Чем определяются металлические свойства

Периодический закон

Периодический закон был открыт Д.И. Менделеевым в 1868 году. Его современная формулировка: свойства химических элементов и образуемых ими соединений (простых и сложных) находятся в периодической зависимости от величины заряда атомного ядра.

Периодический закон лежит в основе современного учения о строении вещества. Периодическая система Д.И. Менделеева является наглядным отражением периодического закона.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Группой называют вертикальный ряд химических элементов в периодической таблице. Элементы собраны в группы на основе степени окисления в высшем оксиде. Каждая из восьми групп состоит из главной подгруппы (а) и побочной подгруппы (б).

Периодическая таблица Д.И. Менделеева содержит колоссальное число ответов на самые разные вопросы. При умелом ее использовании вы сможете предполагать строение и свойства веществ, успешно писать химические реакции и решать задачи.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Радиус атома

Радиусом атома называют расстояние между атомным ядром и самой дальней электронной орбиталью. Это не четкая, а условная граница, которая говорит о наиболее вероятном месте нахождения электрона.

В периоде радиус атома уменьшается с увеличением порядкового номера элементов («→» слева направо). Это связано с тем, что с увеличением номера группы увеличивается число электронов на внешнем уровне. Запомните, что для элементов главных подгрупп номер группы равен числу электронов на внешнем уровне.

С увеличением числа электронов они становятся более скученными, так как притягиваются друг к другу сильнее: это и есть причина маленького радиуса атома.

Чем меньше электронов, тем больше у них свободы и больше радиус атома, поэтому радиус увеличивается в периоде «←» справа налево.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Период, группа и электронная конфигурация

Правило составления электронной конфигурации, которое вы только что увидели, универсально. Если вы имеете дело с элементом главной подгруппы, то увидев номер группы вы знаете, сколько электронов у него на внешнем уровне. Посмотрев на период, знаете номер его внешнего уровня.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Длина связи

Убедимся в этом на наглядном примере, сравнив длину связей в четырех веществах: HF, HCl, HBr, HI.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Чем больше радиусы атомов, которые образуют химическую связь, тем больше между ними и длина связи. Радиус атома водорода неизменен во всех трех веществах, а в ряду F → Cl → Br → I происходит увеличение радиуса атома. Наибольшим радиусом обладает йод, поэтому самая длинная связь в молекуле HI.

Металлические и неметаллические свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Сравним металлические и неметаллические свойства Rb, Na, Al, S. Натрий, алюминий и сера находятся в одном периоде. Металлические свойства возрастают S → Al → Na. Натрий и рубидий находятся в одной группе, металлические свойства возрастают Na → Rb.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Основные и кислотные свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Замечу, что здесь есть одно важное исключение. Как и в общем случае: исключения только подтверждают правила. В ряду галогенводородных кислот HF → HCl → HBr → HI происходит усиление кислотных свойств (а не ослабление, как должно быть по логике нашего правила).

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Восстановительные и окислительные свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Электроотрицательность (ЭО), энергия связи, ионизации и сродства к электрону

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Для примера сравним ЭО-ость атомов Te, In, Al, P. Индий расположен в одной группе с алюминием, ЭО-ость In → Al возрастает (снизу вверх). Алюминий расположен в одном периоде с серой, ЭО-ость возрастает Al → S (слева направо). Сравнивая серу и теллур, мы видим, что сера расположена в группе выше теллура, значит и ее электроотрицательность тоже выше.

Энергия связи (а также ее прочность) возрастают с увеличением электроотрицательности атомов, образующих данную связь. Чем сильнее атом тянет на себя электроны (чем больше он ЭО-ый), тем прочнее получается связь, которую он образует.

Продемонстрирую на примере. Сравним энергию связи в трех молекулах: H2O, H2S, H2Se.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Высшие оксиды и летучие водородные соединения (ЛВС)

В периодической таблице Д.И. Менделеева ниже 7 периода находится строка, в которой для каждой группы указаны соответствующие высшие оксиды, ниже строка с летучими водородными соединениями.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Для элементов главных подгрупп начиная с IV группы (в большинстве случае) максимальная степень окисления (СО) определяется по номеру группы. К примеру, для серы (в VI группе) максимальная СО = +6, которую она проявляет в соединениях: H2SO4, SO3.

На экзамене строка с готовыми «высшими» оксидами, как в таблице наверху, может отсутствовать. Считаю важным подготовить вас к этому. Предположим, что эта строчка внезапно исчезла из таблицы, и вам нужно записать высшие оксиды для фосфора и углерода.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

С летучими водородными соединениями (ЛВС) ситуация аналогичная: их может не быть в периодической таблице Д.И. Менделеева, которая попадется на экзамене. Я расскажу вам, как легко их запомнить.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Источник

Периодический закон

Периодический закон — это фундаментальный закон, который был сформулирован Д.И. Менделеевым в 1869 году.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Поэтому современная формулировка периодического закона звучит так:

« Свойства элементов, форма и свойства образованных ими соединений находятся в периодической зависимости от величины заряда ядер их атомов «.

Следствие периодического закона – изменение свойств элементов в определенных совокупностях, а также повторение свойств по периодам, т.е. через определенное число элементов. Такие совокупности Менделеев назвал периодами.

Группы – вертикальные столбцы элементов с одинаковым числом валентных электронов, равным номеру группы. Различают главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов, валентные электроны которых расположены на внешних ns— и np— подуровнях.

Периодическая система химических элементов Д.И. Менделеева

Периодическая система элементов Д. И. Менделеева состоит из семи периодов, которые представляют собой горизонтальные последовательности элементов, расположенные по возрастанию заряда их атомного ядра.

