем: при подаче тока в обмотку (катушку) создается магнитный поток, который, проходя через сердечник, ярмо, якорь и воздушный зазор δН(0), создает магнитное усилие, притягивающее якорь к сердечнику. При этом якорь, воздействуя на колодку, перемещает ее таким образом, что контакты ЗК замыкаются, а РК размыкаются. В некоторых конструкциях реле якорь при выключении тока под действием собственного веса возвращается в исходное положение. Таким образом, электромагнитное реле состоит из трех основных частей:
Магнитную цепь составляют сердечник, якорь, ярмо и воздушный зазор между якорем и сердечником.
При детальном рассмотрении работы реле в процессе срабатывания и отпускания наблюдаются четыре этапа.
.
.
.
1.11.3. Поляризованное реле.
В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация таких реле осуществляется при помощи постоянного магнита.
Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления – одно- и многообмоточные, по способу настройки контактов (по числу устойчивых положений якоря) различают двух- и трехпозиционные.
Поляризованные реле получили большое распространение в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.
К числу достоинств поляризованных реле относятся:
К недостаткам по сравнению с нейтральными электромагнитными реле относятся:
В поляризованных реле, как было отмечено, используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей связано с типом электрической схемы замещения электромагнитной системы). На рисунке изображено поляризованное реле с дифференциальной схемой магнитной цепи.
Рис 3. Поляризованное реле ( а ) и способы настройки контактов ( б, в ) : 1, 1’ – намагничивающие катушки; 2 – ярмо; 3 – постоянный магнит; 4 – якорь; 5, 5’ – контакты
В данном случае якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в сторону того зазора, где магнитные потоки суммируются.
Если теперь в обмотке 1 и 1′ (см рисунок а ) подать управляющий сигнал Iср такой величины, чтобы Фэ=∆Ф ( ), то при незначительном возрастании тока якорь перебросится в правое положение, так как, очевидно, правое усилие будет больше левого.
Магнитные потоки до момента переброски якоря будут соответственно равны:
После перехода якоря за нейтральную линию перераспределяющийся поток Ф0(п) создает дополнительное усилие, необходимое для перемещения якоря. Этим и объясняется, что поляризованные реле имеют незначительное время срабатывания, не превышающее нескольких миллисекунд. Кроме того, дополнительное усилие, сжимая контакты, позволяет при очень малой величине управляющего сигнала управлять относительно мощными электрическими цепями, т. е. коэффициент управления имеет значительную величину (до 5000), чего не достигает ни одно нейтральное реле.
Обычно отклонение якоря от нейтрали составляет 0,05–0,1 мм.
Рис 4. Поляризованное реле с мостовой схемой магнитной цепи.
Трехпозиционное реле имеет симметрично расположенные от нейтральной линии неподвижные контакты (рис. в ). Якорь при отсутствии управляющего сигнала удерживается в среднем положении с помощью специальных пружин (с двух сторон) или закрепляется на плоской пружине, упругость которой, создает устойчивое положение равновесия в среднем положении. При подаче сигнала в управляющую обмотку контакт на якоре замыкается с левым или правым контактом (в зависимости от полярности сигнала) и возвращается в нейтральное положение после снятия сигнала.
Поляризованные реле находят широкое применение в схемах автоматики благодаря своим характерным особенностям. Наличие нескольких обмоток позволяет использовать их в качестве логических элементов, небольшая мощность срабатывания – в качестве элементов контроля небольших электрических сигналов, малое время срабатывания и чувствительность к полярности входных сигналов – в качестве амплитудных модуляторов и демодуляторов. Благодаря высокой чувствительности поляризованные реле часто используют в маломощных цепях переменного тока с включением через выпрямитель.
1.11.4. Электромагнитное реле переменного тока.
В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе. При одинаковых конструктивных размерах реле и равных значениях максимальной индукции среднее значение электромагнитного усилия у реле переменного тока вдвое меньше, чем у реле постоянного тока.
Электромагнитное усилие меняется (пульсирует) с удвоенной частотой 2ω, обращаясь в нуль дважды за период питающего напряжения. Следовательно, якорь реле может вибрировать, периодически оттягиваться от сердечника возвратной пружиной, что вызывает дрожание якоря и, как следствие, износ оси якоря.
Реле переменного тока имеют худшие параметры, чем реле постоянного тока, так как при одинаковых размерах имеют меньшее электромагнитное усилие и менее чувствительны. Кроме того, они сложнее и дороже, поскольку необходимо иметь шихтованный магнитопровод (набранный из отдельных листов, а также применять специальные меры для устранения вибрации якоря – явление, которое нежелательно, так как может привести к обгоранию контактов, прерыванию электрической цепи и др. поэтому для ослабления вибрации принимают специальные конструктивные меры.
Рис 5. Двухфазное реле переменного тока: 1 – магнитопровод; 2 – катушка; 3 – якорь
Рис 6. Реле переменного тока с короткозамкнутым витком.
1.11.5. Тепловое реле.
