Чем определяется взаимная параллельность двух плоскостей
Задачи для курсовых работ
Взаимная параллельность плоскостей
Построение двух взаимно параллельных плоскостей основано на известном положении, что две плоскости взаимно параллельны, если две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости.
1. Плоскость D зададим прямыми m Ç n = K (рис. 2-31).
2. Прямую m возьмём параллельно стороне СВ треугольника. Если m || СВ, то m1 || C1B1, a m2 || C2B2
3. Прямую n возьмём параллельно стороне АВ треугольника. Если n || AB, mo n1 || A1B1, a n2 || A2B2.
4. Таким образом, плоскости S (АВС) и D (m Ç n) параллельны.
1. Сколько решений может иметь задача, представленная на рис. 2-30?
3. Сколько ответов может быть у задачи, представленной на рис. 2-29? Почему?
1. В общем случае плоскость определяют три точки.
3. Точку в плоскости находят по принадлежности какой-нибудь прямой этой плоскости.
4. В любой плоскости можно построить прямые уровня и линии наибольшего наклона плоскости к каждой из плоскостей проекций.
5. Через точку, лежащую вне плоскости, можно провести сколько угодно прямых, параллельных данной плоскости, но только одну плоскость, параллельную заданной.
Примеры изображения плоскостей общего и частного положения, заданные геометрическими фигурами
Плоскости общего положения
Графический признак плоскости общего положения: ни одна из проекций не есть прямая линия.
Горизонтально проецирующие плоскости
Плоскости горизонтальные проекции которых есть прямые линии не || и не ^ Л.С.(линиям связи).
Фронтально проецирующие плоскости
Плоскости, фронтальные проекции которых есть прямые линии не || и не ^ Л.С.
Горизонтальные плоскости уровня
Плоскости, фронтальные проекции которых есть прямые линии ^ Л.С.
Фронтальные плоскости уровня
Плоскости, горизонтальные проекции которых есть прямые линии ^ Л.С.
1. Чем может быть задана плоскость на чертеже?
2. Как могут располагаться плоскости относительно плоскостей проекций и как они
3. Сформулируйте условие взаимной принадлежности точки и прямой плоскости.
4. Какие прямые называются особыми линиями плоскости?
5. Сформулируйте признак параллельности прямой и плоскости, параллельности двух
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №6. Параллельность плоскостей
Перечень вопросов, рассматриваемых в теме
Определение. Две прямые в пространстве называются параллельными, если они лежат в одной плоскости и не пересекаются.
Определение. Скрещивающиеся прямые — прямые, которые не лежат в одной плоскости.
Определение. Два отрезка называются параллельными, если они лежат на паралельных прямых.
Определение. Плоскости, которые не пересекаются, называются параллельными.
Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии 10 Москва «Просвещение» 2013 год. С. 1-4.
Зив Б. Г. Геометрия 10 класс Дидактические материалы Москва «Просвещение» 2013 год. С.4, 14, 24
Теоретический материал для самостоятельного изучения
Как известно из аксиом стереометрии, если плоскости имеют одну общую точку, то они пересекаются по прямой, проходящей через эту точку. Значит две плоскости или пересекаются, или не пересекаются.
Определение. Плоскости, которые не пересекаются, называются параллельными.
Параллельные плоскости α и β обозначаются α∥β.
Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости, то эти плоскости параллельны.
Допустим, что плоскости α и β не параллельны, то есть они пересекаются по некоторой прямой c.
Прямая a1 параллельна прямой b1, значит она параллельна и самой плоскости β.
Прямая a2 параллельна прямой b2, значит она параллельна и самой плоскости β (признак параллельности прямой и плоскости).
Прямая c принадлежит плоскости α, значит хотя бы одна из прямых a1 или a2 пересекает прямую c, то есть имеет с ней общую точку. Но прямая c также принадлежит и плоскости β, значит, пересекая прямую c, прямая a1 или a2 пересекает плоскость β, чего быть не может, так как прямые a1 и a2 параллельны плоскости β.
Из этого следует, что плоскости α и β не пересекаются, то есть они параллельны.
Свойства параллельных плоскостей.