Каждый период (за исключением первого) начинается атомами щелочных металлов (Li, Na, К, Rb, Cs, Fr) и заканчивается благородными газами (Ne, Ar, Kr, Xe, Rn), которым предшествуют типичные неметаллы.

В периодах слева направо возрастает число электронов на внешнем уровне.

В периодах слева направо постепенно ослабевают металлические и усиливаются неметаллические свойства.

2Na + H2 → 2NaH

В четвертом периоде вслед за Са расположены 10 переходных элементов (от скандия Sc до цинка Zn), за которыми находятся остальные 6 основных элементов периода ( от галлия Ga до криптона Кr). Аналогично построен пятый период. Переходными элементами обычно называют любые элементы с валентными d– или f–электронами.

Шестой и седьмой периоды имеют двойные вставки элементов. За элементом Ва расположены десять d–элементов (от лантана La — до ртути Hg), а после первого переходного элемента лантана La следуют 14 f–элементов — лантаноидов (Се — Lu). После ртути Hg располагаются остальные 6 основных р-элементов шестого периода (Тl — Rn).

В седьмом (незавершенном) периоде за Ас следуют 14 f–элементов- актиноидов (Th — Lr). В последнее время La и Ас стали причислять соответственно к лантаноидам и актиноидам. Лантаноиды и актиноиды помещены отдельно внизу таблицы.

Элементы в Периодической системе разделены на восемь групп (I – VIII), которые в свою очередь делятся на подгруппыглавные , или подгруппы А и побочные , или подгруппы Б. Подгруппа VIIIБ-особая, она содержит триады элементов, составляющих семейства железа (Fе, Со, Ni) и платиновых металлов (Ru, Rh, Pd, Os, Ir, Pt).

Внутри каждой подгруппы элементы проявляют похожие свойства и схожи по химическому строению. А именно:

В главных подгруппах сверху вниз усиливаются металлические свойства и ослабевают неметаллические.

В зависимости от того, какая энергетическая орбиталь заполняется в атоме последней, химические элементы можно разделить на s-элементы, р-элементы, d- и f-элементы.

У атомов s-элементов заполняются s-орбитали на внешних энергетических уровнях. К s-элементам относятся водород и гелий, а также все элементы I и II групп главных подгрупп (литий, бериллий, натрий и др.). У p-элементов электронами заполняются p-орбитали. К ним относятся элементы III-VIII групп, главных подгрупп. У d-элементов заполняются, соответственно, d-орбитали. К ним относятся элементы побочных подгрупп.

Номер периода соответствует числу заполняемых энергетических уровней.

Номер группы, как правило, соответствует числу валентных электронов в атоме (т.е. электроном, способных к образованию химической связи).

Номер группы, как правило, соответствует высшей положительной степени окисления атома. Но есть исключения!

О каких же еще свойствах говорится в Периодическом законе?

Периодически зависят от заряда ядра такие характеристики атомов, как орбитальный радиус, энергия сродства к электрону, электроотрицательность, энергия ионизации, степень окисления и др.

Радиус атома металла равен половине расстояния между центрами двух соседних атомов в металлической кристаллической решетке. Атомный радиус зависит от типа кристаллической решетки вещества, фазового состояния и многих других свойств.

Орбитальный радиус – это теоретически рассчитанное расстояние от ядра до максимального скопления наружных электронов.

Орбитальный радиус завит в первую очередь от числа энергетических уровней, заполненных электронами.

Чем больше число энергетических уровней, заполненных электронами, тем больше радиус частицы.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Если количество заполняемых энергетических уровней одинаковое, то радиус определяется зарядом ядра частицы.

Чем больше заряд ядра, тем сильнее притяжение валентных электронов к ядру.

Чем больше притяжение валентных электронов к ядру, тем меньше радиус частицы. Следовательно:

Чем больше заряд ядра атома (при одинаковом количестве заполняемых энергетических уровней), тем меньше атомный радиус.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

В группах сверху вниз увеличивается число энергетических уровней у атомов. Чем больше количество энергетических уровней у атома, тем дальше расположены электроны внешнего энергетического уровня от ядра и тем больше орбитальный радиус атома.

В главных подгруппах сверху вниз увеличивается орбитальный радиус.

В периодах же число энергетических уровней не изменяется. Зато в периодах слева направо увеличивается заряд ядра атомов. Следовательно, в периодах слева направо уменьшается орбитальный радиус атомов.

В периодах слева направо орбитальный радиус атомов уменьшается.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

1) O 2) Se 3) F 4) S 5) Na

Решение:

В одной группе Периодической системы находятся элементы кислород O, селен Se и сера S.

В группе снизу вверх атомный радиус уменьшается, а сверху вниз – увеличивается. Следовательно, правильный ответ: O, S, Se или 142.

Ответ: 142

Пример. Выберите три элемента, которые в Периодической системе находятся в одном периоде, и расположите эти элементы в порядке уменьшения радиуса атома

1) K 2) Li 3) F 4) B 5) Na

Решение:

В одном периоде Периодической системы находятся элементы литий Li, фтор F и натрий Na.

В периоде слева направо атомный радиус уменьшается, а справа налево – увеличивается. Следовательно, правильный ответ: Li, B, F или 243.

Ответ: 243

Рассмотрим закономерности изменения радиусов ионов : катионов и анионов.

Катионы – это положительно заряженные ионы. Катионы образуются, если атом отдает электроны.

Радиус катиона меньше радиуса соответствующего атома. С увеличением положительного заряда иона радиус уменьшается.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Анионы – это отрицательно заряженные ионы. Анионы образуются, если атом принимает электроны.

Радиус аниона больше радиуса соответствующего атома.

Радиусы ионов также зависят от числа заполненных энергетических уровней в ионе и от заряда ядра.