Принцип действия тепловых реле
Долговечность энергетического оборудования в значительной степени зависит от перегрузок, которым оно подвергается во время работы. Для любого объекта можно найти зависимость длительности протекания тока от его величины, при которых обеспечивается надежная и длительная эксплуатация оборудования. При номинальном токе допустимая длительность его протекания равна бесконечности. Протекание тока, большего, чем номинальный, приводит к дополнительному повышению температуры и дополнительному старению изоляции. Поэтому чем больше перегрузка, тем кратковременнее она допустима. Кривая 1 на рисунке устанавливается исходя из требуемой продолжительности жизни оборудования. Чем короче его жизнь, тем большие перегрузки допустимы.
При идеальной защите объекта зависимость tср (I) для теплового реле должна идти немного ни-же кривой для объекта.
Для защиты от перегрузок, наиболее широкое распространение получили тепловые реле с биметаллической пластиной.
Время-токовые характеристики теплового реле и защищаемого объекта.
Биметаллическая пластина теплового реле состоит из двух пластин, одна из которых имеет больший температурный коэффициент расширения, другая — меньший. В месте прилегания друг к другу пластины жестко скреплены либо за счет проката в горячем состоянии, либо за счет сварки. Если закрепить неподвижно такую пластину и нагреть, то произойдет изгиб пластины в сторону материала с меньшим. Именно это явление используется в тепловых реле.
Широкое распространение в тепловых реле получили материалы инвар и немагнитная или хромоникелевая сталь.
Нагрев биметаллического элемента теплового реле может производиться за счет тепла, выделяемого в пластине током нагрузки. Очень часто нагрев биметалла производится от специального нагревателя, по которому протекает ток нагрузки. Лучшие характеристики получаются при комбинированном нагреве, когда пластина нагревается и за счет тепла, выделяемого током, проходящим через биметалл, и за счет тепла, выделяемого специальным нагревателем, также обтекаемым током нагрузки.
Прогибаясь, биметаллическая пластина своим свободным концом воздействует на контактную систему теплового реле.
Время-токовые характеристики теплового реле.
Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика). В общем случае до начала перегрузки через реле протекает ток Iо, который нагревает пластину до температуры qо.
При проверке времятоковых характеристик тепловых реле следует учитывать, из какого состояния (холодного или перегретого) происходит срабатывание реле.
При проверке тепловых реле надо иметь в виду, что нагревательные элементы тепловых реле термически неустойчивы при токах короткого замыкания.
Влияние температуры окружающей среды на работу теплового реле.
Нагрев биметаллической пластинки теплового реле зависит от температуры окружающей среды, поэтому с ростом температуры окружающей среды ток срабатывания реле уменьшается.
При температуре, сильно отличающейся от номинальной, необходимо либо проводить дополнительную (плавную) регулировку теплового реле, либо подбирать нагревательный элемент с учетом реальной температуры окружающей среды.
Для того чтобы температура окружающей среды меньше влияла на ток срабатывания теплового реле, необходимо, чтобы температура срабатывания выбиралась возможно больше.
Для правильной работы тепловой защиты реле желательно располагать в том же помещении, что и защищаемый объект. Нельзя располагать реле вблизи концентрированных источников тепла — нагревательных печей, систем отопления и т. д. В настоящее время выпускаются реле с температурной компенсацией (серии ТРН).
Конструкция тепловых реле.
Прогиб биметаллической пластины происходит медленно. Если с пластиной непосредственно связать подвижный контакт, то малая скорость его движения, не сможет обеспечить гашение дуги, возникающей при отключении цепи. Поэтому пластина действует на контакт через ускоряющее устройство. Наиболее совершенным является «прыгающий» контакт.
В обесточенном состоянии пружина создает момент относительно точки 0, замыкающий контакты 2. Биметаллическая пластина 3 при нагреве изгибается вправо, положение пружины изменяется. Она создает момент, размыкающий контакты 2 за время, обеспечивающее надежное гашение дуги. Современные контакторы и пускатели комплектуются с тепловыми реле ТРП (одно-фазное) и ТРН (двухфазное).
Тепловые реле ТРП.
Тепловые токовые однополюсные реле серии ТРП с номинальными токами тепловых элементов от 1 до 600 А предназначены главным образом для защиты от недопустимых перегрузок трехфазных асинхронных электродвигателей, работающих от сети с номинальным напряжением до 500 В при частоте 50 и 60 Гц. Тепловые реле ТРП на токи до 150 А применяют в сетях постоянного тока с номинальным напряжением до 440 В.
Тепловые реле РТЛ.
Тепловые реле РТТ Реле тепловое РТЛ предназначено для обеспечения защиты электродвигателей от токовых перегрузок недопустимой продолжительности. Они также обеспечивают защиту от не симметрии токов в фазах и от выпадения одной из фаз. Выпускаются электротепловые реле РТЛ с диапазоном тока от 0.1 до 86 А.
Тепловые реле РТТ.
Реле тепловые РТТ предназначены для защиты трехфазных асинхронных электродвигателей с короткозамкнутым ротором от перегрузок недопустимой продолжительности, в том числе возникающих при выпадении одной из фаз, а также от не симметрии в фазах.
Реле РТТ предназначены для применения в качестве комплектующих изделий в схемах управления электроприводами, а также для встройки в магнитные пускатели серии ПМА в целях переменного тока напряжением 660В частотой 50 или 60Гц, в целях постоянного тока напряжением 440В.