Чем отличаются донорные и акцепторные примеси
Чем отличаются донорные и акцепторные примеси
Физика → Методика → Экзамены → Ответы на билеты устных экзаменов → 16. Полупроводники. Собственная и примесная проводимость полупроводников. Полупроводниковые приборы
Полупроводники — это вещества, удельное сопротивление которых убывает с повышением температуры, наличием примесей, изменением освещенности. По этим свойствам они разительно отличаются от металлов. Обычно к полупроводникам относятся кристаллы, в которых для освобождения электрона требуется энергия не более 1,5—2 эВ. Типичными полупроводниками являются кристаллы германия и кремния, в которых атомы объединены ковалентной связью. Природа этой связи позволяет объяснить указанные выше характерные свойства. При нагревании полупроводников их атомы ионизируются. Освободившиеся электроны не могут быть захвачены соседними атомами, так как все их валентные связи насыщены. Свободные электроны под действием внешнего электрического поля могут перемещаться в кристалле, создавая электронный ток проводимости. Удаление электрона с внешней оболочки одного из атомов в кристаллической решетке приводит к образованию положительнго иона. Этот ион может нейтрализоваться, захватив электрон. Далее, в результате переходов связанных электронов от атомов к положительным ионам происходит процесс хаотического перемещения в кристалле места с недостающим электроном — «дырки». Внешне этот процесс хаотического перемещения связанных электронов воспринимается как перемещение поло-жительного заряда. При помещении кристалла в элек¬трическое поле возникает упорядоченное движение «дырок» — дырочный ток проводимости.
В идеальном кристалле ток создается равным количеством электронов и «дырок». Такой тип проводимости называют собственной проводимостью полупроводников. При повышении температуры (или освещенности) собственная проводимость проводников увеличивается.
На проводимость полупроводников большое влияние оказывают примеси. Примеси бывают донорные и акцепторные. Донорная примесь — это примесь с большей, чем у кристалла, валентностью. При добавлении такой примеси в полупроводнике образуются дополнительные свободные электроны. Именно поэтому примесь называется донорной. Преобладает электронная проводимость, а полупроводник называют полупроводником n-типа. Например, для кремния с валентностью n = 4 донорной примесью является мышьяк с валентностью n = 5. Каждый атом примеси мышьяка приведет к образованию одного электрона проводимости.
Акцепторная примесь — это примесь с меньшей чем у кристалла валентностью. При добавлении такой примеси в полупроводнике образуется лишнее количество «дырок». Преобладает «дырочная» проводимость, а полупроводник называют полупроводником p-типа. Например, для кремния акцепторной примесью является индий с валентностью n = 3. Каждый атом индия приведет к образованию лишней «дырки».
Принцип действия большинства полупроводниковых приборов основан на свойствах р—n-перехода. При приведении в контакт двух полупроводниковых приборов р-типа и n-типа в месте контакта начинается диффузия электронов из n-области в p-область, а «дырок» — наоборот, из р- в n-область. Этот процесс будет не бесконечным во времени, так как образуется запирающий слой, который будет препятствовать дальнейшей диффузии электронов и «дырок».
р—n-Контакт полупроводников, подобно вакуумному диоду, обладает односторонней проводимостью: если к р-области подключить «+» источника тока, а к n-области «-» источника тока, то запирающий слой разрушится и р—n-контакт будет проводить ток, электроны из n-области пойдут в p-область, а «дырки» из p-области в n-область (рис. 22). В первом случае ток не равен нулю, во втором — ток равен нулю. Это означает, что если к р-области подключить «-» источника, а к n-области — «+» источника тока, то запирающий слой расширится и тока не будет.
Полупроводниковый диод состоит из контакта двух полупроводников р- и n-типа. Полупроводниковые диоды имеют небольшие размеры и массу, длительный срок службы, высокую механическую прочность, высокий коэффициент полезного действия; их недостатком является зависимость сопротивления от температуры.
В радиоэлектронике применяется также еще один полупроводниковый прибор: транзистор, который был изобретен в 1948 г. В основе триода лежит не один, а два р—n-перехода. Основное применение транзистора — это использование его в качестве усилителя слабых сигналов по току и напряжению, а полупроводниковый диод применяется в качестве выпрямителя тока.