Теорема 1. Если две параллельные плоскости пересекаются третьей, то линии их пересечения параллельны.
Плоскость α пересекается с плоскостью γ по прямой a.
Плоскость β пересекается с плоскостью γ по прямой b.
Линии пересечения a и b лежат в одной плоскости γ и потому могут быть либо пересекающимися, либо параллельными прямыми. Но, принадлежа двум параллельным плоскостям, они не могут иметь общих точек. Следовательно, они параллельны.
Теорема 2. Отрезки параллельных прямых, заключенных между двумя параллельными плоскостями, равны.
Проведённая плоскость пересекается с плоскостью α по прямой AB, а с плоскостью β по прямой CD.
По предыдущей теореме прямые AB и CD параллельны. Четырехугольник ABCD есть параллелограмм (у него противоположные стороны параллельны). А раз это параллелограмм, то противоположные стороны у него равны, то есть BC=AD.
Теорема 3. Если прямая пересекает одну из двух параллельных плоскостей, то она пересекает и другую.
Пусть α||β, a пересекает α в точке А.
Выберем в плоскости любую точку C. Через эту точку и прямую a проведём плоскость.
Так как плоскость имеет с плоскостями α и β общие точки A и C соответственно, то она пересекает эти плоскости по некоторым прямым b и c, которые проходят соответственно через точки A и C. По предыдущей теореме прямые b и c параллельны. Тогда в плоскости прямая a пересекает (в точке A) прямую b, которая параллельна прямой c. Значит, прямая a пересекает и прямую c в некоторой точке B. Так как прямая c лежит в плоскости, то точка B является точкой пересечения прямой a и плоскости. Теорема доказана.
Теорема 4. Если плоскость пересекает одну из двух параллельных плоскостей, то она пересекает и другую плоскость.
Пусть α||β, α и γ пересекаются.
Докажем, что плоскости β и γ пересекаются.
Проведём в плоскости γ прямую a, пересекающую плоскость α в некоторой точке B. Тогда по теореме 3 прямая a пересекает и плоскость β в некоторой точке A. Следовательно, плоскости β и γ имеют общую точку A, т. е. пересекаются. Теорема доказана.
Теорема 5. Через точку, не лежащую в данной плоскости, можно провести плоскость, параллельную данной, и притом только одну.
Пусть нам даны плоскость α и точка М, ей не принадлежащая.
Докажем, что существует плоскость β, которой принадлежит точка М, параллельная плоскости α.
В данной плоскости α проведём две произвольные пересекающиеся прямые a и b. Через точку M проведём прямые a1 и b1, параллельные соответственно a и b. Плоскость, проходящую через пересекающиеся прямые a1 и b1, обозначим β. На основании признака параллельности плоскостей плоскость β параллельна плоскости α.
Докажем методом от противного, что β — единственная плоскость, удовлетворяющая условию теоремы.
Допустим, что через точку M проходит другая плоскость, например β1, параллельная α.
Так как β1 пересекает плоскость β (они имеют общую точку M), то по теореме 4 плоскость β1 пересекает и плоскость α (β ‖ α). Мы пришли к противоречию. Таким образом, предположение о том, что через точку M можно провести плоскость, отличную от плоскости β и параллельную плоскости α, неверно. Значит, плоскость β — единственна. Теорема доказана.
Рассмотрим несколько примеров на применение данных свойств.
Даны две пересекающиеся прямые a и b точка А, не лежащая в плоскости этих прямых. Докажите, что через точку А проходит плоскость, параллельная прямым a и b, и притом только одна.
Прямые a и b пересекаются по условию, следовательно, по следствию из аксиомы А1, эти прямые единственным образом определяют плоскость α.
Известно, что через точку А, не принадлежащую плоскости α, проходит единственная плоскость, параллельная α, т.е. параллельная прямым a и b (по теореме 5) .
Плоскости α и β параллельны, прямая m лежит в плоскости α. Докажите, что прямая m параллельна плоскости β.
Предположим, что прямая m пересекает плоскость β в точке М. Тогда точка М принадлежит плоскости α (т.к. прямая m лежит в плоскости α) и М принадлежит плоскости β, значит, α и β пересекаются, но они параллельны по условию. Очевидно, m не пересекает плоскость α, т.е. параллельна ей.