Изоэлектронные ионы – это ионы с одинаковым числом электронов. Для изоэлектронных частиц радиус также определяется зарядом ядра: чем больше заряд ядра иона, тем меньше радиус.

Еще одно очень важное свойство атомов – электроотрицательность (ЭО).

Электроотрицательность – это способность атома смещать к себе электроны других атомов при образовании связи. Оценить электроотрицательность можно только примерно. В настоящее время существует несколько систем оценки относительной электроотрицательности атомов. Одна из наиболее распространенных – шкала Полинга.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

По Полингу наиболее электроотрицательный атом – фтор (значение ЭО≈4). Наименее элекроотрицательный атом –франций (ЭО = 0,7).

В главных подгруппах сверху вниз уменьшается электроотрицательность.

В периодах слева направо электроотрицательность увеличивается.

Пример. Из указанных в ряду химических элементов выберите три элемента-неметалла. Расположите выбранные элементы в порядке возрастания их электроотрицательности. Запишите в поле ответа номера выбранных элементов в нужной последовательности:

1) Mg 2) P 3) O 4) N 5) Ti

Решение:

Элементы-неметаллы – это фосфор Р, кислород О и азот N.

Электроотрицательность увеличивается в группах снизу вверх и слева направо в периодах. Следовательно, правильный ответ: P, N, O или 243.

Источник

Нужна помощь! Пожалуйста объясните, что такое металлические и неметаллические свойства.

Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.

Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

У d- и f-элементов, как мы знаем, есть «резервные» электроны из «предпоследних» оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.

Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы.

Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

Источник

Металлические и неметаллические свойства химических элементов.

а) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

1. При перемещении вдоль периода СПРАВА НАЛЕВО металлические свойства элементов УСИЛИВАЮТСЯ. В обратном направлении возрастают неметаллические.

Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача.

2. При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра.

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

2. ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов.

3. При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.

в) Закономерности, связанные с размерами атомов.

1. Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ.

2. При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.

Вопрос 3.

Строение вещества. Гибридизация орбиталей. Типы химических связей. Потенциал ионизации и электроотрицательность.

Все тела состоят из отдельных частиц — молекул и атомов. Молекулы — это наименьшие частицы вещества. Молекулы состоят из атомов.

Основные сведения о составе вещества:

1) Все тела состоят из отдельных частиц (молекул и атомов), между которыми есть промежутки.

2) Молекулы непрерывно и хаотично движутся.

3) Молекулы взаимодействуют между собой (притягиваются и отталкиваются).

1) Молекулы одного и того же вещества одинаковы.

2) При нагревании промежутки между молекулами увеличиваются, а при охлаждении — уменьшаются.

3) С увеличением температуры, скорость движения молекул возрастает.

По типу химической связи вещества делятся на вещества с ковалентными связями, вещества с ионными связями (ионные вещества) и вещества с металлическими связями (металлы).

Вещества с ковалентными связями могут быть молекулярными и немолекулярными. Это существенно сказывается на их физических свойствах.

Молекулярные вещества состоят из молекул, связанных между собой слабыми межмолекулярными связями, к ним относятся: H2, O2, N2, Cl2, Br2, S8, P4 и другие простые вещества; CO2, SO2, N2O5, H2O, HCl, HF, NH3, CH4, C2H5OH, органические полимеры и многие другие вещества. Эти вещества не обладают высокой прочностью, имеют низкие температуры плавления и кипения, не проводят электрический ток, некоторые из них растворимы в воде или других растворителях.

Все ионные вещества, естественно, являются немолекулярными. Это твердые тугоплавкие вещества, растворы и расплавы которых проводят электрический ток. Многие из них растворимы в воде.

Гибридизация орбиталей

Типы химических связей.

1) Ионная (металл + неметалл)

2) Ковалентная (неметалл + неметалл с помощью общих электронных пар)
Виды: * полярная (разные неметаллы)
* неполярная (одинаковые неметаллы)
Виды: * образована обменным механизмом
* образована донорно-акцепторным механизмом

3) Металлическая (между атомами металлов, между ионами металлов и общими свободными электронами)

4) Водородная (между водородом одной молекулы и другим более электроотрицательным элементом (O, S, N, F) и с другой молекулой)

Электроотрицательность (ЭО)– относительная способность атомов притягивать электроны при связывании с другими атомами. Электроотрицательность характеризует способность атома к поляризации химических связей.

Источник

Общие свойства металлов

Содержание:

Металлы (от лат. metallum — шахта, рудник) — группа химических элементов, обладающих в виде простых веществ при нормальных условиях характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность, ковкость и металлический блеск.

На странице -> решение задач по химии собраны решения задач и заданий с решёнными примерами по всем темам химии.

Общие свойства металлов

Среди металлов традиционно выделяют несколько групп. Входящие в их состав представители характеризуются отличной от других металлов химической активностью. Такими группами являются:

Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

Положение металлов в периодической системе элементов Д. И. Менделеева

Если в периодической системе элементов Д. И. Менделеева (см. первый форзац книги) провести диагональ от бериллия к астату, то справа вверх от диагонали будут находиться элементы-неметаллы (исключая элементы побочных подгрупп), а слева внизу — элементы-металлы (к ним же относятся элементы побочных подгрупп). Элементы, расположенные вблизи диагонали (например, Be, Al, Ti, Ge, Nb, Sb и др.), обладают двойственным характером.

Руководствуясь делением элементов на семейства (§ 2.8), можно сказать, что к элементам-металлам относятся s-элементы I и II групп, все d— и f-элементы, а также p-элементы главных подгрупп: III (кроме бора), IV (Ge, Sn, Pb), V (Sb, Bi) и VI (Po). Как видно, наиболее типичные элементы-металлы расположены в начале периодов (начиная со второго).