После открытия транзистора наступил качественно новый этап развития электроники — микроэлектроники, поднявший на качественно иную ступень развитие электронной техники, систем связи, автоматики. Микроэлектроника занимается разработкой интегральных микросхем и принципов их применения. Интегральной микросхемой называют совокупность большого числа взаимосвязанных компонентов — транзисторов, диодов, резисторов, соединительных проводов, изготовленных в едином технологическом процессе. В результате этого процесса на одном кристалле одновременно создается несколько тысяч транзисторов, конденсаторов, резисторов и диодов, до 3500 элементов. Размеры отдельных элементов микросхемы могут быть 2—5 мкм, погрешность при их нанесении не должна превышать 0,2 мкм. Микропроцессор современной ЭВМ, размещенный на. кристалле кремния размером 6×6 мм, содержит несколько десятков или даже сотен тысяч транзисторов.
1.5. Примесные полупроводники
В полупроводниках, состоящих из атомов одного химического элемента, примесями являются чужеродные атомы, которые замещают часть основных атомов полупроводника в узлах кристаллической решетки.
В полупроводниках, состоящих из атомов нескольких химических элементов, примесями могут быть как чужеродные атомы, так и избыточные по отношению к стехиометрическому составу атомы химических элементов, образующих сложный полупроводник.
Механизм примесной электропроводности зависит от типа используемой примеси.
Рассмотрим кристалл кремния, в котором часть основных атомов кристаллической решетки замещена примесными атомами фосфора. У атома фосфора пять валентных электронов, четыре из которых участвуют в образовании ковалентных связей с четырьмя соседними атомами кремния, а пятый электрон оказывается избыточным. Из-за большой диэлектрической проницаемости полупроводника кулоновское притяжение избыточного электрона ядром фосфора в значительной мере ослаблено, поэтому радиус орбитали избыточного электронаоказывается большим и может доходить до несколько межатомных расстояний (рис. 1.13).
Рис. 1.13. Внедрение донорной примеси в кристалл кремния
Минимальная энергия, которую необходимо сообщить избыточному электрону донорной примеси, чтобы сделать его свободным, называется энергией ионизации донорной примеси. Энергию ионизации донорной примеси можно оценить на основе простой модели, подобной боровской модели водородоподобного атома. Согласно этой модели избыточный электрон примесного атома движется по круговой орбите в кулоновском поле сил положительного иона, ослабленном диэлектрическими свойствами кристалла полупроводника. Учитывая относительную диэлектрическую проницаемость ε полупроводника и используя в качестве массы электрона его эффективную массу в кристалле, получим выражение для энергии ионизации донорной примеси:
Энергии ионизации других донорных примесей в кремнии и германии являются величинами того же порядка, что и для фосфора (см. табл. 1.1).
Значение энергии ионизации пятивалентных примесей в германии и кремнии
Значения энергии ионизации трехвалентных примесей в германии и кремнии
Рис. 1.14. Внедрение акцепторной примеси в кристалл кремния
Минимальная энергия, необходимая атому-акцептору, чтобы захватить у соседнего атома кристаллической решетки электрон, недостающий для образования устойчивой электронной оболочки, называется энергией ионизации акцепторной примеси.
Численно величина энергии ионизации акцепторной примеси близка к энергии ионизации донорной примеси (см. табл. 1.2).
Полупроводник, у которого концентрации донорной и акцепторной примесей равны, называется скомпенсированным полупроводником. Скомпенсированный полупроводник имеет такую же удельную проводимость, как и собственный, но отличается от последнего рядом электрофизических параметров, поскольку наличие примесей вызывает искажения кристаллической решетки.
С точки зрения модели энергетических зон примеси или дефекты кристаллической решетки создают энергетические уровни, расположенные в запрещенной зоне, разделяющей валентную энергетическую зону и зону проводимости. Процентное содержание примесных атомов обычно очень мало, а расстояния между ними достаточно велики, следовательно, по отношению друг к другу их можно рассматривать как изолированные атомы, энергетические уровни которых не расщепляются и не образуют энергетических зон.
Донорная примесь образует локальный энергетический уровень (донорный уровень), расположенный в запрещенной энергетической зоне вблизи дна зоны проводимости, занятый в невозбужденном состоянии электроном. При возбуждении донорная примесь отдает электрон в зону проводимости. Расстояние между донорным уровнем и дном зоны проводимости равно энергии ионизации донорной примеси.
Акцепторная примесь образует локальный энергетический уровень (акцепторный уровень), расположенный в запрещенной энергетической зоне вблизи потолка валентной зоны, свободный от электрона в невозбужденном состоянии. При возбуждении акцепторная примесь захватывает электрон из валентной зоны. Расстояние между акцепторным уровнем и потолком валентной зоны равно энергии ионизации акцепторной примеси.