Примеры и разбор решения заданий тренировочного модуля
№1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте
Три отрезка А1А2, В1В2 и С1С2, не лежащие в одной плоскости, имеют общую середину. Докажите, что плоскости А1В1С1 и А2В2С2 параллельны.
Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2
(она существует и единственная, т.к. прямые пересекаются).
В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.
Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.
Рассмотрим плоскость, проходящую через прямые А1А2 и В1В2
(она существует и единственная, т.к. прямые пересекаются).
В этой плоскости лежит четырехугольник А1В1А2В2, диагонали которого точкой пересечения делятся пополам. Следовательно, данный четырехугольник является параллелограммом (признак параллелограмма), значит, А1В1 и А2В2 параллельны.
Аналогично доказывается параллельность В1С1 и В2С2. Из вышеперечисленного следует, что плоскости А1В1С1 и А2В2С2 параллельны по признаку параллельности плоскостей.
Тип задания: выделение цветом
Два равнобедренных треугольника FKС и FKD с общим основанием FK расположены так, что точка С не лежит в плоскости FKD. Определите взаимное расположение прямых, содержащих медианы треугольников, проведенных к сторонам KС и KD.
Прямые, которые содержат медианы треугольников к KC и KD- выходят из одной точки F. Соответственно, можно сделать вывод, что данные прямые пересекаются.
Взаимное расположение двух плоскостей.
Две различные плоскости в пространстве либо параллельны, либо пересекаются.
Параллельность двух плоскостей
Определение. Две плоскости в пространстве называются параллельными, если они не пересекаются.
Признак параллельности плоскостей. Если две пересекающиеся прямые одной плоскости соответственно параллельны двум прямым другой плоскости, то такие плоскости параллельны.
Основные свойства параллельности плоскостей.
Пересечение двух плоскостей
Две плоскости пересекаются по прямой. Общая прямая двух плоскостей называется ребром двугранного угла, образованного при пересечении данных плоскостей. При пересечении двух плоскостей образуются четыре двугранных угла. Если все они равны, то плоскости называются перпендикулярными.
Признак перпендикулярности плоскостей. Если одна из двух плоскостей проходит через прямую, перпендикулярную к другой плоскости, то такие плоскости перпендикулярны.
Из признака перпендикулярности плоскостей следует, что плоскость, перпендикулярная к прямой, по которой пересекаются две данные плоскости, перпендикулярна к каждой из этих плоскостей.
Угол между плоскостями — наименьший из двугранных углов, образованных при пересечении плоскостей.
Угловая величина двугранного угла — это величина линейного угла данного двугранного угла.
Чтобы найти линейный угол двугранного угла надо из произвольной точки на ребре двугранного угла провести в каждой плоскости по перпендикуляру к этому ребру. Все линейные углы двугранного угла равны друг другу.
Тренировочные задания
Дан куб . Найдите угол между плоскостями
и
.
Дан куб . Точка
— середина ребра
. Найдите угол между плоскостями
и
.
В кубе все рёбра равны
. На его ребре
отмечена точка
так, что
. Через точки
и
построена плоскость
, параллельная прямой
. Найдите угол наклона плоскости
к плоскости грани
.
Дана правильная треугольная призма , у которой сторона основания равна
, а боковое ребро равно
. Через точки
,
и середину
ребра
проведена плоскость. Найдите угол между плоскостью сечения и плоскостью ABC.
Все рёбра правильной треугольной призмы имеют длину
. Точки
и
— середины рёбер
и
соответственно. Найдите угол между плоскостями
и
.
Основанием пирамиды является прямоугольник
, в котором
. Диагонали прямоугольника
пересекаются в точке
. Отрезок
является высотой пирамиды
. Из вершин
и
опущены перпендикуляры
и
на ребро
. Найдите двугранный угол пирамиды при ребре
, если
.
В основании прямой призмы лежит квадрат
со стороной
, а высота призмы равна
. Точка
лежит на диагонали
, причём
. Найдите угол между плоскостью
и плоскостью
.