Таким образом, из 107 элементов 85 являются металлами. В этой книге более подробно рассматриваются металлы главных подгрупп — Na, К, Са, Аl — и побочных подгрупп — Cr, Fe. Даются также общие характеристики подгрупп, в которые входят эти элементы.

Порядок заполнения электронами уровней и подуровней атомов элементов малых и больших периодов см. в § 2.7. Этот параграф следует еще раз внимательно прочитать, обратив особое внимание на строение электронных оболочек атомов элементов-металлов.

Физическое свойства металлов

Механическое воздействие на кристалл с ковалентной связью вызывает смещение отдельных слоев атомов, в результате связи разрываются и кристалл разрушается (рис. 12.1, а). Такое же воздействие на кристалл с металлической связью также вызывает смещение слоев атомов, однако благодаря перемещению электронов по всему кристаллу разрыв связей не происходит (рис. 12.1, б). Для металлов характерна высокая пластичность. Она уменьшается в ряду Au, Ag, Сu, Sn, Pb, Zn, Fe. Золото, например, можно прокатывать в листы толщиной не более 0,003 мм, которые используются для позолоты различных предметов.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.1. Смещение слоев в кристаллах с решетками: а — атомной; б — металлической

Для всех металлов характерен металлический блеск, обычно серый цвет и непрозрачность, что связано с наличием свободных электронов.

Тот факт, что металлы обладают хорошей электрической проводимостью, объясняется присутствием в них свободных электронов, которые под влиянием даже небольшой разности потенциалов приобретают направленное движение от отрицательного полюса к положительному.

С повышением температуры усиливаются колебания атомов (ионов), что затрудняет направленное движение электронов и тем самым приводит к уменьшению электрической проводимости. При низких же температурах колебательное движение, наоборот, сильно уменьшается и электрическая проводимость резко возрастает. Наибольшей электрической проводимостью обладают серебро и медь. За ними следуют золото, алюминий, железо. Наряду с медными изготовляются и алюминиевые электрические провода.

Кстати отметим, что у неметаллов, обладающих проводимостью, с повышением температуры электрическая проводимость возрастает, что обусловлено ростом числа свободных электронов за счет разрыва ковалентных связей. При низких же температурах неметаллы ток не проводят из-за отсутствия свободных электронов. В этом главное различие между физическими свойствами металлов и неметаллов.

В большинстве случаев при обычных условиях теплопроводность металлов изменяется в такой же последовательности, как их электрическая проводимость. Теплопроводность обусловливается высокой подвижностью свободных электронов и колебательным движением атомов, благодаря чему происходит быстрое выравнивание температуры в массе металла. Наибольшая теплопроводность — у серебра и меди, наименьшая — у висмута и ртути.

Различна плотность металлов. Она тем меньше, чем меньше атомная масса элемента-металла и чем больше радиус его атома. Самый легкий из металлов — литий (плотность 0,53 г/см 3 ), самый тяжелый — осмий (плотность 22,6 г/см 3 ). Как уже отмечалось, металлы с плотностью меньше 5 г/см 3 называются легкими, остальные — тяжелыми.

Разнообразны температуры плавления и кипения металлов. Самый легкоплавкий металл — ртуть, ее температура плавления — 38,9°С, цезий и галлий плавятся соответственно при 29 и 29,8°С. Вольфрам — самый тугоплавкий металл, температура его плавления 3390°С. Он применяется для изготовления нитей электроламп. Металлы, плавящиеся при температуре выше 1000°С, называют тугоплавкими, ниже — легкоплавкими.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.2. Кривые температур плавленая и кипения металлов VI периода

Сильное различие в температурах плавления и кипения следует объяснить различием прочности химической связи между атомами в металлах. Исследования показали, что в чистом виде металлическая связь характерна лишь для щелочных и щелочноземельных металлов. Однако у других металлов, и особенно переходных, часть валентных электронов локализована, т. е. осуществляет ковалентные связи между соседними атомами. А поскольку ковалентная связь прочнее металлической, то у переходных металлов температуры плавления и кипения, как это видно из рис. 12.2, намного выше, чем у щелочных и щелочноземельных.

Металлы отличаются по твердости. Самый твердый металл — хром (режет стекло), а самые мягкие — калий, рубидий и цезии. Они легко режутся ножом.

Металлы имеют кристаллическое строение. Большинство из них кристаллизуется в кубической решетке (см. рис. 3.18).

Химические свойства металлов

Атомы металлов сравнительно легко отдают валентные электроны и переходят в положительно заряженные ноны. Поэтому металлы являются восстановителями. В этом, собственно, и состоит их главное и наиболее общее химическое свойство.

Очевидно, металлы как восстановители будут вступать в реакции с различными окислителями, среди которых могут быть простые вещества, кислоты, соли менее активных металлов и некоторые другие соединения. Соединения металлов с галогенами называются галогенидами, с серой — сульфидами, с азотом — нитридами, с фосфором — фосфидами, с углеродом — карбидами, с кремнием — силицидами, с бором — боридами, с водородом — гидридами и т. д. Многие из этих соединений нашли важное применение в новой технике. Например, бориды металлов используются в радиоэлектронике, а также в ядерной технике в качестве материалов для регулирования нейтронного излучения и защиты от него.

Взаимодействие металлов с кислотами есть окислительно-восстановительный процесс. Окислителем является ион водорода, который принимает электрон от металла:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Взаимодействие металлов с водными растворами солей менее активных металлов можно иллюстрировать примером:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

В этом случае происходит отрыв электронов от атомов более активного металла (Ni) и присоединение их ионами менее активного (Сu 2+ ).