С увеличением концентрации примесей расстояния между примесными атомами уменьшаются и их энергетические уровни постепенно превращаются в примесные энергетические зоны. При достижении определнной концентрации примесей примесные энергетические зоны сливаются с ближайшими энергетическими зонами кристалла, в результате чего образуется зонная структура, близкая к зонной структуре металлов. Такой примесный полупроводник называют вырожденным полупроводником или полуметаллом.
Некоторые примеси обладают сравнительно высокой энергией ионизации и образуют энергетические уровни, расположенные вблизи середины запрещенной зоны (например, золото в кремнии). Введение таких примесей существенно облегчает как генерацию, так и рекомбинацию свободных электронов за счет двухступенчатых переходов из одной разрешенной зоны на примесный уровень и с примесного уровня в другую разрешенную зону. Энергетические уровни примесей с высокой энергией ионизации называют генерационно-рекомбинационными центрами.
Существуют примеси, создающие энергетические уровни (ловушки), расположенные вблизи середины верхней или нижней половин запрещенной зоны. Такие уровни в отличие от генерационно-рекомбинационных центров захватывают носители из ближайшей разрешенной энергетической зоны и через некоторое время отдают их в ту же зону, поскольку расстояние до другой разрешенной зоны значительно больше.
Следует отметить, что многие примеси создают в запрещенной зоне по 2-3 уровня.
Примесная проводимость полупроводников.
Отличительной особенностью полупроводников является их способность существенно увеличивать проводимость при добавлении примесей в кристалл. Проводимость эта, в отличие от собственной, так и называется — примесная проводимость. Именно благодаря этому свойству полупроводники нашли столь широкое практическое применение.
Примесная проводимость полупроводника, в зависимости от вида примеси, может быть электронной — ее создают донорные примеси — либо дырочной — ее создают акцепторные примеси. Полупроводники с электронной проводимостью называются полупроводниками n-типа (от слова negative — отрицательный). Полупроводники с дырочной примесной проводимостью называются полупроводниками p—типа (от слова positive — положительный).
Донорными примесями являются такие, добавление которых приводит к существенному увеличению концентрации свободных электронов в кристалле. Для того, чтобы примесь была донором электронов, необходимо, чтобы валентность элементов, ее составляющих, была больше валентности атомов решетки. Для кремния такой донорной примесью являются атомы пятивалентного мышьяка (As). Четыре электрона As участвуют в образовании парноэлектронной связи, а пятый электрон оказывается очень слабо связанным с атомом As и легко становится свободным.
Акцепторные примеси приводят к увеличению концентрации дырок. В соответствии с вышесказанным, валентность атомов акцепторной примеси ниже валентности атомов решетки кристалла. Для кремния такой примесью является трехвалентный индий (In). Теперь для образования нормальных парноэлектронных связей с соседями не хватает одного электрона. В результате образуется дырка. При наличии поля возникает дырочная проводимость.
В полупроводнике n-типа электроны являются основными носителями заряда, а дырки — неосновными. В полупроводнике p-типа дырки являются основными носителями заряда, а электроны — неосновными.
p—n-Переход — это простейшая полупроводниковая структура, которая используется в большинстве полупроводниковых приборов. Для получения p-n-перехода полупроводниковый образец легируют (вводят в него примеси) таким образом, чтобы в одной его части преобладали донорные примеси, а в другой — акцепторные, в результате получают контакт полупроводника n-типа с полупроводником p-типа.
Основным свойством p-n-перехода является его способность пропускать ток только в одном направлении, если напряжение приложено к образцу так, что проводимость осуществляется основными носителями тока, как это показано на рисунке выше: «-» со стороны полупроводника n-типа, «+» — со стороны p-типа (электроны из n-области переходят в p-область, и наоборот).
Если теперь поменять полярность приложенного напряжения U, то ток через p-n-переход практически не идет, т. к. переход через контакт осуществляется неосновными носителями, которых мало. Вольт-амперная характеристика р-n-перехода изображена на рисунке ниже.
Здесь правая часть графика — это прямой переход (осуществляемый основными носителями), левая, пунктирная часть — обратный переход (осуществляемый неосновными носителями). Свойства p-n-перехода используются для выпрямления переменного тока в устройствах, которые называются полупроводниковыми диодами.
Разница между донорскими и акцепторными примесями
Ключевое различие между донорными и акцепторными примесями состоит в том, что элементы в группе V периодической таблицы обычно действуют как донорные примеси, тогда как элементы в группе III обычно д
Содержание:
Ключевое различие между донорными и акцепторными примесями состоит в том, что элементы в группе V периодической таблицы обычно действуют как донорные примеси, тогда как элементы в группе III обычно действуют как акцепторные примеси.
Что такое донорные примеси?
Элементы группы V, которые часто служат донорными примесями, включают мышьяк (As), фосфор (P), висмут (Bi) и сурьму (Sb). Эти элементы имеют пять электронов во внешней электронной оболочке (есть пять валентных электронов). При добавлении одного из этих атомов к донору, такому как кремний, примесь заменяет атом кремния, образуя четыре ковалентные связи. Но теперь есть свободный электрон, поскольку было пять валентных электронов. Таким образом, этот электрон остается свободным, что увеличивает проводимость полупроводника. Кроме того, количество примесных атомов определяет количество свободных электронов, присутствующих в доноре.
Что такое акцепторные примеси?
Когда к акцептору добавляется один из примесных атомов, например алюминия, он замещает атомы кремния в полупроводнике. Перед этим добавлением атом кремния имел четыре ковалентные связи вокруг себя. Когда алюминий занимает позицию кремния, атом алюминия образует только три ковалентные связи, что, в свою очередь, приводит к отсутствию ковалентной связи. Это создает пустую точку или дыру. Однако эти отверстия полезны для проведения электричества. Когда количество добавленных примесных атомов увеличивается, количество дырок, присутствующих в полупроводнике, также увеличивается. Эта добавка, в свою очередь, увеличивает проводимость. После завершения процесса легирования полупроводник становится примесным полупроводником.
В чем разница между донорскими и акцепторными примесями?
Донор против акцепторных примесей
Примесная проводимость полупроводников.
Отличительной особенностью полупроводников является их способность существенно увеличивать проводимость при добавлении примесей в кристалл. Проводимость эта, в отличие от собственной, так и называется — примесная проводимость. Именно благодаря этому свойству полупроводники нашли столь широкое практическое применение.
Примесная проводимость полупроводника, в зависимости от вида примеси, может быть электронной — ее создают донорные примеси — либо дырочной — ее создают акцепторные примеси. Полупроводники с электронной проводимостью называются полупроводниками n-типа (от слова negative — отрицательный). Полупроводники с дырочной примесной проводимостью называются полупроводниками p—типа (от слова positive — положительный).
Донорными примесями являются такие, добавление которых приводит к существенному увеличению концентрации свободных электронов в кристалле. Для того, чтобы примесь была донором электронов, необходимо, чтобы валентность элементов, ее составляющих, была больше валентности атомов решетки. Для кремния такой донорной примесью являются атомы пятивалентного мышьяка (As). Четыре электрона As участвуют в образовании парноэлектронной связи, а пятый электрон оказывается очень слабо связанным с атомом As и легко становится свободным.
Акцепторные примеси приводят к увеличению концентрации дырок. В соответствии с вышесказанным, валентность атомов акцепторной примеси ниже валентности атомов решетки кристалла. Для кремния такой примесью является трехвалентный индий (In). Теперь для образования нормальных парноэлектронных связей с соседями не хватает одного электрона. В результате образуется дырка. При наличии поля возникает дырочная проводимость.
В полупроводнике n-типа электроны являются основными носителями заряда, а дырки — неосновными. В полупроводнике p-типа дырки являются основными носителями заряда, а электроны — неосновными.
p—n-Переход — это простейшая полупроводниковая структура, которая используется в большинстве полупроводниковых приборов. Для получения p-n-перехода полупроводниковый образец легируют (вводят в него примеси) таким образом, чтобы в одной его части преобладали донорные примеси, а в другой — акцепторные, в результате получают контакт полупроводника n-типа с полупроводником p-типа.
Основным свойством p-n-перехода является его способность пропускать ток только в одном направлении, если напряжение приложено к образцу так, что проводимость осуществляется основными носителями тока, как это показано на рисунке выше: «-» со стороны полупроводника n-типа, «+» — со стороны p-типа (электроны из n-области переходят в p-область, и наоборот).
Если теперь поменять полярность приложенного напряжения U, то ток через p-n-переход практически не идет, т. к. переход через контакт осуществляется неосновными носителями, которых мало. Вольт-амперная характеристика р-n-перехода изображена на рисунке ниже.
Здесь правая часть графика — это прямой переход (осуществляемый основными носителями), левая, пунктирная часть — обратный переход (осуществляемый неосновными носителями). Свойства p-n-перехода используются для выпрямления переменного тока в устройствах, которые называются полупроводниковыми диодами.
- Чем отличаются домофонные трубки
- Чем отличаются дополнение и определение