Активные металлы взаимодействуют с водой, которая выступает в роли окислителя. Например:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Металлы, гидроксиды которых амфотерны, как правило, взаимодействуют с растворами и кислот, и щелочей. Например:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Таким образом, отношение металлов к неметаллам, кислотам, растворам солей менее активных металлов, к воде и щелочам подтверждает их главное химическое свойство — восстановительную способность.

Металлы могут образовывать химические соединения между собой. Они имеют общее название — интерметаллические соединения или интерметаллиды. Примером могут служить соединения некоторых металлов с сурьмой: Na2Sb, Ca3Sb2, NiSb, Ni4Sb, FeSbx (x= 0,72—0,92). В них чаще всего не соблюдаются степени окисления, характерные в соединениях с неметаллами. Обычно это бертоллиды.

Химическая связь в интерметаллидах преимущественно металлическая. По внешнему виду они похожи на металлы. Твердость интерметаллидов, как правило, выше, а пластичность намного ниже, чем у образующих их металлов. Многие интерметаллиды нашли практическое применение. Например, сурьма-алюминий AlSb, сурьма-индий InSb и другие широко используются как полупроводники.

Металлы и сплавы в технике

Сплавами называются системы, состоящие из двух или более металлов, а также металлов и неметаллов. Свойства сплавов самые разнообразные и отличаются от исходных компонентов. Так, например, сплав из 40% кадмия (т. пл. 321°С) и 60% висмута (т. пл. 271°С) плавится при температуре 144°С. Сплав золота с серебром характеризуется большой твердостью, в то время как сами эти металлы сравнительно мягкие.

Таблица 12.1. Ряд стандартных электродных потенциалов металлов

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Химическая связь в сплавах металлическая. Поэтому они обладают металлическим блеском, электрической проводимостью и другими свойствами металлов.

Сплавы получают смешиванием металлов в расплавленном состоянии, они затвердевают при последующем охлаждении. При этом возможны следующие типичные случаи.

1. Расплавленные металлы смешиваются между собой в любых соотношениях, неограниченно растворяясь друг в друге. Сюда относятся металлы, кристаллизующиеся в однотипных решетках и имеющие близкие по размерам атомы, например Ag—Сu, Сu—Ni, Ag—Аu и др. При охлаждении таких расплавов получаются твердые растворы. Кристаллы последних содержат атомы обоих металлов, чем обусловливается их полная однородность. По сравнению с чистыми металлами твердые растворы характеризуются более высокой прочностью, твердостью и химической стойкостью; они пластичны и хорошо проводят электрический ток.

2. Расплавленные металлы смешиваются между собой в любых отношениях, однако при охлаждении твердый раствор не образуется. При затвердевании таких сплавов получается масса, состоящая из мельчайших кристалликов каждого из металлов. Это характерно для сплавов Pb—Sn, Bi—Cd, Ag—Pb и др.

3. Расплавленные металлы при смешивании взаимодействуют друг с другом, образуя химическое соединение — интерметаллиды. Например, соединения образуют медь и цинк (CuZn, CuZn3, Cu3Zn2), кальций и сурьма (Ca3Sb2), натрий и свинец (Na2Pb, Na2Pb5, Na4Pb) и др. Некоторые сплавы рассматриваются как смеси исходных металлов с продуктами их взаимодействия — интерметаллидами.

В настоящее время некоторые сплавы готовят методом порошковой металлургии. Берется смесь металлов в виде порошков, прессуется под большим давлением и спекается при высокой температуре в восстановительной среде. Таким путем получают сверхтвердые сплавы.

Большой вклад в изучение сплавов внес Н. С. Курнаков (1860— 1941). Он разработал новый метод исследования сплавов — так называемый физико-химический анализ. С помощью этого метода установлены зависимости между составом и свойствами многих сплавов, открылась возможность получать сплавы с заранее заданными свойствами: кислотоупорные, жаропрочные, сверхтвердые и др.

Огромное значение имеют сплавы на основе алюминия и железа. В состав некоторых сплавов входят неметаллы, например углерод, кремний, бор и др.

Ряд стандартных электродных потенциалов

В средней школе вы изучаете электрохимический ряд напряжений металлов. Более точное название его — ряд стандартных электродных потенциалов металлов. Для некоторых металлов он приведен в табл. 12.1. Как же составляется такой ряд? Почему, например, натрий стоит в нем после кальция? Как этим рядом пользоваться?

Ответ на первый вопрос можно дать на основе известных вам сведений. При погружении любого металла в раствор электролита на границе раздела металл /раствор возникает разность потенциалов, называемая электродным потенциалом или потенциалом электрода. Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.3. Стандартный водородный электрод

Непосредственно измерить потенциал отдельного электрода не представляется возможным. Поэтому электродные потенциалы измеряют относительно стандартного водородного электрода, потенциал которого условно принимают за нуль при всех значениях температуры. Водородный электрод состоит из платиновой пластинки, покрытой платиновой чернью (электролитически осажденной платиной), которая погружена в раствор серной кислоты с концентрацией ионов водорода, равной 1 моль/л, и омывается струей газообразного водорода йод давлением в 101,325 кПа при 25°С (рис. 12.3).

Молекулярный водород, проходя через раствор, растворяется и подходит к поверхности платины. На поверхности платины происходит распад молекул водорода на атомы и их адсорбция (закрепление на поверхности). Адсорбированные атомы водорода Надс ионизируются:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

а ионы водорода, принимая электроны, переходят в адсорбированное состояние:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Более полно равновесие в водородном электроде выражается схемой

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Среднюю часть этого равновесия обычно опускают, хотя следует иметь в виду, какую большую роль в установлении такого равновесного состояния играет платина.

Если теперь пластинку любого металла, погруженную в раствор его соли с концентрацией ионов металла 1 моль/л, соединять со стандартным водородным электродом, как показано на рис. 12.4, то получится гальванический элемент (электрохимическая цепь), электродвижущую силу (сокращенно ЭДС) которого легко измерить. Эта ЭДС и называется стандартным электродным потенциалом данного электрода (обычно обозначается E°). Таким образом,

электродным потенциалом называют ЭДС гальванического элемента (электрохимической цепи), которая составлена из исследуемого электрода и стандартного водородного электрода.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.4. Гальваническая цепь для измерения стандартного электродного потенциала металла: 1 — определяемый электрод; 2 — потенциометр; 3 — стандартный водородный электрод; 4 — раствор хлорида калия

Такая цепь изображена на рис. 12.4. Электродный потенциал называют также окислительно-восстановительным потенциалом.

При обозначении электродных потенциалов E и стандартных электродных потенциалов E° принято у знаков ставить индекс, соответствующий системе, к которой относится данный потенциал. Так, стандартный электродный потенциал системы Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойстваобозначают Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойствасистемы Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойстваа системы Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойствапишут Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Располагая металлы в порядке возрастания алгебраической величины их стандартных электродных потенциалов, получают ряд, представленный в табл. 12.1. В него могут быть включены и другие окислительно-восстановительные системы (в том числе неметаллические) в соответствии со значениями их E°, например Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойстваи т. д. Ряд, представленный в табл. 12.1, можно рассматривать лишь как фрагмент из ряда стандартных электродных потенциалов окислительно-восстановительных систем в водных растворах при 25°, составленный из важнейших металлов. Исторически этому ряду предшествовал «вытеснительный ряд» Н. Н. Бекетова.

Большинство стандартных электродных потенциалов можно определить экспериментально. Однако для щелочных и щелочноземельных металлов значения Е° рассчитывают только теоретически, так как эти металлы взаимодействуют с водой.

Ряд стандартных электродных потенциалов характеризует химические свойства металлов. Его применяют для выяснения, в какой последовательности восстанавливаются ионы при электролизе (§ 7.7), а также при описании других свойств металлов (§ 10.9 и 12.5).

Чем меньше алгебраическая величина потенциала, тем выше восстановительная способность этого металла и тем ниже окислительная способность его ионов.

Как следует из этого ряда, металлический литий — самый сильный восстановитель, а золото — самый слабый. И, наоборот, ион золота Аu 3+ — самый сильный окислитель, а ион лития Li + — самый слабый (в табл. 12.1 возрастание этих свойств указано стрелками).

Очень часто на основе ряда стандартных электродных потенциалов пишут уравнения реакций вытеснения металлов из растворов их солей более активными щелочными и щелочноземельными металлами и, естественно, ошибаются. В этом случае вытеснения металлов не происходит, так как щелочные и щелочноземельные металлы сами реагируют с водой.

Все металлы, имеющие отрицательные значения стандартных электродных потенциалов, т. е. стоящие в ряду до водорода, вытесняют водород из разбавленных кислот (типа НСl или H2SO4) и при этом растворяются в них. Однако свинец в разбавленных растворах серной кислоты практически не растворяется. Происходит это потому, что на поверхности свинца сразу образуется защитный слой из малорастворимой соли сульфата свинца PbSO4, который нарушает контакт раствора с металлом. Металлы, стоящие в ряду после водорода, не вытесняют его из кислот.

Из приведенных примеров можно сделать вывод, что рядом стандартных электродных потенциалов следует пользоваться с учетом особенностей рассматриваемых процессов. Самое же главное — это надо иметь в виду, что ряд стандартных электродных потенциалов применим только к водным растворам и характеризует химическую активность металлов лишь в окислительно-восстановительных реакциях, протекающих в водной среде.

Натрий в ряду стандартных электродных потенциалов расположен после кальция Са: у него больше алгебраическая величина стандартного электродного потенциала.

ЭДС любого гальванического элемента можно вычислить по разности стандартных электродных потенциалов E°. При этом следует иметь в виду, что ЭДС—всегда положительная величина. Поэтому из потенциала электрода, имеющего большую алгебраическую величину, надо вычитать потенциал электрода, алгебраическая величина которого меньше. Например, ЭДС медно-цинкового элемента в стандартных условиях составит 0,34 — (—0,76) = 1,1 В.

Основные способы получения металлов

Металлы встречаются в природе как в свободном состоянии (самородные металлы), так и, главным образом, в виде химических соединений.

В виде самородных металлов находятся наименее активные металлы. Типичными их представителями являются золото и платина. Серебро, медь, ртуть, олово могут находиться в природе как в самородном состоянии, так и в виде соединений, все остальные металлы (стоящие в ряду стандартных электродных потенциалов до олова) — только в виде соединений с другими элементами.

Минералы и горные породы, содержащие металлы или их соединения и пригодные для промышленного получения металлов, называются рудами. Важнейшими рудами металлов являются их оксиды и соли (сульфиды, карбонаты и др.). Если руды содержат соединения двух или нескольких металлов, то они называются полиметаллическими (например, медно-цинковые, свинцово-серебряные и др.).

Получение металлов из руд — задача металлургии.

Металлургия — это наука о промышленных способах получения металлов из природного сырья. Металлургией также называют металлургическую промышленность.

Современная металлургия получает более 75 металлов и многочисленные сплавы на их основе. В зависимости от способов получения металлов различают пиро-, гидро- и электрометаллургию.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Аналогичным примером служит получение чугуна и стали из железных руд (см. § 14.9).

В тех случаях, когда руда является сульфидом металла, ее предварительно переводят в оксид путем окислительного обжига (обжиг с доступом воздуха). Например:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Затем оксид металла восстанавливают углем:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Восстановление углем (коксом) проводят обычно тогда, когда получаемые металлы совсем не образуют карбидов или образуют непрочные карбиды (соединения с углеродом); таковы железо и многие цветные металлы — медь, цинк, кадмий, германий, олово, свинец и др.

Восстановление металлов из их соединений другими металлами, химически более активными, называется металлотермией. Эти процессы протекают также при высоких температурах. В качестве восстановителей применяют алюминий, магний, кальций, натрий, а также кремний. Если восстановителем является алюминий, то процесс называется алюминотермией, если магний — магнийтермией. Например:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Металлотермией обычно получают те металлы (и их сплавы), которые при восстановлении оксидов углем образуют карбиды. Это — марганец, хром, титан, молибден, вольфрам и др.

Иногда металлы восстанавливают из оксидов водородом (водородотермия). Например:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

При этом получаются металлы большой чистоты.

Гидрометаллургия охватывает способы получения металлов из растворов их солей. При этом металл, входящий в состав руды, сначала переводят в раствор с помощью подходящих реагентов, а затем извлекают из этого раствора. Так, например, при обработке разбавленной серной кислотой медной руды, содержащей оксид меди (II) СuО, медь переходит в раствор в виде сульфата:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Затем медь извлекают из раствора либо электролизом, либо вытеснением с помощью порошка железа:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

В настоящее время гидрометаллургическим методом получают до 25% всей добываемой меди. Он имеет большое будущее, так как позволяет получать металлы, не извлекая руду на поверхность.

Этим же методом добывают золото, серебро, цинк, кадмий, молибден, уран и др. Руду, содержащую самородное золото, после измельчения обрабатывают раствором цианида калия KCN. Все золото переходит в раствор. Из раствора его извлекают электролизом или вытеснением металлическим цинком.

Электрометаллургия охватывает способы получения металлов с помощью электролиза. Этим способом получают главным образом легкие металлы — алюминий (см. § 13.11), натрий (см. § 13.2) и др.— из их расплавленных оксидов или хлоридов.

Электролиз используют также для очистки некоторых металлов. Из очищаемого металла изготавливают анод. При электролизе анод растворяется, ионы металла переходят в раствор, а на катоде они осаждаются. Так получаются электролитически чистые металлы: медь, серебро, железо, никель, свинец и многие другие.

Современной полупроводниковой и атомной технике необходимы металлы весьма высокой чистоты (содержание примесей порядка 10-8% и менее). Важнейшими методами глубокой очистки металлов являются зонная плавка, разложение летучих соединений металлов на нагретой поверхности, переплавка металлов в вакууме и др.

Итак, в основе всех способов получения металлов из их соединений лежат окислительно-восстановительные процессы.

Коррозия металлов

Металлы подвергаются коррозии. Под коррозией понимают разрушение металла под воздействием окружающей среды. Это самопроизвольный окислительно-восстановительный процесс. По механизму протекания разрушения различают два типа коррозии: химическую и электрохимическую.

Химической коррозией называется разрушение металла окислением его в окружающей среде без возникновения электрического тока в системе.

В этом случае происходит взаимодействие металла с составными частями среды — с газами и неэлектролитами.

Большой вред приносит разновидность химической коррозии — так называемая газовая коррозия, т. е. соединение металлов с кислородом воздуха. Скорость окисления многих металлов сильно возрастает при повышении температуры. Так, на железе уже при 250—300°С появляется видимая пленка оксидов. При 600°С и выше поверхность металла покрывается слоем окалины, состоящей из оксидов железа различной степени окисления: FeO, Fe3O4, Fe2O3. Окалина не защищает железо от дальнейшего окисления, так как содержит трещины и поры, которые облегчают доступ кислорода к металлу. Поэтому при нагревании железа свыше 800°С скорость окисления его очень быстро растет.

Примером химической коррозии в неэлектролитах может служить разрушение цилиндров двигателей внутреннего сгорания. В топливе содержатся примеси — сера и ее соединения, которые при сгорании превращаются в оксиды серы (IV) и (VI) — коррозионно-активные вещества. Они разрушают детали реактивных двигателей — сопла и др.

Наибольший вред приносит электрохимическая коррозия.

Электрохимической коррозией называется разрушение металла в среде электролита с возникновением внутри системы электрического тока.

В этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного участка к другому).

В качестве примера электрохимической коррозии можно привести коррозию железа в контакте с медью в растворе электролита — соляной кислоты (т. е. при высокой концентрации ионов водорода Н + ). Пои таком контакте возникает гальванический элемент (см. §7.1 и рис. 12.5).

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.5. Схема действия гальванической

Ионы же водорода движутся к меди (катоду), где, принимая электроны, разряжаются. В ионной форме эти реакции могут быть выражены суммарным уравнением:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

На катодах вместо разряда ионов водорода (или молекул воды) может протекать процесс восстановления кислорода, растворенного в электролите:

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Гидроксид железа (II) в присутствии воды и кислорода воздуха переходит в гидроксид железа (III):

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Гидроксид железа (III) можно представить как Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойстваБурая ржавчина имеет неопределенный состав Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Электрохимическую коррозию вызывают главным образом примеси других металлов и неметаллических веществ или неоднородность поверхности. Согласно теории электрохимической коррозии в этих случаях при соприкосновении металла с электролитом (электролитом может быть влага, адсорбируемая из воздуха) на его поверхности возникают гальванические микроэлементы. При этом металл с более отрицательным потенциалом разрушается — ионы его переходят в раствор, а электроны переходят к менее активному металлу, на котором происходит восстановление ионов водорода (водородная деполяризация) или восстановление растворенного в воде кислорода (кислородная деполяризация).

Таким образом, при электрохимической коррозии (как в случае контакта разнородных металлов, так и случае образования микрогальванических элементов на поверхности одного металла) поток электронов направлен от более активного металла к менее активному (проводнику), и более активный металл корродирует. Скорость коррозии тем больше, чем дальше расположены друг от друга в ряду стандартных электродных потенциалов те металлы, из которых образовался гальванический элемент (гальваническая пара).

На скорость коррозии влияет и характер раствора электролита. Чем выше его кислотность (т. е. меньше рН), а также чем больше содержание в нем окислителей, тем быстрее протекает коррозия. Значительно возрастает коррозия с ростом температуры.

Некоторые металлы при соприкосновении с кислородом воздуха или в агрессивной среде переходят в пассивное состояние, при котором резко замедляется коррозия. Например, концентрированная азотная кислота легко делает пассивным железо, и оно практически не реагирует с концентрированной азотной кислотой. В таких случаях на поверхности металла образуется плотная защитная оксидная пленка, которая препятствует контакту металла со средой.

Защитная пленка всегда имеется на поверхности алюминия (см. § 13.11). Подобные пленки в сухом воздухе образуются также на Be, Сr, Zn, Та, Ni, Сu и других металлах. Кислород является наиболее распространенным пассиватором.

Пассивированием объясняется коррозионная стойкость нержавеющих сталей и сплавов.

Защита от коррозии

Коррозия металлов протекает непрерывно и причиняет огромные убытки. Подсчитано, что прямые потери железа от коррозии составляют около 10% его ежегодной выплавки. В результате коррозии металлические изделия теряют свои ценные технические свойства. Поэтому имеют очень большое значение методы защиты металлов и сплавов от коррозии. Они весьма разнообразны. Назовем некоторые из них.

Защитные поверхностные покрытия металлов. Они бывают металлические (покрытие цинком, оловом, свинцом, никелем, хромом и другими металлами) и неметаллические (покрытие лаком, краской, эмалью н другими веществами). Эти покрытия изолируют металл от внешней среды. Так, кровельное железо покрывают цинком: из оцинкованного железа изготовляют многие изделия бытового и промышленного значения. Слой цинка предохраняет железо от коррозии, так как хотя цинк и является более активным металлом, чем железо (см. ряд стандартных электродных потенциалов металлов, табл. 12.1), он покрыт оксидной пленкой. При повреждениях защитного слоя (царапины, пробои крыш и т. д.) в присутствии влаги возникает гальваническая пара Zn|Fe. Катодом (положительным полюсом) является железо, анодом (отрицательным полюсом) — цинк (рис. 12.6). Электроны переходят от цинка к железу, где связываются молекулами кислорода (кислородная деполяризация), цинк растворяется, но железо остается защищенным до тех пор, пока не разрушится весь слой цинка, на что требуется довольно много времени. Покрытие железных изделий никелем, хромом, помимо защиты от коррозии, придает им красивый внешний вид.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.6. Коррозионное разрушение цинка в гальванической паре Zn|Fe

Создание сплавов с антикоррозионными свойствами. Введением в состав стали до 12% хрома получают нержавеющую сталь, устойчивую к коррозии. Добавки никеля, кобальта и меди усиливают антикоррозионные свойства стали, так как повышается склонность сплавов к пассивации. Создание сплавов с антикоррозионными свойствами— одно из важных направлений борьбы с коррозионными потерями.

Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность такой защиты заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 12.7). По мере разрушения протекторов их заменяют новыми.

На этом принципе основана и электрозащита. Конструкция, находящаяся в среде электролита, также соединяется с другим металлом (обычно куском железа, рельсом и т. п.), но через внешний источник тока. При этом защищаемую конструкцию присоединяют к катоду, а металл — к аноду источника тока. Электроны отнимаются от анода источником тока, анод (защищающий металл) разрушается, а на катоде происходит восстановление окислителя.

Электрозащита имеет преимущество перед протекторной защитой: радиус действия первой около 2000 м, второй — около 50 м.

Изменение состава среды. Для замедления коррозии металлических изделий в электролит вводят вещества (чаще всего органические), называемые замедлителями коррозии или ингибиторами. Они применяются в тех случаях, когда металл следует защищать от разъедания кислотами. Советские ученые создали ряд ингибиторов (препараты марок ЧМ, ПБ и др.), которые, будучи добавлены к кислоте, в сотни раз замедляют растворение (коррозию) металлов.

Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Рис. 12.7. Схема протекторной защиты подземного трубопровода:

1 — протектор (цинк, он корродирует); 2 — проводник тока; 3 — трубопровод (защищен за счет электронов цинка)

В последние годы разработаны летучие (или атмосферные) ингибиторы. Ими пропитывают бумагу, которой обертывают металлические изделия. Пары ингибиторов адсорбируются на поверхности металла и образуют на ней защитную пленку.

Ингибиторы широко применяются при химической очистке от накипи паровых котлов, снятии окалины с обработанных изделий, а также при хранении и перевозке соляной кислоты в стальной таре. К числу неорганических ингибиторов относятся нитриты, хроматы, фосфаты, силикаты. Механизм действия ингибиторов является предметом исследования многих химиков.

Услуги по химии:

Лекции по химии:

Лекции по неорганической химии:

Лекции по органической химии:

Присылайте задания в любое время дня и ночи в ➔ Чем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойстваЧем определяются металлические свойства. Смотреть фото Чем определяются металлические свойства. Смотреть картинку Чем определяются металлические свойства. Картинка про Чем определяются металлические свойства. Фото Чем определяются металлические свойства

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *